
A Example MDP in Figure 1

This section provides extra details concerning the example MDP in Figure 1. At the end of phase 2,
state s4 has been visited T times each from s3 and s1. The visits from s3 result in an average reward
of g∗ + β while the visits from s1 result in average reward g∗ − α, the expected value is therefore:

g4 =
T (g∗ + β) + T (g∗ − α)

2T
= g∗ +

β − α
2

.

State s1, on the other hand, has T transitions each to s2 and s4. Its expected value is therefore:

g1 =
T (g∗ + β) + Tg4

2T
= g∗ +

3β − α
4

.

The total rewards for all 3T steps is given by:

2T (g∗ + β) + T (g∗ − α) = 3Tg∗ + T (2β − α).

A.1 Additional Details on Experiments

Figure 5 shows the exact MDP used in the experiments. Transitions from s5, s6 and s7 give rewards
r1, r2 and r3 respectively. All other transitions give zero rewards. To reproduce the results in Fig. 4,
set r1 to 0.36, r2 to 1 and r3 to 0.04. Note that a wide range of parameters can produce similar
results.

We run the standard version of UCRL2 as published in [Jaksch et al., 2010]. For OLRM2 we run
the exact version as described in this paper. The uncertainty sets are as follows3:

• (s0, a1): Any distributions over s0 and s5

• s1: Any distributions over s2 and s4

• s4: Any distributions over s6 and s7

All other transitions are assumed deterministic. During phase 1, all transitions from s1 and s4 go
to s2 and s6 respectively (solid arrows). In phase 2, all transitions from s1 and s4 go to s4 and s7
respectively (dashed arrows).

s0

s1

s3

s2

s4

a1
a2

a3

s5
s6

s7

r1 r2

r3

Figure 5: MDP with adversarial transitions.

B The OLRM2 algorithm

The corresponding algorithm for the infinite-horizon average reward case is shown in Figure 6.
Section B.1 provides the necessary details to complete the algorithm.

3Technically, the MDP would not be communicating if, for instance, s4 always transitions to s6, making s7
unreachable in this case. While it does not affect the results in this example, one can “fix” this by allocating a
small minimum probability to all potential next-states.
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Input: S, A, δ, and for each (s, a), U(s, a)
1. Initialize the set F ← {}.
2. Initialize k ← 1.

3. Compute an optimistic policy π̃k and obtain its bias hk, assuming all state-action pairs in F are
adversarial (Section B.1).

4. Execute π̃k until one of the followings happen:

• The execution count of some state-action (s, a) has been doubled.
• The executed state-action pair (s, a) fails the stochastic check (Section 5). In this case

(s, a) is added to F .

5. Increment k. Go back to step 3.

Figure 6: The OLRM2 algorithm

B.1 Computing an optimistic policy

We adapt the algorithms from [Tewari and Bartlett, 2007] to compute an optimistic minimax policy.
The key addition is a stopping condition based on the check for the optimality condition (for unichain
MDPs) after every L iterations of the algorithm. Since the convergence rate is geometric, L can
simply be chosen to be a small positive integer. The algorithm is given in Figure 7.

C Proofs for Section 4

C.1 Proof of Lemma 1

Proof. We use the following bound from [Weissman et al., 2003] for 1-norm deviation between true
distribution p and empirical distribution p̂ over S distinct events from n samples:

Pr(‖p̂(·)− p(·)‖1 ≥ ε) ≤ (2S − 2) exp(−nε
2

2
).

For any particular s, a, t and k, the following thus holds with probability at least 1− δ
2SATk2 ,

P̂k(·|s, a)Ṽ kt+1(·)− ps,a(·)Ṽ kt+1(·)
≤ ‖P̂k(·|s, a)− ps,a(·)‖1T

≤ T

√
2

Nk(s, a)
log

2S2SATk2

δ

≤ T

√
2S

Nk(s, a)
log

4SATk2

δ

Taking union bounds over all states, actions, t and all epochs completes the proof.

