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Abstract

We introduce principal differences analysis (PDA) for analyzing differences be-
tween high-dimensional distributions. The method operates by finding the pro-
jection that maximizes the Wasserstein divergence between the resulting univari-
ate populations. Relying on the Cramer-Wold device, it requires no assumptions
about the form of the underlying distributions, nor the nature of their inter-class
differences. A sparse variant of the method is introduced to identify features re-
sponsible for the differences. We provide algorithms for both the original minimax
formulation as well as its semidefinite relaxation. In addition to deriving some
convergence results, we illustrate how the approach may be applied to identify dif-
ferences between cell populations in the somatosensory cortex and hippocampus
as manifested by single cell RNA-seq. Our broader framework extends beyond
the specific choice of Wasserstein divergence.

1 Introduction

Understanding differences between populations is a common task across disciplines, from biomed-
ical data analysis to demographic or textual analysis. For example, in biomedical analysis, a set of
variables (features) such as genes may be profiled under different conditions (e.g. cell types, disease
variants), resulting in two or more populations to compare. The hope of this analysis is to answer
whether or not the populations differ and, if so, which variables or relationships contribute most to
this difference. In many cases of interest, the comparison may be challenging primarily for three
reasons: 1) the number of variables profiled may be large, 2) populations are represented by finite,
unpaired, high-dimensional sets of samples, and 3) information may be lacking about the nature of
possible differences (exploratory analysis).

We will focus on the comparison of two high dimensional populations. Therefore, given two un-
paired i.i.d. sets of samples Xpnq “ xp1q, . . . , xpnq „ PX and Ypmq “ yp1q, . . . , ypmq „ PY , the
goal is to answer the following two questions about the underlying multivariate random variables
X,Y P Rd: (Q1) Is PX “ PY ? (Q2) If not, what is the minimal subset of features S Ñ t1, . . . , du
such that the marginal distributions differ PXS ‰ PYS while PXSC « PYSC for the complement? A
finer version of (Q2) may additionally be posed which asks how much each feature contributes to
the overall difference between the two probability distributions (with respect to the given scale on
which the variables are measured).

Many two-sample analyses have focused on characterizing limited differences such as mean shifts
[1, 2]. More general differences beyond the mean of each feature remain of interest, however, includ-
ing variance/covariance of demographic statistics such as income. It is also undesirable to restrict
the analysis to specific parametric differences, especially in exploratory analysis where the nature
of the underlying distributions may be unknown. In the univariate case, a number of nonparametric
tests of equality of distributions are available with accompanying concentration results [3]. Popu-
lar examples of such divergences (also referred to as probability metrics) include: f -divergences

1



(Kullback-Leibler, Hellinger, total-variation, etc.), the Kolmogorov distance, or the Wasserstein
metric [4]. Unfortunately, this simplicity vanishes as the dimensionality d grows, and complex
test-statistics have been designed to address some of the difficulties that appear in high-dimensional
settings [5, 6, 7, 8].

In this work, we propose the principal differences analysis (PDA) framework which circumvents the
curse of dimensionality through explicit reduction back to the univariate case. Given a pre-specified
statistical divergence D which measures the difference between univariate probability distributions,
PDA seeks to find a projection � which maximizes Dp�TX,�TY q subject to the constraints ||�||2 §
1,�1 • 0 (to avoid underspecification). This reduction is justified by the Cramer-Wold device,
which ensures that PX ‰ PY if and only if there exists a direction along which the univariate linearly
projected distributions differ [9, 10, 11]. Assuming D is a positive definite divergence (meaning it is
nonzero between any two distinct univariate distributions), the projection vector produced by PDA
can thus capture arbitrary types of differences between high-dimensional PX and PY . Furthermore,
the approach can be straightforwardly modified to address (Q2) by introducing a sparsity penalty on
� and examining the features with nonzero weight in the resulting optimal projection. The resulting
comparison pertains to marginal distributions up to the sparsity level. We refer to this approach as
sparse differences analysis or SPARDA.

