
A Proofs

A.1 Proof of Thm. 1

The proof of the theorem is based on splitting the machines into two sub-groups of the same
size, each of which is assigned with a finite dimensional restriction of F1 and F2 (see Eq. (3)),
and tracing the maximal number of non-zero coordinates for vectors inWj , the set of feasible points.

Recall that Fi are defined as follows:

F1(w) =
δ(1− λ)

4
w>A1w −

δ(1− λ)

2
e>1 w +

λ

2
‖w‖2

F2(w) =
δ(1− λ)

4
w>A2w +

λ

2
‖w‖2 , where

A1 =



1 0 0 0 0 0 . . .
0 1 −1 0 0 0 . . .
0 −1 1 0 0 0 . . .
0 0 0 1 −1 0 . . .
0 0 0 −1 1 0 . . .
...

...
...

...
...

...
...

 , A2 =



1 −1 0 0 0 0 . . .
−1 1 0 0 0 0 . . .
0 0 1 −1 0 0 . . .
0 0 −1 1 0 0 . . .
0 0 0 0 1 −1 . . .
0 0 0 0 −1 1 . . .
...

...
...

...
...

...
...


Formally speaking, we consider the matrices A1, A2 as infinite in size, so that each Fi is defined
over `2(R), the space of square-summable sequences. To derive lower bounds in Rd, we consider
the following restrictions of Fi and F :

[Fi]d(w) := Fi(w1, w2, . . . , wd, 0, 0, . . . ), w ∈ Rd

[F ]d(w) :=
[F1]d(w) + [F2]d(w)

2

Note that [Fi]d(w) and [F ]d(w) produce the same values as Fi(w) and F (w) do for vectors such
that wi = 0 for all i ≥ d. Similarly, we define the d× d leading principal submatrix of Ai by [Ai]d.

We assign half of the machines with [F1]d, and the other half with [F2]d. To prove the theorem, we
need the following lemma, which formalizes the intuition described in the main paper. Let

E0,d = {0} , ET,d = span{e1,d, . . . , eT,d},
where ei,d ∈ Rd denote the standard unit vectors. Then, the following holds:
Lemma 1. Suppose all the sets of feasible points satisfy Wj ⊆ ET,d for some T ≤ d − 1, then
under assumption 1, right after the next communication round we have Wj ⊆ ET+1,d.

Proof. Recall that by Assumption 1, each machine can compute new points w that satisfy the fol-
lowing for some γ, ν ≥ 0 such that γ + ν > 0:

γw + ν∇[Fi]d(w) ∈ span
{
w′ , ∇[Fi]d(w

′) , (∇2[Fi]d(w
′) +D)w′′ , (∇2[Fi]d(w

′) +D)−1w′′
∣∣∣

w′,w′′ ∈Wj , D diagonal , ∇2[Fi]d(w
′) exists , (∇2[Fi]d(w

′) +D)−1 exists
}
.

We now analyze the state of the sets of feasible points prior to the next communication round.
Assume that T is an odd number, i.e., assume T = 2k + 1 for some k = 0, 1, . . . . The proof for the
case where T is even follows similar lines. Note that for any w′,w′′ ∈Wj , we have

∇[F1]d(w
′) =

δ(1− λ)

2
[A1]dw

′ − δ(1− λ)

2
e1 +

λ

2
w′ ⊆ E2k+1,d

(∇2[F1]d(w
′) +D)w′′ =

(
δ(1− λ)

2
[A1]d +D + λI

)
w′′ ⊆ E2k+1,d

(∇2[F1]d(w
′) +D)−1w′′ =

(
δ(1− λ)

2
[A1]d +D + λI

)−1
w′′ ⊆ E2k+1,d
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For any viable diagonal matrix D. Therefore, since Wj ⊆ E2k+1,d, we have that the first point
generated by machines which hold [F1]d(w) must satisfy

γw + ν∇[F1]d(w) ∈ E2k+1,d

for γ, ν as stated in the assumption. That is,(
δ(1− λ)

2
ν[A1]d + (γ +

νλ

2
)I

)
w − δ(1− λ)

2
e1 ∈ E2k+1,d

Which implies, (
δ(1− λ)

2
ν[A1]d + (γ +

νλ

2
)I

)
︸ ︷︷ ︸

H

w ∈ E2k+1,d

Since [A1]d is positive semidefinite, it holds that H is invertible. Also, [A1]d, H and H−1 admit
the same partitions into 1 × 1 and 2 × 2 blocks on the diagonal, thus H−1E2k+1,d ⊆ E2k+1,d,
yielding w ∈ E2k+1,d. Inductively extending the latter argument shows that, in the absence of any
communication rounds, all the machines whose local function is [F1]d(w) are ‘stuck’ in E2k+1,d.

As for machines which contain [F2]d(w), we have that for all w′,w′′ ∈Wj

∇[F2]d(w
′) =

δ(1− λ)

2
[A2]dw

′ +
λ

2
w′ ⊆ E2k+2,d

(∇2[F2]d(w
′) +D)w′′ =

(
δ(1− λ)

2
[A2]d +D + λI

)
w′′ ⊆ E2k+2,d

(∇2[F2]d(w
′) +D)−1w′′ =

(
δ(1− λ)

2
[A2]d +D + λI

)−1
w′′ ⊆ E2k+2,d

For any viable diagonal matrix D. Therefore, the first generated point by these machines must satisfy,

γw + ν∇[F1]d(w) ∈ E2k+2,d

for appropriate γ, ν. Hence,(
δ(1− λ)

2
ν[A2]d + (γ +

νλ

2
)I

)
w ∈ E2k+2,d

Similarly to the previous case this implies that w ∈ E2k+2,d. It is now left to show that these
machines cannot make further progress beyond E2k+2,d without communicating. To see this, note
that for all w′,w′′ ∈ E2k+2,d we have,