C.2 Proof of Lemma 2

Proof. Consider a check in epoch κ on a transition from (s, a). Let n be the total number of tran-
sitions from (s, a) up to and including this transition. Let s′1, . . . , s

′
n be the next-states of these

transitions. Let k1, . . . , kn and t1, . . . , tn be the corresponding epochs and episode stages during
which these transitions happened.

Recall that the check fails if
n∑
j=1

P̂kj (·|s, a)Ṽ
kj
tj+1(·)−

n∑
j=1

Ṽ
kj
tj+1(s′j) > 5T

√
nS log

4SATτ2

δ
.
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Input: S, A, T , δ, F , k, L, and for each (s, a), U(s, a), P̂k(·|s, a) and Nk(s, a).

1. Set Ṽ (0)(s) = 0 for all s.

2. Set t← 0.

3. • Set αt ← t+1
t+2

.

• For each (s, a) ∈ F , set

Q̃(t+1)(s, a) = (1− αt)r(s, a) + αt min
p∈U(s,a)

p(·)Ṽ (t)(·)

and
P̃k(·|s, a)← arg min

p∈U(s,a)
p(·)Ṽ (t)(·).

• For each (s, a) /∈ F , set

Q̃(t+1)(s, a) = (1− αt)r(s, a) + αt max
‖p−P̂k(·|s,a)‖1≤σ(s,a)

p(·)Ṽ (t)(·)

where

σ(s, a) =

√
2S

Nk(s, a)
log

4SAk2

δ
.

Set
P̃k(·|s, a)← arg max

‖p−P̂k(·|s,a)‖1≤σ(s,a)
p(·)Ṽ (t)(·).

• For each s, set
Ṽ (t+1)(s) = max

a
Q̃(t+1)(s, a)

and
π̃(s) = argmax

a
Q̃(t+1)(s, a).

• If (t+ 1) mod L = 0, perform the following:
– Solve the following system of equations for g and h(·), setting h(0) = 0.

∀s ∈ S, g + h(s) = r(s, π̃(s)) + P̃k(·|s, π̃(s))h(·).

– Check that the following holds for all s ∈ F ,

π̃(s) ∈ argmax
a
{r(s, a) + min

p∈U(s,a)
p(·)h(·)}

and that the following holds for all s /∈ F ,

π̃(s) ∈ argmax
a
{r(s, a) + max

‖p−P̂k(·|s,a)‖1≤σ(s,a)
p(·)h(·)}.

If all of the above hold, then stop, output π̃k = π̃ and hk = h.

4. Set t← t+ 1. Go to Step 3.

Figure 7: Computing an optimistic minimax algorithm

We show that if (s, a) is stochastic (i.e. (s, a) /∈ F) then the probability that this check fails is less
than δ

2τ2 .

Let
Xj = ps,a(·)Ṽ kjtj+1(·)− es′j (·)Ṽ

kj
tj+1(·)

for j = 1, . . . , n, where es′j (·) is a (random) indicator vector. Since E(Xj |s′1, . . . , s′j−1) = 0, Xj is
a martingale difference sequence with |Xj | ≤ T . By Azuma-Hoeffding inequality,

Pr

 n∑
j=1

Xj ≥ ε

 ≤ exp

(
− ε2

2nT 2

)
.
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Setting ε = T
√

2n log 2τ2

δ , we have that with probability at least 1− δ
2τ2 ,

n∑
j=1

Xj =

n∑
j=1

ps,a(·)Ṽ kjtj+1(·)−
n∑
j=1

Ṽ
kj
tj+1(s′j) < T

√
2n log

2τ2

δ
. (2)

We therefore have
n∑
j=1

P̂kj (·|s, a)Ṽ
kj
tj+1(·)−

n∑
j=1

Ṽ
kj
tj+1(s′j)

≤
n∑
j=1

P̂kj (·|s, a)Ṽ
kj
tj+1(·)−

n∑
j=1

ps,a(·)Ṽ kjtj+1(·) + T

√
2n log

2τ2

δ

≤

 n∑
j=1

T

√
2S

Nkj (s, a)
log

4SATk2j
δ

+ T

√
2n log

2τ2

δ

≤

(
T

√
2S log

4SATκ2

δ

κ∑
k=1

vk(s, a)√
Nk(s, a)