2 Related Work

The problem of characterizing differences between populations, including feature selection, has re-
ceived a great deal of study [2, 12, 13, 5, 1]. We limit our discussion to projection-based methods
which, as a family of methods, are closest to our approach. For multivariate two-class data, the most
widely adopted methods include (sparse) linear discriminant analysis (LDA) [2] and the logistic
lasso [12]. While interpretable, these methods seek specific differences (e.g., covariance-rescaled
average differences) or operate under stringent assumptions (e.g., log-linear model). In contrast,
SPARDA (with a positive-definite divergence) aims to find features that characterize a priori un-
specified differences between general multivariate distributions.

Perhaps most similar to our general approach is Direction-Projection-Permutation (DiProPerm) pro-
cedure of Wei et al. [5], in which the data is first projected along the normal to the separating hyper-
plane (found using linear SVM, distance weighted discrimination, or the centroid method) followed
by a univariate two-sample test on the projected data. The projections could also be chosen at
random [1]. In contrast to our approach, the choice of the projection in such methods is not opti-
mized for the test statistics. We note that by restricting the divergence measure in our technique,
methods such as the (sparse) linear support vector machine [13] could be viewed as special cases.
The divergence in this case would measure the margin between projected univariate distributions.
While suitable for finding well-separated projected populations, it may fail to uncover more general
differences between possibly multi-modal projected populations.

3 General Framework for Principal Differences Analysis

For a given divergence measure D between two univariate random variables, we find the projection
p� that solves

max

�PB,||�||0§k

 
Dp�T pXpnq,�T pY pmqq

(
(1)

where B :“ t� P Rd
: ||�||2 § 1,�1 • 0u is the feasible set, ||�||0 § k is the sparsity constraint,

and �T pXpnq denotes the observed random variable that follows the empirical distribution of n sam-
ples of �TX . Instead of imposing a hard cardinality constraint ||�||0 § k, we may instead penalize
by adding a penalty term1 ´�||�||0 or its natural relaxation, the `1 shrinkage used in Lasso [12],
sparse LDA [2], and sparse PCA [14, 15]. Sparsity in our setting explicitly restricts the comparison
to the marginal distributions over features with non-zero coefficients. We can evaluate the null hy-
pothesis PX “ PY (or its sparse variant over marginals) using permutation testing (cf. [5, 16]) with
statistic Dpp�T pXpnq, p�T pY pmqq.

1In practice, shrinkage parameter � (or explicit cardinality constraint k) may be chosen via cross-validation
by maximizing the divergence between held-out samples.
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The divergence D plays a key role in our analysis. If D is defined in terms of density functions as in
f -divergence, one can use univariate kernel density estimation to approximate projected pdfs with
additional tuning of the bandwidth hyperparameter. For a suitably chosen kernel (e.g. Gaussian), the
unregularized PDA objective (without shrinkage) is a smooth function of �, and thus amenable to the
projected gradient method (or its accelerated variants [17, 18]). In contrast, when D is defined over
the cdfs along the projected direction – e.g. the Kolmogorov or Wasserstein distance that we focus
on in this paper – the objective is nondifferentiable due to the discrete jumps in the empirical cdf.
We specifically address the combinatorial problem implied by the Wasserstein distance. Moreover,
since the divergence assesses general differences between distributions, Equation (1) is typically
a non-concave optimization. To this end, we develop a semi-definite relaxation for use with the
Wasserstein distance.

4 PDA using the Wasserstein Distance

In the remainder of the paper, we focus on the squared L2 Wasserstein distance (a.k.a. Kantorovich,
Mallows, Dudley, or earth-mover distance), defined as

DpX,Y q “ min

PXY

EPXY ||X ´ Y ||2 s.t. pX,Y q „ PXY , X „ PX , Y „ PY (2)

where the minimization is over all joint distributions over pX,Y q with given marginals PX and PY .
Intuitively interpreted as the amount of work required to transform one distribution into the other,
D provides a natural dissimilarity measure between populations that integrates both the fraction of
individuals which are different and the magnitude of these differences. While component analysis
based on the Wasserstein distance has been limited to [19], this divergence has been successfully
used in many other applications [20]. In the univariate case, (2) may be analytically expressed as
the L2 distance between quantile functions. We can thus efficiently compute empirical projected
Wasserstein distances by sorting X and Y samples along the projection direction to obtain quantile
estimates.