∇[F2]d(w
′) =

δ(1− λ)

2
[A2]dw

′ +
λ

2
w′ ⊆ E2k+2,d

(∇2[F2]d(w
′) +D)w′′ =

(
δ(1− λ)

2
[A2]d +D + λI

)
w′′ ⊆ E2k+2,d

(∇2[F2]d(w
′) +D)−1w′′ =

(
δ(1− λ)

2
[A2]d +DI + λI

)−1
w′′ ⊆ E2k+2,d

This means that all the points which are generated subsequently also lie in E2k+2,d, i.e., without
communicating , machines whose local function is [F2]d(w) are stuck inE2k+2,d. Finally, executing
a communication round updates all the sets of feasible points to be Wj := E2k+2,d.

The following is a direct consequence of a recursive application of Lemma 1.

Corollary 1. Under assumption 1, after T ≤ d− 1 communication rounds we have

Wj ⊆ ET+1, j ∈ {1, . . . ,m}
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With this corollary in hand, we now turn to prove the main result. First, we compute the minimizer
of the average function F (w) =

m
2 F1(w)+m

2 F2(w)

m in `2(R), denoted by w∗, whose form for even
number of machines is simply:

F (w) =
δ(1− λ)

8
w> (A1 +A2)w − δ(1− λ)

4
e>1 w +

λ

2
‖w‖2

By first-order optimality condition for smooth convex functions, we have(
δ(1− λ)

4
(A1 +A2) + λI

)
w∗ − δ(1− λ)

4
e1 = 0,

or equivalently, (
A1 +A2 +

4λ

δ(1− λ)
I

)
w∗ = e1

whose coordinate form is as follows (
2 +

4λ

δ(1− λ)

)
w∗[1]−w∗[2] = 1 (4)

∀ k , w∗[k + 1]−
(

2 +
4λ

δ(1− λ)

)
w∗[k] + w∗[k − 1] = 0. (5)

The optimal solution can be now realized as a geometric sequence (ζk)∞k=1 for some ζ as follows:
By Eq. (5), we must have

ζ2 −
(

2 +
4λ

δ(1− λ)

)
ζ + 1 = 0,

with the smallest root being

ζ =
2 + 4λ

δ(1−λ) −
√(

2 + 4λ
δ(1−λ)

)2
− 4

2
= 1 +

2λ

δ(1− λ)
−

√(
1 +

2λ

δ(1− λ)

)2

− 1

(6)

Therefore, this choice of ζ satisfies Eq. (5), and it is straightforward to verify that it also satisfies
Eq. (4), hence w∗ indeed equals (ζk)∞k=1. It will be convenient to denote a continuous range of
coordinates of (ζk)∞k=1 by ζa:b where a ∈ N and b ∈ N ∪∞. Also, using the following inequality
which holds for x > 1

x−
√
x2 − 1 ≥ exp

 −2√
x+1
x−1 − 1

 , x > 1

together with Eq. (6) yields

ζ ≥ exp

(
−2√

δ(1/λ− 1) + 1− 1

)
(7)

We now use this computation (with respect to F1, F2) to find the minimizer of [F ]d, defined as the
average function of the finite-dimensional restrictions [F1]d, [F2]d actually handed to the machines.
Fix d ∈ N and denote the corresponding minimizer by

w∗d = arg min
w∈Rd

[F ]d(w)

Let wT be some point which was obtained after T ≤ d − 2 communication rounds. To bound the
sub-optimality of wT from below, observe that

[F ]d(wT )− [F ]d(w
∗
d) ≥ [F ]d(wT )− [F ]d(ζ1:d−1)

= [F ]d(wT )− F (w∗) + F (w∗)− [F ]d(ζ1:d−1)

= F (wT )− F (w∗)︸ ︷︷ ︸
A

+F (w∗)− F (ζ1:d−1)︸ ︷︷ ︸
B
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where the last equality follows from Corollary (1), according to which all the coordinates of wT ,
except for the first T + 1 ≤ d− 1, must vanish. To bound the A term, note that

‖wT −w∗‖2 ≥
∞∑

t=T+2

ζ2t = ζ2(T+1)
∞∑
t=1

ζ2t = ζ2(T+1) ‖w∗‖2

The fact that F (w) is λ-strongly convex implies

F (wT )− F (w∗) ≥ λ

2
‖wT −w∗‖2 ≥ λζ2(T+1)

2
‖w∗‖2 .

Inequality (7) yields

F (wT )− F (w∗) ≥ λ

2
exp

(
−4T − 4√

δ(1/λ− 1) + 1− 1

)
‖w∗‖2

To bound the B term from below, note that since F is 1-smooth we have

F (w∗)− F (ζ1:d−1) ≥ −1

2

∥∥w∗ − ζ1:d−1
∥∥2 = −ζ

2(d−1)

2

∞∑
t=1

ζ2t = −ζ
2(d−1)

2
‖w∗‖2

Combining both lower bounds for the terms A and B, we get for any T ≤ d− 2

[F ]d(wT )− [F ]d(w
∗
d) ≥

(
λ

2
exp

(
−4T − 4√

δ(1/λ− 1) + 1− 1

)
− ζ2(d−1)

2

)
‖w∗‖2

Picking d sufficiently large, and considering how large the number of communication rounds T must
be to make this lower bound less than ε, we get

T ≥
√
δ(1/λ− 1) + 1− 1

4
ln

(
λ ‖w∗‖2

4ε

)
− 1.

It is worth mentioning that by computing the exact minimizers of [Fi]d one may derive a lower
bound such that the choice of d does not depend on the parameters of the problem, except for the
number of communication rounds. Nevertheless, such analysis requires a more involved reasoning
which we find unnecessary for stating our results.