)
+ T

√
2n log

2τ2

δ

≤ 5T

√
nS log

4SATτ2

δ

where the second inequality is from Lemma 1. In the third inequality we change the index of
the summation to over all epochs up to κ, where vk(s, a) is the total transitions from (s, a) in
epoch k. The final inequality uses the fact that vk(s, a) ≤ Nk(s, a) for all k (as imposed by
the algorithm), and that

∑κ
k=1

vk(s,a)√
Nk(s,a)

≤ (
√

2 + 1)
√
n under this condition (Lemma 19 from

[Jaksch et al., 2010]).

Taking a union bound over all transitions, the total probability that (2) fails to hold is at most
∞∑
τ=1

δ

2τ2
=
δ

2

∞∑
τ=1

1

τ2
≤ δ.

Adding the failure probability of Lemma 1 completes the proof.

C.3 Proof of Lemma 3

Proof. Since k remains fixed throughout the proof, we omit the superscript k in all the values Ṽ kt
and Q̃kt to reduce clutter.

This is trivially true for t = T − 1 since

ṼT−1(s) = max
a

r(s, a) = V ∗T−1(s)

for all s. We prove by induction for t = (T − 2), . . . , 0.

Suppose it holds for Ṽt+1, i.e. Ṽt+1(s) ≥ V ∗t+1(s) for all s. During policy computation, there can
be four possible cases for each (s, a):

1. (s, a) ∈ F and (s, a) ∈ F .

2. (s, a) ∈ F and (s, a) /∈ F .

3. (s, a) /∈ F and (s, a) /∈ F .

4. (s, a) /∈ F and (s, a) ∈ F .

We will deal with the first 3 cases since the lemma assumes that the last case never happens.
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If (s, a) ∈ F and has been added to F , then it holds that

Q̃t(s, a) = r(s, a) + min
p∈U(s,a)

p(·)Ṽt+1(·) ≥ r(s, a) + min
p∈U(s,a)

p(·)V ∗t+1(·) = Q∗t (s, a).

If (s, a) has not been added to F , then Q̃t(s, a) is computed based on P̂k(·|s, a), which is based on
n = Nk(s, a) past transitions of (s, a). Let s′1, . . . , s

′
n be the next-states of these transitions. Let

Xj = p(j)s,a(·)V ∗t+1(·)− es′j (·)V
∗
t+1(·)

for j = 1, . . . , n, where es′j (·) is a random vector with es′j (s
′) = 1 if s′j = s′ and zero elsewhere.

Note that p(j)s,a ∈ U(s, a) for each j and since (s, a) is adversarial p(j)s,a can depend on past transitions
s′1, . . . , s

′
j−1. However, since E(Xj |s′1, . . . , s′j−1) = 0, Xj is a martingale difference sequence with

|Xj | ≤ T . By Azuma-Hoeffding inequality

Pr

 n∑
j=1

Xj ≥ ε

 ≤ exp

(
− ε2

2nT 2

)
.

Setting ε = T
√

2n log 2SATk2

δ , it follows that with failure probability at most δ
2SATk2 ,∑n

j=1Xj

n
=

1

n

n∑
j=1

p(j)s,a(·)V ∗t+1(·)− P̂k(·|s, a)V ∗t+1(·) < T

√
2

n
log

2SATk2

δ

and therefore

Q̃t(s, a) = r(s, a) + P̂k(·|s, a)Ṽt+1(·) + T

√
2

n
log

2SATk2

δ

≥ r(s, a) + P̂k(·|s, a)V ∗t+1(·) + T

√
2

n
log

2SATk2

δ

≥ r(s, a) +
1

n

n∑
j=1

p(j)s,a(·)V ∗t+1(·)

≥ r(s, a) + min
p∈U(s,a)

p(·)V ∗t+1(·)

= Q∗t (s, a).