Using the Wasserstein distance, the empirical objective in Equation (1) between unpaired sampled
populations txp1q, . . . , xpnqu and typ1q, . . . , ypmqu can be shown to be

max

�PB
||�||0§k

"
min

MPM,

nÿ

i“1

mÿ

j“1

p�Txpiq ´ �T ypjqq2Mij

*
“ max

�PB
||�||0§k

"
min

MPM
�TWM�

*
(3)

where M is the set of all n ˆ m nonnegative matching matrices with fixed row sums “ 1{n and
column sums “ 1{m (see [20] for details), WM :“ ∞

i,jrZij b ZijsMij , and Zij :“ xpiq ´ ypjq.
If we omitted (fixed) the inner minimization over the matching matrices and set � “ 0, the solution
of (3) would be simply the largest eigenvector of WM . Similarly, for the sparse variant without
minizing over M , the problem would be solvable as sparse PCA [14, 15, 21]. The actual max-
min problem in (3) is more complex and non-concave with respect to �. We propose a two-step
procedure similar to “tighten after relax” framework used to attain minimax-optimal rates in sparse
PCA [21]. First, we first solve a convex relaxation of the problem and subsequently run a steepest
ascent method (initialized at the global optimum of the relaxation) to greedily improve the current
solution with respect to the original nonconvex problem whenever the relaxation is not tight.

Finally, we emphasize that PDA (and SPARDA) not only computationally resembles (sparse) PCA,
but the latter is actually a special case of the former in the Gaussian, paired-sample-differences
setting. This connection is made explicit by considering the two-class problem with paired samples
pxpiq, ypiqq where X,Y follow two multivariate Gaussian distributions. Here, the largest principal
component of the (uncentered) differences xpiq ´ ypiq is in fact equivalent to the direction which
maximizes the projected Wasserstein difference between the distribution of X ´ Y and a delta
distribution at 0.

4.1 Semidefinite Relaxation

The SPARDA problem may be expressed in terms of d ˆ d symmetric matrices B as
max

B
min

MPM
tr pWMBq

subject to trpBq “ 1, B © 0, ||B||0 § k2, rankpBq “ 1 (4)
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where the correspondence between (3) and (4) comes from writing B “ �b� (note that any solution
of (3) will have unit norm). When k “ d, i.e., we impose no sparsity constraint as in PDA, we can
relax by simply dropping the rank-constraint. The objective is then a supremum of linear functions
of B and the resulting semidefinite problem is concave over a convex set and may be written as:

max

BPBr

min

MPM
tr pWMBq (5)

where Br is the convex set of positive semidefinite d ˆ d matrices with trace = 1. If B˚ P Rdˆd

denotes the global optimum of this relaxation and rankpB˚q “ 1, then the best projection for PDA
is simply the dominant eigenvector of B˚ and the relaxation is tight. Otherwise, we can truncate B˚
as in [14], treating the dominant eigenvector as an approximate solution to the original problem (3).

To obtain a relaxation for the sparse version where k † d (SPARDA), we follow [14] closely.
Because B “ �b� implies ||B||0 § k2, we obtain an equivalent cardinality constrained problem by
incorporating this nonconvex constraint into (4). Since trpBq “ 1 and ||B||F “ ||�||22 “ 1, a convex
relaxation of the squared `0 constraint is given by ||B||1 § k. By selecting � as the optimal Lagrange
multiplier for this `1 constraint, we can obtain an equivalent penalized reformulation parameterized
by � rather than k [14]. The sparse semidefinite relaxation is thus the following concave problem

max

BPBr

 
min

MPM
tr pWMBq ´ �||B||1

(
(6)

While the relaxation bears strong resemblance to DSPCA relaxation for sparse PCA, the inner max-
imization over matchings prevents direct application of general semidefinite programming solvers.
Let MpBq denote the matching that minimizes tr pWMBq for a given B. Standard projected sub-
gradient ascent could be applied to solve (6), where at the tth iterate the (matrix-valued) subgradient
is WMpBptqq. However, this approach requires solving optimal transport problems with large n ˆ m
matrices at each iteration. Instead, we turn to a dual form of (6), assuming n • m (cf. [22, 23])

max

BPBr,uPRn,vPRm

1

m

nÿ

i“1

mÿ

j“1

mint0, trprZijbZijsBq´ui´vju` 1

n

nÿ

i“1

ui`
1

m

mÿ

j“1

vj´�||B||1 (7)

(7) is simply a maximization over B P Br, u P Rn, and v P Rm which no longer requires matching
matrices nor their cumbersome row/column constraints. While dual variables u and v can be solved
in closed form for each fixed B (via sorting), we describe a simple sub-gradient approach that works
better in practice.