For the non-strongly convex case, where λ = 0, using Corollary 1 and a similar analysis (virtually
identical to the proof of Theorem 2.1.7 in [14]), we have that if T ≤ 1

2 (d− 1), then

F (wT )− F (w∗) ≥ 3δ‖w∗‖2

32(T + 2)2

Therefore, to obtain an ε-suboptimal solution for this case, we must have at least√
3δ

32ε
‖w∗‖ − 2

communication rounds, for sufficiently small ε.

A.2 Proof of Thm. 2

We construct two types of local functions, and provide one of them to m/2 of the machines, and the
other function to the other m/2 machines, in some arbitrary order. In this case, the average function
is simply the average of the two types of local functions.

We will first prove the theorem statement in the strongly convex case, where λ > 0 is given, and
then explain how to extract from it the result in the non strongly convex case.

Fix a natural number k and some b ∈ [0, 1/
√
k], to be specified later. We define the following local

function over the unit ball:

F1,k(w) =
1√
2
|b− w[1]|+ 1√

2k
(|w[2]− w[3]|+ |w[4]− w[5]|+ · · ·+ |w[k − 2]− w[k − 1]|) +

λ

2
‖w‖2

F2,k(w) =
1√
2k

(|w[1]− w[2]|+ |w[3]− w[4]|+ · · ·+ |w[k − 1]− w[k]|) +
λ

2
‖w‖2 (8)
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For even k ≤ d, and

F1,k(w) =
1√
2
|b− w[1]|+ 1√

2k
(|w[2]− w[3]|+ |w[4]− w[5]|+ · · ·+ |w[k − 1]− w[k]|) +

λ

2
‖w‖2

F2,k(w) =
1√
2k

(|w[1]− w[2]|+ |w[3]− w[4]|+ · · ·+ |w[k − 2]− w[k − 1]|) +
λ

2
‖w‖2

otherwise. Being a sum of convex functions, both local functions are convex, and in fact λ-strongly
convex due to the λ

2 ‖w‖
2 term. Furthermore, both function are (1 + λ)-Lipschitz continuous over

the unit Euclidean ball. To see this, let ∂(·) denote the subdifferential operator and note that

g ∈ ∂ |b− w[1]| =⇒ g ∈ conv{σ0,−σ0}
g ∈ ∂ |w[l]− w[l + 1]| =⇒ g ∈ conv{σl,−σl}

where

σ0 = (1, 0, . . . , 0)

σl = (0, . . . , 0, 1︸︷︷︸
l

, −1︸︷︷︸
l+1

, 0, . . . , 0).

Assume for a moment that λ = 0, then by the linearity of the sub-differential operator that

∀g ∈ ∂F1,k(w), ‖g‖ ≤
√

1

2
+
k − 1

2k
≤ 1

∀g ∈ ∂F2,k(w), ‖g‖ ≤
√

1

2

which shows that, for λ = 0, both functions are 1-Lipschitz. For λ > 0, note that λ
2 ‖w‖

2 is
λ-Lipschitz over the unit ball and λ-strongly convex. Therefore, using the linearity of the sub-
differential operator again, we see that both Fi are (1+λ)-Lipschitz and λ-strongly convex functions
over the unit ball.

Similar to the smooth case, the following lemma shows that, no matter how the subgradients are
chosen, at each iteration at most one non-zero coordinate may be gained.
Lemma 2. Suppose all the sets of feasible points satisfy Wj ⊆ ET,d for some T ≤ d − 1. Then
under assumption 1, right after the next communication round we have Wj ⊆ ET+1,d.

Proof. Recall that by Assumption 1 (modified for the non-differentiable case), each machine can
compute new points w that satisfy the following for some γ, ν ≥ 0 such that γ + ν > 0:

γw + νgi,k(w) ∈ span
{
w′ , gi,k(w′) , (∇2Fi,k(w′) +D)w′′ , (∇2Fi,k(w′) +D)−1w′′

∣∣∣
w′,w′′ ∈Wj , gi,k(w′) ∈ ∂Fi,k(w′) , D diagonal , ∇2Fi,k(w′) exists , (∇2Fi,k(w′) +D)−1 exists

}
.

We now analyze the state of the sets of feasible points prior to the next communication round.
Assume that T is an odd number, i.e., assume T = 2p + 1 for some p ∈ N ∪ {0}. We show that
as long as no communication round has been executed, it must hold that Wj ⊆ ET,d for machines
whose local function is F1, and that Wj ⊆ ET+1,d for machines whose local function is F2. The
case where T is even follows a similar line.

Let
E0,d = {0} , ET,d = span{e1,d, . . . , eT,d}

where ei,d ∈ Rd denote the standard unit vectors. First, we prove the claim for machines whose
local function is F1,k. In which case, for any w′,w′′ ∈ E2p+1,d, it holds that

g1,k(w′) ⊆ conv{±σ2l | l = 0, . . . , p} ⊆ E2p+1,d

(∇2F1,k(w′) +D)w′′ = (λI +D)w′′ ⊆ E2p+1,d

(∇2F1,k(w′) +D)−1w′′ = (λI +D)
−1

w′′ ⊆ E2p+1,d

14



For any viable diagonal matrix D. Therefore, we have that the first point generated by machines
which hold F1,k must satisfy

γw + νg1,k(w) ∈ E2p+1,d (9)

for γ, ν as stated in Assumption (1). Note that, if ν = 0 (which by assumption means that γ > 0)
then clearly w ∈ E2p+1,d. As for ν 6= 0, suppose by contradiction that w /∈ E2p+1,d. That is,
assume that there exists some j > 2p + 1 such that w[j] 6= 0. First, if the absolute value terms in
F1,k do not involve w[j], e.g., when j = d and d is even, we have g1,k(w)[j] = λw[j]. In this case,
by Eq. (9) we have

γw[j] + νλw[j] = (γ + νλ)w[j] = 0,

and since νλ > 0, this implies that w[j] = 0 – a contradiction! Thus, it remains to consider the
cases of either odd d or j 6= d. In both of these cases, w[j] appears in one of the absolute value terms
in F1,k, either as |w[j − 1]− w[j]| or |w[j]− w[j + 1]| (depending on whether j is odd or even).

