Efficient Exact Gradient Update for training Deep
Networks with Very Large Sparse Targets
[Supplementary Material]

Pascal Vincent
Département d’Informatique et de Recherche Opérationnelle
Université de Montréal
Montréal, Québec, CANADA
and CIFAR
vincentp@iro.umontreal.ca

Alexandre de Brébisson
Département d’Informatique et de Recherche Opérationnelle
Université de Montréal
Montréal, Québec, CANADA
alexandre.de.brebisson@umontreal.ca

Xavier Bouthillier
Département d’Informatique et de Recherche Opérationnelle
Université de Montréal
Montréal, Québec, CANADA
xavier.bouthillier@iumontreal.ca

Appendix

A Minibatch version of the algorithm

The algorithm we derived for online gradient is relatively straightforward to extend to the case of
minibatches containing m examples, and will still yield the same theoretical speedup factor with
respect to the standard naive approach. One may want to be careful in order to keep the computation
of U=Th (or ore precisely U T H in the minibatch case) reasonably efficient. In the minibatch
version presented below, we update U ~7 based on the Woodbury equation (which generalizes the
Sherman-Morrison formula for m > 1 and involves inverting an m X m matrix). But depending
on the size of the minibatch m, it may become more efficient to solve the corresponding linear
equations for each minibatch from scratch every time, rather than inverting that m x m matrix. In
which case we won’t need to maintain an U 7 at all.

Algorithm 1 Minibatch version of the update algorithm
Initialization

e we can initialize D x d matrix V randomly as we would have initialized W so that we
initially have V = W.
Alternatively we can initialize V' to 0 (there won’t be symmetry breaking issues with having
W initially be O provided the other layers are initialized randomly, since varying inputs and
targets will naturally break symmetry for the output layer)

e initialize Q < VTV (or more cheaply initialize Q < 0 if we have initialized V' to 0).

e we initialize U to the identity: U < I so that, trivially, we initially have VU = W.

o initialize U7 + I,

Update

We suppose we receive m target vectors in the m columns of sparse matrix Y, and corresponding
m hidden representations in the m columns of matrix H.

Step | Operation Computation | Computational complexity

complexity with the multiplicative factor

left in.

1: H=QH O(md?) O(md?)

2: Y =UT(VTY) O(mKd+ | O(mKd+md?)

md?)

3: Z=H-Y O(md) O(md)

4: Vg =22 O(md) O(md)

5: M=H"Z-YTH+YTY or O(m?*d + O(2m?d + m*K)
alternatively m2K)
M=HTH-(YTH+HTY)+YTY

6: L=Tr(M) O(m) O(m)

7: Upew =U —2n(UH)HT O(md?) O(2md?)

8: Ul =0"T- O(m?d + O(2m?d + m? + 2md?)

-7 Tp_ 11 \-1yT m® 4+ md?)
(U-TH) ((H H- A1) 'H)

9: View =V +20Y (UL H)T O(md? + O(md? + mKd)

mKd)

10: | Qnew = Q — 21 (HZT n ZHT) + O(md®+ | O(3md® + m?d)
4y (HM)HT dm’)

B Detailed proof for computation of update of ()

Update to @ corresponds t0 Wiey < W — 217(WH Y)HT. We will use the following precom-
puted quantities: Q = WTW, H = QH andY = WTY =UT(VTY)and Z = H — Y.
Qnew = WiewWaew
— (W-29(WH-Y)H")" (W —29(WH - Y)H")
= WI'W -2gHWH - Y)W —20yWT(WH - Y)HT
+4n2H(WH -VI'(WH-Y)HT
= Q-2n(HH"W'W — HY"™W) — 20 (W"WHH" —W"YHT)
+4n2H(H WIWH - H"WTY - YTWH+YTY)H”
= Q-2p(HH"Q-HW'Y)") —2n(QHH" — (WTY)H")
+4n *HHTQH - H'WTY) - W'Y)'H +YTY)H”
- Q-2 (HHT —HYT + HHT - ?HT)
+4n2H(HTFI HTY/ ~YT'H +YTY)HT
- 2 (H T4 (H - Y)HT) Y AP HHTH - V)~ VTH + YY))HT

- Q-2 (HZT + ZHT) +4n?H (HTZ YTH + YTY) HT

M
This is what is listed as step 10 of the above minibatch algorithm.

In the online case, this becomes:
Qnew = Q@—21

= Q-2

= Q-—27

= Q—-2y

which is the update listed as step 9 in the online algorithm.

hET + 20T) + 4n? (W72 — 9T h + yTy) kT

BET 4 20T) - (WTh = BTG = 5T+ y Ty) R
haT + 21T + dn? (hTh Tty y) hhT

hzT 4+ 2hT) + (4n*L)hh"

—~~ I~

C Details regarding controlling numerical stability

The update of U (step 6 of the online algorithm, step 7 in the minibatch version) may over time lead
to U becoming ill-conditioned. Simultaneously, as we update U and U~ (using Sherman-Morrison
or Woodbury) our updated U ~7'may numerically start to diverge from the true U ~ 7 due to numerical
precision. It is thus important to prevent both of these form happening, i.e. make sure U stays well
conditioned, to ensure the numerical stability of the algorithm. We present here progressively refined
strategies for achieving this.