The third case, where (s, a) /∈ F , can be proved using similar arguments. In particular, this is
simpler since ps,a is fixed for every transition.

We now have
Ṽt(s) = max

a
Q̃t(s, a) ≥ max

a
Q∗t (s, a) = V ∗t (s).

Taking the union bound over all states, actions, t and k completes the proof.

C.4 Proof of Theorem 1

Proof. We assume that no state-action pairs (s, a) /∈ F has been added to F . By Lemma 2 this fails
with probability at most 2δ.

Assume that episode i is fully within epoch k. Let sit and ait be the state and action taken at stage t
in episode i. Let

∆̃i
t = Ṽ kt (sit)−

T−1∑
t′=t

r(sit′ , a
i
t′).

Then

∆̃i
t = Ṽ kt (sit)−

T−1∑
t′=t

r(sit′ , a
i
t′)

14



= Q̃kt (sit, a
i
t)−

T−1∑
t′=t

r(sit′ , a
i
t′)

= Y it + Ṽ kt+1(sit+1)−
T−1∑
t′=t+1

r(sit′ , a
i
t′)

= Y it + ∆̃i
t+1

where we have defined

Y it =

{
minp∈U(sit,ait) p(·)Ṽ

k
t+1(·)− Ṽ kt+1(sit+1) if (sit, a

i
t) ∈ F,

P̂k(·|sit, ait)Ṽ kt+1(·)− Ṽ kt+1(sit+1) + T
√

2
Nk(sit,a

i
t)

log 2SATk2

δ if (sit, a
i
t) /∈ F.

Since ∆̃i
T−1 = 0, we have that

∆̃i
0 =

T−2∑
t=0

Y it .

By Lemma 3, with probability at least 1− δ, the regret in episode i is given by

∆i = V ∗0 (si0)−
T−1∑
t=0

r(sit, a
i
t) ≤ ∆̃i

0.

Note that the above only holds if there is no change of policy within the episode. Now, after running
the algorithm for m episodes, let τ = mT be the total number of steps executed and κ be the total
number of epochs. The total number of new epochs due to doubling of visit counts to state-action
pairs can be bounded by SA log2 2τ and the total number of new epochs due to adding a state-action
pair to F is at most SA, therefore the total number of epochs is at most SA log2 4τ . This means that
the total number of episodes with a change of policy is at most SA log2 4τ and the regrets in these
episodes can be bounded by SAT log2 4τ . For these episodes we define ∆̃i

0 = T .

The total regret, after running the algorithm for m episodes is therefore

∆(m) ≤
m∑
i=1

∆̃i
0 ≤ (SAT log2 4τ) +

m∑
i=1

T−2∑
t=0

Y it . (3)

We now bound the term
∑m
i=1

∑T−2
t=0 Y it . Let n(s, a) be the total number of times (s, a) has been

executed. Re-write the summation such that it is over state-action pairs:
m∑
i=1

T−2∑
t=0

Y it =
∑
s,a

n(s,a)∑
j=1

Yj(s, a).

Fix a state-action pair (s, a). Let n = n(s, a). Let s′1, . . . , s
′
n be the corresponding next-states in

each of the transitions from (s, a). Similarly, let k1, . . . , kn and t1, . . . , tn be the respective epochs
and stages when these transitions happen.

Let n0 be the number of transitions from (s, a) where (s, a) /∈ F . If (s, a) is never added to F then
n0 = n. We have

n0∑
j=1

Yj(s, a) =

n0∑
j=1

P̂kj (·|s, a)Ṽ
kj
tj+1(·)−

n0∑
j=1

Ṽ
kj
tj+1(s′j) +

n0∑
j=1

T

√
2

n0
log

2SATk2j
δ

≤ 5T

√
nS log

4SATτ2

δ
+

n0∑
j=1

T

√
2

n0
log

2SATk2j
δ

≤ 5T

√
nS log

4SATτ2

δ
+ T

√
2 log

2SATκ2

δ

κ∑
k=1

vk(s, a)√
Nk(s, a)

≤ 9T

√
nS log

4SATτ2

δ
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where we use the condition for the stochastic check in the first inequality. The second and third
inequalities follow the same argument as in Lemma 2.