Let l > p be such that either 2l = j or 2l + 1 = j, depending on the parity of j. We note that any
valid subgradient must satisfy

g1,k(w)[2l] =
2α− 1√

2k
+ λw[2l]

g1,k(w)[2l + 1] =
1− 2α√

2k
+ λw[2l + 1]

for some α ∈ [0, 1], such that if w[2l]− w[2l + 1] 6= 0 then

sgn (w[2l]− w[2l + 1]) = sgn

(
2α− 1√

2k

)
, (10)

where sgn() is the sign function. Rearranging terms in Eq. (9) and using the facts that coordinates
2l, 2l + 1 are always zero in E2p+1,d, as well as γ + νλ ≥ νλ > 0, we get

w[2l] =
−ν(2α− 1)√
2k(γ + νλ)

(11)

w[2l + 1] =
ν(2α− 1)√
2k(γ + νλ)

Therefore,

w[2l]− w[2l + 1] =
−2ν(2α− 1)√

2k(γ + νλ)
(12)

which implies

sgn (w[2l]− w[2l + 1]) = sgn

(
−(2α− 1)√

2k

)
,

contradicting Eq. (10). Hence, we must have w[2l]−w[2l + 1] = 0, in which case Eq. (12) implies
α = 1/2. Thus, by Eq. (11)

w[2l] = w[2l + 1] = 0,

which contradicts the assumption that eitherw[j] (and hencew[2l] orw[2l+1]) is not zero. Thus, we
have shown that w ∈ E2p+1,d, for the first point generated by machines holding F1,k. Repeating the
argument, we get that any point generated by those machines, in the absence of any communication
rounds, is ‘stuck’ in E2p+1,d.

We now turn to prove the claim for machines whose local function is F2,k, using an almost identical
argument, which we provide below for completeness. For these functions, we assume that initially
Wj ⊆ E2p+1,d, and will show any additional points computed locally by the machines must be in
E2p+2,d. We begin by noting that for any w′,w′′ in E2p+2,d (and in particular E2p+1,d), it holds
that

g2,k(w′) ⊆ conv{±σ2l+1 | l = 0, . . . , p} ⊆ E2p+2,d

(∇2F2,k(w′) +D)w′′ = (λI +D)w′′ ⊆ E2p+2,d

(∇2F2,k(w′) +D)−1w′′ = (λI +D)
−1

w′′ ⊆ E2p+2,d
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For any viable diagonal matrix D. Therefore, we have that the first point generated by machines
which hold F2,k must satisfy

γw + νg2,k(w) ∈ E2p+2,d (13)

for γ, ν as stated in the assumption. Note that, if ν = 0 then clearly w ∈ E2p+2,d. As for ν 6= 0,
suppose by contradiction that w /∈ E2p+2,d. That is, assume that there exists some j > 2p+ 2 such
that w[j] 6= 0. First, if the absolute value terms in F2,k do not involve w[j], e.g., when j = d and d
is odd, we have g2,k(w)[j] = λw[j]. In this case, by Eq. (13) we have

γw[j] + νλw[j] = (γ + νλ)w[j] = 0,

and since νλ > 0, this implies that w[j] = 0 – a contradiction! Thus, it remains to consider the
cases of either even d or j 6= d. In both of these cases, w[j] appears in one of the absolute value
terms in F2,k, either as |w[j − 1] − w[j]| or |w[j] − w[j + 1]| (depending on whether j is odd or
even).

Let l > p be such that either 2l + 1 = j or 2l + 2 = j, depending on the parity of j. We note that
any valid subgradient must satisfy Any valid subgradient must satisfy

g2,k(w)[2l + 1] =
2α− 1√

2k
+ λw[2l + 1]

g2,k(w)[2l + 2] =
1− 2α√

2k
+ λw[2l + 2]

for some α ∈ [0, 1], such that if w[2l + 1]− w[2l + 2] 6= 0 then

sgn (w[2l + 1]− w[2l + 2]) = sgn

(
2α− 1√

2k

)
(14)

Rearranging terms in Eq. (13) and using the fact that γ + νλ ≥ νλ > 0, we get

w[2l + 1] =
−ν(2α− 1)√
2k(γ + νλ)

(15)

w[2l + 2] =
ν(2α− 1)√
2k(γ + νλ)

Therefore,

w[2l + 1]− w[2l + 2] =
−2ν(2α− 1)√

2k(γ + νλ)
(16)

which implies

sgn (w[2l + 1]− w[2l + 2]) = sgn

(
−(2α− 1)√

2k

)
a contradiction to Eq. (14). Hence, we must have w[2l+ 1]−w[2l+ 2] = 0, in which case Eq. (16)
implies α = 1/2. Thus, by Eq. (15)

w[2l + 1] = w[2l + 2] = 0

which contradicts our assumption thatw[j] (and hence eitherw[2l+1] orw[2l+2] is not zero). Thus,
we have shown that w ∈ E2p+2,d. As before, repeating the argument together with the assumption
that Wj ⊆ E2p+2,d shows that, in the absence of any communication rounds, all the machines
whose local function is F2,k are ’stuck’ in E2p+2,d. Therefore, before the next communication
round, Wj ⊆ E2p+2,d for all machines j holding F2,j . Moreover, as shown earlier, Wj ⊆ E2p+1,d

for all machines holding F1,k. Therefore, after the next communication round, Wj ⊆ E2p+2,d for
any machine j.