RELAX Algorithm: Solves the dualized semidefinite relaxation of SPARDA (7). Returns the
largest eigenvector of the solution to (6) as the desired projection direction for SPARDA.

Input: d-dimensional data xp1q, . . . , xpnq and yp1q, . . . , ypmq (with n • m)
Parameters: � • 0 controls the amount of regularization, � ° 0 is the step-size used for B
updates, ⌘ ° 0 is the step-size used for updates of dual variables u and v, T is the maximum number
of iterations without improvement in cost after which algorithm terminates.
1: Initialize �p0q –

” ?
d
d , . . . ,

?
d
d

ı
, Bp0q – �p0q b �p0q P Br, up0q – 0nˆ1, vp0q – 0mˆ1

2: While the number of iterations since last improvement in objective function is less than T :
3: Bu – r1{n, . . . , 1{ns P Rn, Bv – r1{m, . . . , 1{ms P Rm, BB – 0dˆd

4: For i, j P t1, . . . , nu ˆ t1, . . . ,mu:

5: Zij – xpiq ´ ypjq

6: If trprZij b ZijsBptqq ´ u
ptq
i ´ v

ptq
j † 0 :

7: Bui – Bui ´ 1{m , Bvj – Bvj ´ 1{m , BB – BB ` Zij b Zij {m
8: End For
9: upt`1q – uptq ` ⌘ ¨ Bu and vpt`1q – vptq ` ⌘ ¨ Bv

10: Bpt`1q – Projection
´
Bptq ` �

||BB||F ¨ BB ; �, �{||BB||F
¯

Output: p�relax P Rd defined as the largest eigenvector (based on corresponding eigenvalue’s magni-
tude) of the matrix Bpt˚q which attained the best objective value over all iterations.
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Projection Algorithm: Projects matrix onto positive semidefinite cone of unit-trace matrices Br

(the feasible set in our relaxation). Step 4 applies soft-thresholding proximal operator for sparsity.

Input: B P Rdˆd

Parameters: � • 0 controls the amount of regularization, � “ �{||BB||F • 0 is the actual step-size
used in the B-update.
1: Q⇤QT – eigendecomposition of B

2: w˚ – argmin

 
||w ´ diagp⇤q||22 : w P r0, 1sd, ||w||1 “ 1

(
(Quadratic program)

3: rB – Q ¨ diagtw˚
1 , . . . , w

˚
d u ¨ QT

4: If � ° 0: For r, s P t1, . . . , du2 :

rBr,s – signp rBr,sq ¨ maxt0, | rBr,s| ´ ��u
Output: rB P Br

The RELAX algorithm (boxed) is a projected subgradient method with supergradients computed in
Steps 3 - 8. For scaling to large samples, one may alternatively employ incremental supergradient di-
rections [24] where Step 4 would be replaced by drawing random pi, jq pairs. After each subgradient
step, projection back into the feasible set Br is done via a quadratic program involving the current
solution’s eigenvalues. In SPARDA, sparsity is encouraged via the soft-thresholding proximal map
corresponding to the `1 penalty. The overall form of our iterations matches subgradient-proximal
updates (4.14)-(4.15) in [24]. By the convergence analysis in §4.2 of [24], the RELAX algorithm (as
well as its incremental variant) is guaranteed to approach the optimal solution of the dual which also
solves (6), provided we employ sufficiently large T and small step-sizes. In practice, fast and accu-
rate convergence is attained by: (a) renormalizing the B-subgradient (Step 10) to ensure balanced
updates of the unit-norm constrained B, (b) using diminishing learning rates which are initially set
larger for the unconstrained dual variables (or even taking multiple subgradient steps in the dual
variables per each update of B).