If (s, a) is ever added to F , then for all subsequent transitions of (s, a),
n∑

j=n0+1

Yj(s, a) =

n∑
j=n0+1

min
p∈U(s,a)

p(·)Ṽ kjtj+1(·)− Ṽ kjtj+1(s′j)

≤
n∑

j=n0+1

p(j)s,a(·)Ṽ kjtj+1(·)− Ṽ kjtj+1(s′j)

=

n∑
j=n0+1

Xj

< T

√
2n log

2τ2

δ

where Xj is as defined in Lemma 2 and we apply the Azuma-Hoeffding inequality, with the total
probability of failure over all τ at most δ.

Combining the two cases, and taking the sum over all state-action pairs, we have that

∑
s,a

n(s,a)∑
j=1

Yj(s, a) ≤ 11T

√
S log

4SATτ2

δ

∑
s,a

√
n(s, a) ≤ 11ST

√
Aτ log

4SATτ2

δ
(4)

where the last inequality is by Jensen’s inequality.

Combining equations (3) and (4), the total regret is therefore

∆(m) ≤ (SAT log2 4τ) + 11ST

√
Aτ log

4SATτ2

δ
= Õ(ST

√
Aτ).

Adding up all the failure probabilities (by union bound) we get a total failure of 5δ. Run the algo-
rithm with δ

5 and the proof is complete.

D Analysis (infinite horizon case)

Every time a new policy is computed, a new epoch begins. We use k = 1, 2, . . . as the index for
epochs. The total number of steps from the beginning is indexed by τ = 1, 2, . . . and the total
number of steps up to the beginning of epoch k is denoted as τk.
Lemma 4. The following holds for all state-action pair (s, a) /∈ F in all epochs k ≥ 1, with
probability at least 1− δ:

‖P̂k(·|s, a)− ps,a(·)‖1 ≤

√
2S

Nk(s, a)
log

4SAk2

δ
.

Proof. We use the following bound from [Weissman et al., 2003] for 1-norm deviation between true
distribution p and empirical distribution p̂ over S distinct events from n samples:

Pr(‖p̂(·)− p(·)‖1 ≥ ε) ≤ (2S − 2) exp(−nε
2

2
).

For any particular s, a and k, the following thus holds with probability at least 1− δ
2SAk2 ,

‖P̂k(·|s, a)− ps,a(·)‖1 ≤

√
2

Nk(s, a)
log

2S2SAk2

δ
≤

√
2S

Nk(s, a)
log

4SAk2

δ

Taking union bounds over all states, actions and all epochs completes the proof.

Lemma 5. The probability that any state-action pair (s, a) /∈ F gets added into set F while running
the algorithm is at most 2δ.
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Proof. Consider a check in epoch κ on a transition from (s, a). Let n be the total number of tran-
sitions from (s, a) up to and including this transition. Let s′1, . . . , s

′
n be the next-states of these

transitions. Let k1, . . . , kn be the corresponding epochs during which these transitions happened.

Recall that the check fails if
n∑
j=1

P̃kj (·|s, a)hkj (·)−
n∑
j=1

hkj (s
′
j) > 5H̃

√
nS log

4SAτ2

δ

where H̃ = maxk∈{k1,...,kn} (maxs hk(s)−mins hk(s)).

We show that if (s, a) is stochastic (i.e. (s, a) /∈ F) then the probability that this check fails is less
than δ

2τ2 . Note that for (s, a) stochastic, s′1, . . . , s
′
n are independent random variables from the same

transition distribution ps,a. Consider the function

f(s′1, . . . , s
′
n) =

n∑
j=1

(
ps,a(·)hkj (·)− hkj (s′j)

)
.