Repeatedly applying Lemma 2, we get the following corollary:
Corollary 2. Under assumption 1, after T ≤ d− 1 communication rounds we have

Wj ⊆ ET+1, j ∈ {1, . . . ,m}
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With this corollary in hand, we now turn to establish the main result, namely, bounding from below
the optimality of points in Wj after T communication rounds. Choosing the dimension d such that
T ≤ d − 2, we employ the local functions defined in Eq. (8) with k = T + 2. In which case, the
average function is

F (w) =
1

2
F1,T+2(w) +

1

2
F2,T+2(w) =

1

2
√

2
|b− w[1]|+ 1

2
√

2(T + 2)

T+1∑
i=1

|w[i]− w[i+ 1]|+ λ

2
‖w‖2

The key ingredient in deriving the lower bound is Corollary (2), according to which after T commu-
nication rounds, all but the first T + 1 coordinates must be zero, in particular w[T + 2] = 0. Using
this and the triangle inequality, we have

F (w) ≥ 1

2
√

2
|b− w[1]|+ 1

2
√

2(T + 2)
|w[1]− w[T + 2]|+ λ

2
‖w‖2

=
1

2
√

2
|b− w[1]|+ 1

2
√

2(T + 2)
|w[1]|+ λw[1]2

2

for all w in Wj . Therefore, we can lower bound the objective value of the algorithm’s output by

min
w∈R

(
1

2
√

2
|b− w|+ 1

2
√

2(T + 2)
|w|+ λw2

2

)
On the flip side, the minimal value of F (w) over the unit Euclidean ball can be upper bounded by
F (wb) for some b ≤ 1√

T+2
, where

wb = (b, . . . , b︸ ︷︷ ︸
T+2 times

, 0, . . . , 0)

Putting both bounds together yields,

min
w∈Wj

F (w)− min
‖w‖≤1

F (w) ≥ min
w∈Wj

F (w)− F (wb)

≥ min
w∈R

(
1

2
√

2
|b− w|+ 1

2
√

2(T + 2)
|w|+ λw2

2

)
− λ(T + 2)b2

2

(17)

Assuming T ≥ 1
2λ − 2 (so that λ ≥ 1

2(T+2) ), we take

b =
1

2λ(T + 2)
√

2(T + 2)

(note again that wb is indeed in the unit ball for this regime of λ and T ). In this case, the minimal w
in Eq. (17) is 1

2λ(T+2)
√

2(T+2)
, so we get a suboptimality lower bound of(

0 +
1

2
√

2(T + 2)

∣∣∣∣∣ 1

2λ(T + 2)
√

2(T + 2)

∣∣∣∣∣+
1

8λ((T + 2)
√

2(T + 2)
2
)

)
− 1

16λ(T + 2)2

≥
(

1

8λ(T + 2)2
+ 0

)
− 1

16λ(T + 2)2

=
1

16λ(T + 2)2
(18)

This bound holds in particular for any T ≥
⌈

1
2λ − 2

⌉
. If the number of communication rounds T

is less than
⌈

1
2λ − 2

⌉
, then clearly we cannot do better than with

⌈
1
2λ − 2

⌉
communication rounds.

Therefore, for any number of communication rounds T , the suboptimality is at least

min

{
1

16λ
(⌈

1
2λ − 2

⌉
+ 2
)2 , 1

16λ(T + 2)2

}

17



Therefore, for any ε ∈
(

0, 1

16λ(d 1
2λ−2e+2)

2

]
, we would need at least T ≥

√
1

16λε − 2 communi-

cation rounds to get an ε-suboptimal solution. This implies the theorem statement for λ-strongly
convex functions.

Finally, we treat the case where the local functions are not required to be strongly convex. In this
setting, for proving a lower bound, we can use the same construction as in Eq. (8), where we are
free to choose any λ. In particular, let us choose λ = 1

2(T+2) , and apply the lower bound derived
above (note that in this case the condition T ≥ 1

2λ − 2 trivially holds). Plugging in it into (18), we
establish that for any number of communication rounds T , the suboptimality is at least

1

8(T + 2)
.

Considering how large T must be to make this smaller than some ε, we get that T must be at least
1
8ε − 2.

A.3 Proof of Thm. 3

As usual, we construct two functions F1, F2, and provide F1 to m/2 of the machines, and F2 to the
otherm/2 machines, in some arbitrary order, such that the machine designated to provide the output
receives F2. Note that the average function F is simply 1

2 (F1(w) + F2(w)).

Let c be a certain positive numerical constant (whose value corresponds to c in Lemma 6 below).
Given some symmetric M ∈ {−1,+1}d×d, where ‖M‖ ≤ c

√
d, and j ∈ {dd/2e, . . . , d}, define

F1(w) = 3λw>

((
I +

1

2c
√
d
M

)−1
− 1

2
I

)
w

F2(w) =
3λ

2
‖w‖2 − δej ,

The average F of F1, F2 equals

F (w) =
1

2
(F1(w) + F2(w)) =

3λ

2
w>

(
I +

1

2c
√
d
M

)−1
w − δ

2
ej ,

with an optimum at

w∗ =
δ

6λ

(
I +

1

2c
√
d
M

)
ej .

The following lemma establishes that the functions satisfy the strong convexity, smoothness and
relatedness requirements of the theorem. The proof also establishes that the inverse in the definition
of F1 indeed exists.
Lemma 3. F1 and F2 are λ strongly-convex, 9λ smooth, and δ-related.