Restoring the system in a pristine stable state

One simple way to ensure numerical stability is to once in a while restore the system in its pristine
state where V' = W and U = I; = U7 This is easily achieved as follows:

V « VU
U «+ Id
UﬁT — Id.

This operation doesn’t affects the product VU, so the implicit matrix W remains unchanged, nor
does it affect @ = WTWW. And it does restore U to a perfectly well conditioned identity matrix. But
computing VU is an extremely costly O(Dd?) operation, so if possible we want to avoid it (except
maybe once at the very end of training, if we want to compute the actual). In the next paragraphs
we develop a more efficient strategy.

Stabilizing only problematic singular values

U becoming ill-conditioned is due to its singular values over time becoming too large and/or too
small. Let use define o1, ..., o4 as the singular values of U ordered in decreasing order. The
conditioning number of U is defined as % and it can become overly large when o becomes too
large and/or when o4 becomes too small. Restoring the system in its pristine state, as shown in the
previous paragraph, in effect brings back all singular values of U back to 1 (since it brings back
U to being the identity). It is instead possible, and computationally far less costly, to correct when
needed only for the singular values of U that fall outside a safe range. Most often we will only
need to occasionally correct for one singular value (usually the smallest, and only when it becomes
too small). Once we have determined the offending singular value and its corresponding singular
vectors, correcting for that singular value, i.e. effectively bringing it back to 1, will be a O(Dd)
operation. The point is to apply corrective steps only on the problematic singular values and only
when needed, rather than blindly, needlessly and inefficiently correcting for all of them through the
basic O(Dd?) full restoration explained in the previous paragraph.

The detailed algorithm that achieves this is given on the next page.

Algorithm 2 Numerical stabilization procedure for problematic singular values

o The chosen safe range for singular values is [01ow, Tnigh] (ex: [0.001,100])
e The procedures given below act on output layer parameters U, U~7 and V.
e For concision, we do not enlist these parameters explicitly in their parameter list.
e Procedure SINGULAR-STABILIZE gets called after every ncheck gradient updates (ex:
Ncheck = 100)
procedure SINGULAR-STABILIZE() ~ ~
U, 0, V=SVD®U) > Computes singular value decomposition of U as U = U diag(c) VT
forall k€ {1,...,d} do
if o, < 010w OR 0, > Ohigh then
FIX-SINGULAR-VALUE(0}, U, 1)
end if
end for
end procedure

The following procedure will change singular value o of U associated to singular vector u to
become target singular value o* (typically 1). It doesn’t change U ’s singular vectors, only that
one singular value. It also changes V' symetrically (with a rank-one update) in such a way that
W = VU remains unchanged.

procedure FIX-SINGULAR-VALUE(o, u, 0*)
a=2=c

f=_Ta

1+«

U« U+ auUTu)T

V+—V+ pVu)ul

U T« U+ pu(U 1 u)T > Where U~ is obtained as the transpose of U~ 7. But
we may instead of this prefer to recompute U ~7' from scratch by inverting U to ensure it doesn’t
stray too much due to numerical imprecisions.
end procedure

The proof that the FIX-SINGULAR-VALUE procedure achieves what it is supposed to is relatively
straightforward, and left to the reader.

Avoiding the cost of a full singular-value decomposition

Computing the SVD of d x d matrix U as required above, costs roughly 25d3 elementary operations
(use the so-called R-SVD algorithm). But since the offending singular values will typically be only
the smallest or the largest, it is wasteful to compute all d singular values every time. A possibly
cheaper alternative is to use the power iteration method with U to find its largest singular value and
associated singular vector, and similarly with U ~'to obtain the smallest singular value of U (which
corresponds to the inverse of the largest singular value of U ~1). Each iteration of the power iteration
method requires only O(d?) operations, and a few iterations may suffice. In our experiments we
fixed it to 100 power iterations. Also it is probably not critical if the power iteration method is not
run fully to convergence, as correcting along an approximate offending singular vector direction can
be sufficient for the purpose of ensuring numerical stability. With this refinement, we loop over
finding the smallest singular value with the power iteration method, correcting for it to be 1 by
calling FIX-SINGULAR-VALUE if it is too small, and we repeat this until we find the now smallest
singular value to be inside the acceptable range. Similarly for the largest singular values.

Note that while in principle we may not need to ever invert U from scratch (as we provided update
formulas of U7 with every change we make to U), it nevertheless proved to be necessary to do so
regularly to ensure U~ doesn’t stray too much from the correct value due to numerical impreci-
sions. Inverting U using Gaussian-elimination costs roughly d* operations, so it is very reasonable
and won'’t affect the computational complexity if we do it no more often than every d training ex-
amples (which will typically correspond to less than 10 minibatches of size 128). In practice, we
recompute U ~7 from scratch every time before we run this check for singular value stabilization.

	Minibatch version of the algorithm
	Detailed proof for computation of update of Q
	Details regarding controlling numerical stability