It is straightforward to show that

max
s′1,...,s

′
n,s

′′
j

|f(s′1, . . . , s
′
n)− f(s′1, . . . , s

′
j−1, s

′′
j , s
′
j+1, . . . , s

′
n)| ≤ H̃

for 1 ≤ j ≤ n. We can therefore apply McDiarmid’s inequality [McDiarmid, 1989], which gives

Pr (f(s′1, . . . , s
′
n)− E[f(s′1, . . . , s

′
n)] ≥ ε) ≤ exp

(
− 2ε2

nH̃2

)
.

Setting ε = H̃
√

n
2 log 2τ2

δ , and noting that E[f(s′1, . . . , s
′
n)] = 0, we have that with probability at

least 1− δ
2τ2 ,

n∑
j=1

ps,a(·)hkj (·)−
n∑
j=1

hkj (s
′
j) < H̃

√
n

2
log

2τ2

δ
. (5)

Let

Ũkj (·) = hkj (·)−
maxs∈S hkj (s)−mins∈S hkj (s)

2
.

We therefore have
n∑
j=1

P̃kj (·|s, a)hkj (·)−
n∑
j=1

hkj (s
′
j)

≤
n∑
j=1

P̃kj (·|s, a)hkj (·)−
n∑
j=1

ps,a(·)hkj (·) + H̃

√
n

2
log

2τ2

δ
(6)

=

n∑
j=1

P̃kj (·|s, a)Ũkj (·)−
n∑
j=1

ps,a(·)Ũkj (·) + H̃

√
n

2
log

2τ2

δ

≤

 n∑
j=1

‖P̃kj (·|s, a)− ps,a(·)‖1
H̃

2

+ H̃

√
n

2
log

2τ2

δ

≤

H̃
2

n∑
j=1

∥∥∥P̃kj (·|s, a)− P̂kj (·|s, a)
∥∥∥
1

+

H̃
2

n∑
j=1

∥∥∥P̂kj (·|s, a)− ps,a(·)
∥∥∥
1


+H̃

√
n

2
log

2τ2

δ
(7)

≤ H̃

 n∑
j=1

√
2S

Nkj (s, a)
log

4SAk2j
δ

+ H̃

√
n

2
log

2τ2

δ
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≤

(
H̃

√
2S log

4SAκ2

δ

κ∑
k=1

vk(s, a)√
Nk(s, a)

)
+ H̃

√
n

2
log

2τ2

δ

≤ 5H̃

√
nS log

4SAτ2

δ

where we use (5) in (6). In (7), the first term is bounded by the algorithm when computing the
optimistic policy while the second term employs Lemma 4. The last two inequalities follow the
same argument as in the proof of Lemma 2.

Taking a union bound over all transitions, the total probability that (2) fails to hold is at most
∞∑
τ=1

δ

2τ2
=
δ

2

∞∑
τ=1

1

τ2
≤ δ.

Adding the failure probability of Lemma 4 completes the proof.

Lemma 6. With probability at least 1 − δ, and assume that no state-action pairs (s, a) /∈ F have
been added to F , the following holds for every state s ∈ S and every k ≥ 1:

g∗(s) ≤ r(s, π̃k(s)) + P̃k(·|s, π̃k(s))hk(·)− hk(s).

Proof. Since k remains fixed throughout the proof, we omit the subscript/superscript k from P̃ , Ṽ ,
Q̃ and π̃.

The key is to show that the true minimax MDP is contained in the set of MDPs considered when
computing each optimistic policy. This ensures that the optimal gain of the optimistic MDP, g̃(s), is
at least as large as g∗(s) for all s ∈ S.

During policy computation, there can be four possible cases for each (s, a):

1. (s, a) ∈ F and (s, a) ∈ F .

2. (s, a) ∈ F and (s, a) /∈ F .

3. (s, a) /∈ F and (s, a) /∈ F .

4. (s, a) /∈ F and (s, a) ∈ F .

We only deal with the first 3 cases since the lemma assumes that the last case never happens.

For case 1, the correct set of transition functions is used and therefore the minimax transition is
included. For case 2, a transition that is no worse than the minimax transition will always be chosen
since it is always chosen optimistically. For case 3, (s, a) is stochastic. By Lemma 4, the true
transition function ps,a is included in with probability at least 1− δ.