Proof. The Hessian of F2 is 3λI , which implies that F2 is 3λ smooth and strongly convex (and in
particular, λ-strongly convex). As to F1, note that since ‖M‖ ≤ c

√
d, then∥∥∥∥ 1

2c
√
d
M

∥∥∥∥ ≤ 1

2
,

The fact that the spectral radius and spectral norm of symmetric matrices coincide implies that
the eigenvalues of the matrix I + 1

2c
√
d
M lie between 1 − 1

2 = 1
2 and 1 + 1

2 = 3
2 . Thus, all

the eigenvalues are strictly positive, hence the matrix is indeed invertible as in the definition of
F1. Moreover, the eigenvalues of the inverse lie in

[
1

3/2 ,
1

1/2

]
=
[
2
3 , 2
]
, and therefore those of

3λ

((
I + 1

2c
√
d
M
)−1
− 1

2I

)
lie in

[
3λ
(
2
3 −

1
2

)
, 3λ

(
2− 1

2

)]
=
[
λ
2 ,

9λ
2

]
. Thus, the spectrum of

the Hessian of F1 lie in [λ, 9λ], which implies that F1 is λ-strongly convex and 9λ smooth.
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To show δ-relatedness, the only non-trivial part is upper-bounding the norm of the difference of the
quadratic terms, which equals the following:∥∥∥∥∥3λ

((
I +

1

2c
√
d
M

)−1
− 1

2
I

)
− 3λ

2
I

∥∥∥∥∥
= 3λ

∥∥∥∥∥
(
I +

1

2c
√
d
M

)−1
− I

∥∥∥∥∥ . (19)

Since ‖M‖ ≤ c
√
d, the eigenvalues of

(
I + 1

2c
√
d
M
)−1
− I lie between 1

1+1/2 − 1 = − 1
3 and

1
1−1/2 − 1 = 1, which implies that Eq. (19) can be upper bounded by 3λ ≤ δ.

The next lemma proves the second part of the theorem, namely an upper bound on the suboptimality
of any local function optimizer.

Lemma 4. For any ŵj = arg minw∈Rd Fj(w), it holds that F (ŵj)−minw∈Rd F (w) ≤ cδ2/λ for
some numerical positive constant c.

Proof. The optimum of any quadratic and strongly-convex function w>Aw + b>w + c equals
1
2A
−1b. Therefore, if w∗ is the optimizer of F , and we denote the parameters of F and Fj by

A,b, c and Aj ,bj , cj respectively, then

‖ŵj −w∗‖ =
1

2

∥∥A−1j bj −A−1b
∥∥

=
1

2

∥∥A−1j bj −A−1bj +A−1bj −A−1b
∥∥

≤ 1

2

(∥∥(A−1j −A−1)bj∥∥+
∥∥A−1 (bj − b)

∥∥)
≤ 1

2

(∥∥A−1j −A−1∥∥ ‖bj‖+
∥∥A−1∥∥ ‖bj − b‖

)
.

By definition of F1, F2 and the average function F , this is at most

1

2

(∥∥A−1j −A−1∥∥ δ +
∥∥A−1∥∥ δ

2

)
. (20)

In Lemma 3, we showed that F1, F2 are λ-strongly convex and 9λ smooth, which implies that the
eigenvalues of Aj as well as A lie in

[
λ
2 ,

9λ
2

]
. Therefore, the eigenvalues of A−1j and A−1 lie in[

2
9λ ,

2
λ

]
, so

∥∥A−1∥∥ ≤ 2
λ and

∥∥A−1j −A−1∥∥ ≤ 2
λ . Substituting this back into Eq. (20), we get

‖ŵj −w∗‖ ≤ 1

λ

(
δ +

δ

2

)
=

3δ

2λ
.

Finally, since F is 9λ-smooth, and its minimizer is w∗,

F (ŵj)− F (w∗) ≤ 9λ

2
‖ŵj −w∗‖2 ≤ 9λ

2

(
3δ

2λ

)2

,

which equals 81δ2/8λ as required.

We now turn to derive the lower bound in the theorem statement. As discussed earlier, the intuition
is that the optimal point w∗ is a function of the j-th column of M , so the machines holding F1 must
broadcast enough information onM to the designated machine producing the algorithm’s output (the
machine, by construction, holds F2, and hence knows j but not M ). As long as the communication
budget is smaller than the size of M , this will be difficult to achieve. This intuition is formalized in
the following lemma, which is based on information-theoretic tools:
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Lemma 5. For any dimension d ≥ c (where c is the same constant as in Lemma 6 and the definition
of F1), and for any (possibly randomized) 1-round algorithm using at most d2/128 bits of commu-
nication, there exists a valid choice of M, j for the functions F1, F2 defined above, such that the
vector ŵ returned by the algorithm satisfies

E
[
‖ŵ −w∗‖2

]
≥ c′

(
δ

λ

)2

,

where the expectation is over the algorithm’s randomness, and c′ is a positive numerical constant.

Using the lemma and the λ-strong convexity of F1, F2 (and hence their average F ),

E[F (ŵ)− F (w∗)] ≥ λ

2
E[‖w −w∗‖2] ≥ c′

2

δ2

λ
,

hence proving the theorem.

It now remains to prove Lemma 5:

Proof of Lemma 5. By definition of w∗, we have that the j-th column of M , designated as Mj ,
satisfies

Mj = 2c
√
d

(
6λ

δ
w∗ − ej

)
.

Given the predictor ŵ returned by the algorithm, define

M̂j = 2c
√
d

(
6λ

δ
ŵ − ej

)
.

This can be thought of as the algorithm’s ‘estimate’ of the j-th column of M , based on the returned
predictor.