4.2 Tightening after relaxation

It is unreasonable to expect that our semidefinite relaxation is always tight. Therefore, we can
sometimes further refine the projection p�relax obtained by the RELAX algorithm by using it as
a starting point in the original non-convex optimization. We introduce a sparsity constrained
tightening procedure for applying projected gradient ascent for the original nonconvex objective
Jp�q “ minMPM �TWM� where � is now forced to lie in BXSk and Sk :“ t� P Rd

: ||�||0 § ku.
The sparsity level k is fixed based on the relaxed solution (k “ ||p�relax||0). After initializing
�p0q “ p�relax P Rd, the tightening procedure iterates steps in the gradient direction of J followed
by straightforward projections into the unit half-ball B and the set Sk (accomplished by greedily
truncating all entries of � to zero besides the largest k in magnitude).

Let Mp�q again denote the matching matrix chosen in response to �. J fails to be differentiable at
the r� where Mpr�q is not unique. This occurs, e.g., if two samples have identical projections under
r�. While this situation becomes increasingly likely as n,m Ñ 8, J interestingly becomes smoother
overall (assuming the distributions admit density functions). For all other �: Mp�1q “ Mp�q where
�1 lies in a small neighborhood around � and J admits a well-defined gradient 2WMp�q�. In prac-
tice, we find that the tightening always approaches a local optimum of J with a diminishing step-
size. We note that, for a given projection, we can efficiently calculate gradients without recourse to
matrices Mp�q or WMp�q by sorting �ptqTxp1q, . . . ,�ptqTxpnq and �ptqT yp1q, . . . ,�ptqT ypmq. The
gradient is directly derivable from expression (3) where the nonzero Mij are determined by appropri-
ately matching empirical quantiles (represented by sorted indices) since the univariate Wasserstein
distance is simply the L2 distance between quantile functions [20]. Additional computation can be
saved by employing insertion sort which runs in nearly linear time for almost sorted points (in iter-
ation t ´ 1, the points have been sorted along the �pt´1q direction and their sorting in direction �ptq
is likely similar under small step-size). Thus the tightening procedure is much more efficient than
the RELAX algorithm (respective runtimes are Opdn log nq vs. Opd3n2q per iteration).
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We require the combined steps for good performance. The projection found by the tightening al-
gorithm heavily depends on the starting point �p0q, finding only the closest local optimum (as in
Figure 1a). It is thus important that �p0q is already a good solution, as can be produced by our
RELAX algorithm. Additionally, we note that as first-order methods, both the RELAX and tighten-
ing algorithms are amendable to a number of (sub)gradient-acceleration schemes (e.g. momentum
techniques, adaptive learning rates, or FISTA and other variants of Nesterov’s method [18, 17, 25]).

4.3 Properties of semidefinite relaxation

We conclude the algorithmic discussion by highlighting basic conditions under which our PDA
relaxation is tight. Assuming n,m Ñ 8, each of (i)-(iii) implies that the B˚ which maximizes (5)
is nearly rank one, or equivalently B˚ « r� b r� (see Supplementary Information §S4 for intuition).
Thus, the tightening procedure initialized at r� will produce a global maximum of the PDA objective.

(i) There exists direction in which the projected Wasserstein distance between X and Y is
nearly as large as the overall Wasserstein distance in Rd. This occurs for example if
||ErXs ´ ErY s||2 is large while both ||CovpXq||F and ||CovpY q||F are small (the dis-
tributions need not be Gaussian).

(ii) X „ NpµX ,⌃Xq and Y „ NpµY ,⌃Y q with µX ‰ µY and ⌃X « ⌃Y .
(iii) X „ NpµX ,⌃Xq and Y „ NpµY ,⌃Y q with µX “ µY where the underlying covariance

structure is such that argmaxBPBr ||pB1{2
⌃XB1{2q1{2 ´ pB1{2

⌃Y B
1{2q1{2||2F is nearly

rank 1. For example, if the primary difference between covariances is a shift in the marginal
variance of some features, i.e. ⌃Y « V ¨ ⌃X where V is a diagonal matrix.

5 Theoretical Results

In this section, we characterize statistical properties of an empirical divergence-maximizing projec-
tion p� :“ argmax

�PB
Dp�T pXpnq,�T pY pnqq, although we note that the algorithms may not succeed

in finding such a global maximum for severely nonconvex problems. Throughout, D denotes the
squared L2 Wasserstein distance between univariate distributions, C represents universal constants
that change from line to line. All proofs are relegated to the Supplementary Information §S3. We
make the following simplifying assumptions: (A1) n “ m (A2) X,Y admit continuous density
functions (A3) X,Y are compactly supported with nonzero density in the Euclidean ball of radius
R. Our theory can be generalized beyond (A1)-(A3) to obtain similar (but complex) statements
through careful treatment of the distributions’ tails and zero-density regions where cdfs are flat.