The above implies that g̃(s) ≥ g∗(s) for all s with probability at least 1− δ. From equation (1), we
therefore have

g∗(s) ≤ g̃(s) = r(s, π̃k(s)) + P̃k(·|s, π̃k(s))hk(·)− hk(s).

D.1 Proof of Theorem 2

Proof. We assume that no state-action pairs (s, a) /∈ F has been added to F . By Lemma 5 this fails
with probability at most 2δ.

Let st and at be the state and action taken at step t. Suppose step t is taken in epoch kt. Consider
the regret of this step,

∆t = g∗(st)− r(st, at)
≤ P̃k(·|st, at)hkt(·)− hkt(st)
= Yt + hkt(st+1)− hkt(st)
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where the inequality is due to Lemma 6 and we have defined

Yt = P̃k(·|st, at)hkt(·)− hkt(st+1).

The total regret in epoch k is then given by

∆(k) =

τ(k+1)∑
t=τk+1

∆t

≤
τ(k+1)∑
t=τk+1

(Yt + hk(st+1)− hk(st))

=

( τ(k+1)∑
t=τk+1

Yt

)
+ hk(sτ(k+1)+1)− hk(sτk+1)

≤

( τ(k+1)∑
t=τk+1

Yt

)
+H

where in the last inequality we have used the fact that the range of hk(·) is bounded by the maximal
span H .

The total regret, after running the algorithm for τ steps is therefore

∆(τ) =

kτ∑
k=1

∆(k) ≤

(
τ∑
t=1

Yt

)
+ SAH log2 4τ (8)

where we have used the same argument in the proof of Theorem 1 that the total number of epochs is
at most SA log2 4τ .

We now bound the term
∑τ
t=1 Yt. Let n(s, a) be the total number of times (s, a) has been executed.

Re-write the summation such that it is over state-action pairs:

τ∑
t=1

Yt =
∑
s,a

n(s,a)∑
j=1

Yj(s, a).

Fix a state-action pair (s, a). Let n = n(s, a). Let s′1, . . . , s
′
n be the corresponding next-states in

each of the transitions from (s, a). Let k1, . . . , kn be the corresponding epochs when these transi-
tions happen.

Suppose (s, a) passes the stochastic check for all n transitions. We have

n∑
j=1

Yj(s, a) =

 n∑
j=1

P̃kj (·|s, a)hkj (·)

−
 n∑
j=1

hkj (s
′
j)


≤ 5H̃

√
nS log

4SAτ2

δ

≤ 5H

√
nS log

4SAτ2

δ

where in the first inequality we use the condition for a successful check.

Note that if (s, a) is ever added to F (say, after n′ transitions), then in all subsequent transitions of
(s, a),

n∑
j=n′+1

Yj(s, a) =

n∑
j=n′+1

min
p∈U(s,a)

p(·)hkj (·)− hkj (s′j)

≤
n∑

j=n′+1

p(j)s,a(·)hkj (·)− hkj (s′j)
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=

n∑
j=n′+1

Xj

≤ H

√
2n log

2SAτ2

δ

where in the last inequality we apply Azuma-Hoeffding inequality to the martingale difference se-
quence Xj with |Xj | ≤ H as in the proof of Theorem 1. The failure probability is at most δ.

We therefore have∑
s,a

n(s,a)∑
j=1

Yj(s, a) ≤ 7H

√
S log

4SAτ2

δ

∑
s,a

√
n(s, a) ≤ 7SH

√
Aτ log

4SAτ2

δ
(9)

where the last inequality is by Jensen’s inequality.

Combining equations (8) and (9), the total regret is therefore

∆(τ) ≤ (SAH log2 4τ) + 7SH

√
Aτ log

4SAτ2

δ
= Õ(SH

√
Aτ).

Adding up all the failure probabilities (by union bound) we get a total failure of 4δ. Run the algo-
rithm with δ

4 and the proof is complete.
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