Define [w] = min{1,max{−1, w}} as the clipping operation of a scalar w to [−1,+1], and for
a vector w = (w1, . . . , wd), define [w] = ([w1], [w2], . . . , [wd]). By the expressions for Mj , M̂j

above, we have∥∥∥[M̂j −Mj ]
∥∥∥2 =

∥∥∥∥[2c√d6λ

δ
(ŵ −w∗)

]∥∥∥∥2 =

d∑
i=1

[
12cλ

√
d

δ
(ŵi − w∗i )

]2

≤

(
12cλ

√
d

δ

)2 d∑
i=1

(ŵi − w∗i )2,

which implies that

‖ŵ −w∗‖2 ≥
(

δ

12cλ
√
d

)2 ∥∥∥[M̂j −Mj ]
∥∥∥2 , (21)

To get the lemma statement, it is enough to show that for some M, j, one can lower bound

E
[∥∥∥[M̂j −Mj ]

∥∥∥2] (where the expectation is over the algorithm’s randomness) by some constant

multiple of d.

Below, we will prove that if M (in the definition of F1) is chosen uniformly at random from all
{−1,+1}-valued d × d symmetric matrices, and j (in the definition of F2) is chosen uniformly at
random from {dd/2e, . . . , d}, then for any deterministic algorithm,

EM,j

[∥∥∥[M̂j −Mj ]
∥∥∥2] ≥ d

8
(22)

Let us first show how this can be used to prove the lemma. To do so, we will need the following
lemma on the concentration of the spectral norm of random symmetric matrices.

Lemma 6 ([21], Corollary 2.3.6). There exist positive numerical constants c, c′, such that if M is a
d × d symmetric matrix, where each entry Mj,i, j ≥ i is chosen independently and uniformly from
{−1,+1}, and d ≥ c, then Pr(‖M‖ > c

√
d) ≤ c exp(−c′d).
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First, we note that the expectation in Eq. (22) is over all symmetric {−1,+1}-valued matrices,
including those whose spectral norm may be larger than c

√
d. However, by Lemma 6, Pr(‖M‖ >

c
√
d) ≤ c exp(−c′d) for some absolute constant c′. Letting E be the event that ‖M‖ > c

√
d, and

noting that ‖[w]‖2 ≤ d for any vector w, we have

E
[∥∥∥[M̂j −Mj ]

∥∥∥2] = E
[∥∥∥[M̂j −Mj ]

∥∥∥2∣∣∣∣E]Pr(E) + E
[∥∥∥[M̂j −Mj ]

∥∥∥2∣∣∣∣¬E]Pr(¬E)

≤ dPr(E) + E
[∥∥∥[M̂j −Mj ]

∥∥∥2∣∣∣∣¬E]
≤ cd exp(−c′d) + E

[∥∥∥[M̂j −Mj ]
∥∥∥2∣∣∣∣¬E] .

Plugging back into Eq. (22), we get that

E
[∥∥∥[M̂j −Mj ]

∥∥∥2∣∣∣∣¬E] ≥ d

8
− cd exp(−c1d),

which is at least d/16 for any d larger than some constant. Combining with Eq. (21), we get

E
[
‖ŵ −w∗‖2

∣∣∣¬E] ≥ 1

16

(
δ

12cλ

)2

.

This inequality implies that for any deterministic algorithm, in expectation over the random draw
of j and a {−1,+1}-valued matrix M with spectral norm at most c

√
d, ‖ŵ −w∗‖2 will be at least

c′
(
δ
λ

)2
for some suitable constant c′. By Yao’s minimax principle, this implies that for any (possibly

randomized) algorithm, there will be some deterministic choice of M, j such that ‖M‖ ≤ c
√
d, and

for which

E
[
‖ŵ −w∗‖2

]
≥ c′

(
δ

λ

)2

(in expectation over the algorithm’s randomness), yielding the lemma’s statement.

It now remains to prove Eq. (22), assuming j is chosen uniformly at random from {dd/2e, . . . , d},
and M is chosen at random (i.e. each entry at or above the main diagonal is chosen independently
and uniformly from {−1,+1}). Roughly speaking, the proof idea is to reduce this to an upper bound
on how much information the machines holding M can send on M ’s entries (and more particularly,
on the entries in the upper-right quadrant of M ). Since this quadrant is composed of Θ(d2) random
variables, and the machines can send much less than d2 bits, this information is necessarily restricted.

Let Pr(·) denote probability with respect to the random choice of M, j, and let Prj(·) denote prob-
ability conditioned on the choice of j. Recalling that any entry Mj,i in the j-th column has values
in {−1,+1}, it follows that either Mj,i has the same sign as M̂j,i, or that ([Mj,i− M̂j,i])

2 is at least
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1. Therefore, we have the following:

E
[∥∥∥[Mj − M̂j ]

∥∥∥2] =

d∑
i=1

E[([Mj,i − M̂j,i])
2] ≥

dd/2e∑
i=1

E[([Mj,i − M̂j,i])
2]

≥
dd/2e∑
i=1

E
[
([Mj,i − M̂j,i])

2
∣∣∣Mj,iM̂j,i ≤ 0

]
Pr
(
Mj,iM̂j,i ≤ 0

)
+ 0

≥
dd/2e∑
i=1

Pr
(
Mj,iM̂j,i ≤ 0

)
=

dd/2e∑
i=1

 1

1 + bd/2c

d∑
j=dd/2e

Prj

(
Mj,iM̂j,i ≤ 0

)
=

1

1 + bd/2c

dd/2e∑
i=1

d∑
j=dd/2e

(
1

2
Prj

(
M̂j,i ≤ 0|Mj,i > 0

)
+

1

2
Prj

(
M̂j,i ≥ 0|Mj,i < 0

))