Theorem 1. Suppose there exists direction �˚ P B such that Dp�˚TX,�˚TY q • �. Then:

Dpp�T pXpnq, p�T pY pnqq ° � ´ ✏ with probability greater than 1 ´ 4 exp

ˆ
´ n✏2

16R4

˙

Theorem 1 gives basic concentration results for the projections used in empirical applications our
method. To relate distributional differences between X,Y in the ambient d-dimensional space with
their estimated divergence along the univariate linear representation chosen by PDA, we turn to
Theorems 2 and 3. Finally, Theorem 4 provides sparsistency guarantees for SPARDA in the case
where X,Y exhibit large differences over a certain feature subset (of known cardinality).

Theorem 2. If X and Y are identically distributed in Rd, then: Dpp�T pXpnq, p�T pY pnqq † ✏
with probability greater than

1 ´ C1

ˆ
1 ` R2

✏

˙d

exp

ˆ
´C2

R4
n✏2

˙

To measure the difference between the untransformed random variables X,Y P Rd, we define the
following metric between distributions on Rd which is parameterized by a • 0 (cf. [11]):

TapX,Y q :“ |Prp|X1| § a, . . . , |Xd| § aq ´ Prp|Y1| § a, . . . , |Yd| § aq| (8)
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In addition to (A1)-(A3), we assume the following for the next two theorems: (A4) Y has sub-
Gaussian tails, meaning cdf FY satisfies: 1 ´ FY pyq § C

y expp´y2{2q, (A5) ErXs “ ErY s “
0 (note that mean differences can trivially be captured by linear projections, so these are not the
differences of interest in the following theorems), (A6) Var(X`) = 1 for ` “ 1, . . . , d

Theorem 3. Suppose D a • 0 s.t. TapX,Y q ° h pgp�qq where h pgp�qq :“ mint�1,�2u with

�1 :“ pa ` dqdpgp�q ` dq ` expp´a2{2q `  exp

´
´1{p

?
2 q

¯
(9)

�2 :“
`
gp�q ` expp´a2{2q

˘
¨ d (10)

 :“ ||CovpXq||1, gp�q :“ �

4 ¨ p1 ` �q´4, and � :“ sup↵PB
 
supy |f↵TY pyq|

(

with f↵TY pyq defined as the density of the projection of Y in the ↵ direction.
Then:

Dpp�T pXpnq, p�T pY pnqq ° C� ´ ✏ (11)
with probability greater than 1 ´ C1 exp

`
´C2

R4n✏
2
˘

Theorem 4. Define C as in (11). Suppose there exists feature subset S Ä t1, . . . , du s.t. |S| “ k,
T pXS , YSq • h pg p✏pd ` 1q{Cqq, and remaining marginal distributions XSC , YSC are identical.
Then:

p�pkq
:“ argmax

�PB
tDp�T pXpnq,�T pY pnqq : ||�||0 § ku

satisfies p�pkq
i ‰ 0 and p�pkq

j “ 0 @ i P S, j P SC with probability greater than

1 ´ C1

ˆ
1 ` R2

✏

˙d´k

exp

ˆ
´C2

R4
n✏2

˙

6 Experiments

Figure 1a illustrates the cost function of PDA pertaining to two 3-dimensional distributions (see
details in Supplementary Information §S1). In this example, the point of convergence p� of the tight-
ening method after random initialization (in green) is significantly inferior to the solution produced
by the RELAX algorithm (in red). It is therefore important to use RELAX before tightening as we
advise.