≥ 1/2

1 + bd/2c

dd/2e∑
i=1

d∑
j=dd/2e

(
1−

(
Prj

(
M̂j,i ≥ 0|Mj,i > 0

)
− Prj

(
M̂j,i ≥ 0|Mj,i < 0

)))

≥ 1/2

1 + bd/2c

dd/2e∑
i=1

d∑
j=dd/2e

(
1−

∣∣∣Prj

(
M̂j,i ≥ 0|Mj,i < 0

)
− Prj

(
M̂j,i ≥ 0|Mj,i > 0

)∣∣∣)

=
dd/2e

2
− 1/2

1 + bd/2c

dd/2e∑
i=1

d∑
j=dd/2e

∣∣∣Prj

(
M̂j,i ≥ 0|Mj,i < 0

)
− Prj

(
M̂j,i ≥ 0|Mj,i > 0

)∣∣∣ .
(23)

Let S be the vector of bits broadcasted by the machines holding F1, and received by the machine
designated with providing the output (recalling that it only holds F2). Note that conditioned on S
and j, the algorithm’s output (and hence M̂j,i) is independent of M . Therefore, we have∣∣∣Prj

(
M̂j,i ≥ 0|Mj,i < 0

)
− Prj

(
M̂j,i ≥ 0|Mj,i > 0

)∣∣∣
=

∣∣∣∣∣∑
S

Prj

(
M̂j,i ≥ 0|S,Mj,i < 0

)
Pr(S|Mj,i < 0)−

∑
S

Prj

(
M̂j,i ≥ 0|S,Mj,i > 0

)
Pr(S|Mj,i > 0)

∣∣∣∣∣
=

∣∣∣∣∣∑
S

Prj

(
M̂j,i ≥ 0|S

)
Pr(S|Mj,i < 0)−

∑
S

Prj

(
M̂j,i ≥ 0|S

)
Pr(S|Mj,i > 0)

∣∣∣∣∣
≤
∑
S

∣∣∣Prj

(
M̂j,i ≥ 0|S

)
(Pr(S|Mj,i < 0)− Pr(S|Mj,i > 0))

∣∣∣
≤
∑
S

|Prj(S|Mj,i < 0)− Prj(S|Mj,i > 0)|

≤
∑
S

|Prj(S|Mj,i < 0)− Prj(S)|+
∑
S

|Prj(S|Mj,i > 0)− Prj(S)| .

Since S is sent by the machines holding F1 (and not F2), it is independent of j. Therefore, we can
write the above as∑

S

|Pr(S|Mj,i < 0)− Pr(S)|+
∑
S

|Pr(S|Mj,i > 0)− Pr(S)|

where j in the conditioning is a fixed index. Using Pinsker’s inequality, we can upper bound the
above by √

2Dkl (p(S|Mj,i < 0)||p(S)) +
√

2Dkl (p(S|Mj,i > 0)||p(S))

where p is the probability distribution of S, and Dkl is the Kullback-Leibler divergence. By the
elementary inequality

√
a +
√
b ≤

√
2(a+ b) for all non-negative a, b, we can upper bound the
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above by √
4 (Dkl (p(S|Mj,i < 0)||p(S)) +Dkl (p(S|Mj,i > 0)||p(S)))

=
√

8

√
1

2
(Dkl (p(S|Mj,i < 0)||p(S)) +Dkl (p(S|Mj,i > 0)||p(S))).

Using the fact that Mj,i (for some fixed j, i) is uniformly distributed in {−1,+1}, and that the
mutual information I(X;Y ) between random variablesX,Y equals EY [Dkl(p(X|Y = y)||p(X))],
the above equals

√
8
√
I(S;Mj,i).

Recalling that this is an upper bound on
∣∣∣Prj

(
M̂j,i ≥ 0|Mj,i < 0

)
− Prj

(
M̂j,i ≥ 0|Mj,i > 0

)∣∣∣,
we have

1/2

1 + bd/2c

dd/2e∑
i=1

d∑
j=dd/2e

∣∣∣Prj

(
M̂j,i ≥ 0|Mj,i < 0

)
− Prj

(
M̂j,i ≥ 0|Mj,i > 0

)∣∣∣
≤

√
2

1 + bd/2c

dd/2e∑
i=1

d∑
j=dd/2e

√
I(S;Mj,i) =

√
2dd/2e 1

dd/2e (1 + bd/2c)

dd/2e∑
i=1

d∑
j=dd/2e

√
I(S;Mj,i)

≤
√

2dd/2e

√√√√√ 1

dd/2e (1 + bd/2c)

dd/2e∑
i=1

d∑
j=dd/2e

I(S;Mj,i) (24)

where the last step is by Jensen’s inequality (i.e. the average of square roots is upper bounded by the
square root of the average). The expression in the square root equals the average mutual information
between a random variable S (composed of at most d2/128 bits), and dd/2e (1 + bd/2c) binary
random variables Mj,i, where i ∈ {1, . . . , dd/2e}, j ∈ {dd/2e, . . . , d}, which are all independent
by construction. By Lemma 6 in [18], it is at most (d2/128)/ (dd/2e (1 + bd/2c)) ≤ 1/32, so we
have

√
2dd/2e

√√√√√ 1

dd/2e (1 + bd/2c)

dd/2e∑
i=1

d∑
j=dd/2e

I(S;Mj,i) ≤
√

2dd/2e
√

1

32
=
dd/2e

4
.

Recalling this is an upper bound on Eq. (24), which is the second term in Eq. (23), we get that

EM,j

[
[Mj − M̂j ]

2
]
≥ dd/2e

2
− dd/2e

4
=
dd/2e

4
≥ d

8
,

hence justifying Eq. (22).
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