The synthetic MADELON dataset used in the NIPS 2003 feature selection challenge consists of
points (n “ m “ 1000, d “ 500) which have 5 features scattered on the vertices of a five-
dimensional hypercube (so that interactions between features must be considered in order to dis-
tinguish the two classes), 15 features that are noisy linear combinations of the original five, and 480
useless features [26]. While the focus of the challenge was on extracting features useful to classi-
fiers, we direct our attention toward more interpretable models. Figure 1b demonstrates how well
SPARDA (red), the top sparse principal component (black) [27], sparse LDA (green) [2], and the
logistic lasso (blue) [12] are able to identify the 20 relevant features over different settings of their
respective regularization parameters (which determine the cardinality of the vector returned by each
method). The red asterisk indicates the SPARDA result with � automatically selected via our cross-
validation procedure (without information of the underlying features’ importance), and the black
asterisk indicates the best reported result in the challenge [26].
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Figure 1: (a) example where PDA is nonconvex, (b) SPARDA vs. other feature selection methods,
(c) power of various tests for multi-dimensional problems with 3-dimensional differences.
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The restrictive assumptions in logistic regression and linear discriminant analysis are not satisfied in
this complex dataset resulting in poor performance. Despite being class-agnostic, PCA was success-
fully utilized by numerous challenge participants [26], and we find that the sparse PCA performs
on par with logistic regression and LDA. Although the lasso fairly efficiently picks out 5 relevant
features, it struggles to identify the rest due to severe multi-colinearity. Similarly, the challenge-
winning Bayesian SVM with Automatic Relevance Determination [26] only selects 8 of the 20
relevant features. In many applications, the goal is to thoroughly characterize the set of differences
rather than select a subset of features that maintains predictive accuracy. SPARDA is better suited
for this alternative objective. Many settings of � return 14 of the relevant features with zero false
positives. If � is chosen automatically through cross-validation, the projection returned by SPARDA
contains 46 nonzero elements of which 17 correspond to relevant features.

Figure 1c depicts (average) p-values produced by SPARDA (red), PDA (purple), the overall Wasser-
stein distance in Rd (black), Maximum Mean Discrepancy [8] (green), and DiProPerm [5] (blue)
in two-sample synthetically controlled problems where PX ‰ PY and the underlying differences
have varying degrees of sparsity. Here, d indicates the overall number of features included of which
only the first 3 are relevant (see Supplementary Information §S1 for details). As we evaluate the
significance of each method’s statistic via permutation testing, all the tests are guaranteed to exactly
control Type I error [16], and we thus only compare their respective power in determining PX ‰ PY

setting. The figure demonstrates clear superiority of SPARDA which leverages the underlying spar-
sity to maintain high power even with the increasing overall dimensionality. Even when all the
features differ (when d “ 3), SPARDA matches the power of methods that consider the full space
despite only selecting a single direction (which cannot be based on mean-differences as there are
none in this controlled data). This experiment also demonstrate that the unregularized PDA retains
greater power than DiProPerm, a similar projection-based method [5].

Recent technological advances allow complete transcriptome profiling in thousands of individual
cells with the goal of fine molecular characterization of cell populations (beyond the crude average-
tissue-level expression measure that is currently standard) [28]. We apply SPARDA to expression
measurements of 10,305 genes profiled in 1,691 single cells from the somatosensory cortex and
1,314 hippocampus cells sampled from the brains of juvenile mice [29]. The resulting p� identifies
many previously characterized subtype-specific genes and is in many respects more informative than
the results of standard differential expression methods (see Supplementary Information §S2 for de-
tails). Finally, we also apply SPARDA to normalized data with mean-zero & unit-variance marginals
in order to explicitly restrict our search to genes whose relationship with other genes’ expression is
different between hippocampus and cortex cells. This analysis reveals many genes known to be
heavily involved in signaling, regulating important processes, and other forms of functional inter-
action between genes (see Supplementary Information §S2.1 for details). These types of important
changes cannot be detected by standard differential expression analyses which consider each gene
in isolation or require gene-sets to be explicitly identified as features [28].

7 Conclusion

This paper introduces the overall principal differences methodology and demonstrates its numerous
practical benefits of this approach. While we focused on algorithms for PDA & SPARDA tailored
to the Wasserstein distance, different divergences may be better suited for certain applications.

Further theoretical investigation of the SPARDA framework is of interest, particularly in the high-
dimensional d “ Opnq setting. Here, rich theory has been derived for compressed sensing and
sparse PCA by leveraging ideas such as restricted isometry or spiked covariance [15]. A natural
question is then which analogous properties of PX ,PY theoretically guarantee the strong empirical
performance of SPARDA observed in our high-dimensional applications. Finally, we also envision
extensions of the methods presented here which employ multiple projections in succession, or adapt
the approach to non-pairwise comparison of multiple populations.
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