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Abstract

Deep neural networks currently demonstrate state-of-the-art performance in sev-
eral domains. At the same time, models of this class are very demanding in terms
of computational resources. In particular, a large amount of memory is required
by commonly used fully-connected layers, making it hard to use the models on
low-end devices and stopping the further increase of the model size. In this paper
we convert the dense weight matrices of the fully-connected layers to the Tensor
Train [17] format such that the number of parameters is reduced by a huge factor
and at the same time the expressive power of the layer is preserved. In particular,
for the Very Deep VGG networks [21] we report the compression factor of the
dense weight matrix of a fully-connected layer up to 200000 times leading to the
compression factor of the whole network up to 7 times.

1 Introduction

Deep neural networks currently demonstrate state-of-the-art performance in many domains of large-
scale machine learning, such as computer vision, speech recognition, text processing, etc. These
advances have become possible because of algorithmic advances, large amounts of available data,
and modern hardware. For example, convolutional neural networks (CNNs) [13, 21] show by a large
margin superior performance on the task of image classification. These models have thousands of
nodes and millions of learnable parameters and are trained using millions of images [19] on powerful
Graphics Processing Units (GPUs).
The necessity of expensive hardware and long processing time are the factors that complicate the
application of such models on conventional desktops and portable devices. Consequently, a large
number of works tried to reduce both hardware requirements (e. g. memory demands) and running
times (see Sec. 2).
In this paper we consider probably the most frequently used layer of the neural networks: the fully-
connected layer. This layer consists in a linear transformation of a high-dimensional input signal to a
high-dimensional output signal with a large dense matrix defining the transformation. For example,
in modern CNNs the dimensions of the input and output signals of the fully-connected layers are
of the order of thousands, bringing the number of parameters of the fully-connected layers up to
millions.
We use a compact multiliniear format – Tensor-Train (TT-format) [17] – to represent the dense
weight matrix of the fully-connected layers using few parameters while keeping enough flexibil-
ity to perform signal transformations. The resulting layer is compatible with the existing training
algorithms for neural networks because all the derivatives required by the back-propagation algo-
rithm [18] can be computed using the properties of the TT-format. We call the resulting layer a
TT-layer and refer to a network with one or more TT-layers as TensorNet.
We apply our method to popular network architectures proposed for several datasets of different
scales: MNIST [15], CIFAR-10 [12], ImageNet [13]. We experimentally show that the networks
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with the TT-layers match the performance of their uncompressed counterparts but require up to
200 000 times less of parameters, decreasing the size of the whole network by a factor of 7.
The rest of the paper is organized as follows. We start with a review of the related work in Sec. 2.
We introduce necessary notation and review the Tensor Train (TT) format in Sec. 3. In Sec. 4
we apply the TT-format to the weight matrix of a fully-connected layer and in Sec. 5 derive all
the equations necessary for applying the back-propagation algorithm. In Sec. 6 we present the
experimental evaluation of our ideas followed by a discussion in Sec. 7.

2 Related work

With sufficient amount of training data, big models usually outperform smaller ones. However state-
of-the-art neural networks reached the hardware limits both in terms the computational power and
the memory.
In particular, modern networks reached the memory limit with 89% [21] or even 100% [25] memory
occupied by the weights of the fully-connected layers so it is not surprising that numerous attempts
have been made to make the fully-connected layers more compact. One of the most straightforward
approaches is to use a low-rank representation of the weight matrices. Recent studies show that
the weight matrix of the fully-connected layer is highly redundant and by restricting its matrix rank
it is possible to greatly reduce the number of parameters without significant drop in the predictive
accuracy [6, 20, 25].
An alternative approach to the problem of model compression is to tie random subsets of weights
using special hashing techniques [4]. The authors reported the compression factor of 8 for a two-
layered network on the MNIST dataset without loss of accuracy. Memory consumption can also be
reduced by using lower numerical precision [1] or allowing fewer possible carefully chosen param-
eter values [9].
In our paper we generalize the low-rank ideas. Instead of searching for low-rank approximation of
the weight matrix we treat it as multi-dimensional tensor and apply the Tensor Train decomposition
algorithm [17]. This framework has already been successfully applied to several data-processing
tasks, e. g. [16, 27].
Another possible advantage of our approach is the ability to use more hidden units than was available
before. A recent work [2] shows that it is possible to construct wide and shallow (i. e. not deep)
neural networks with performance close to the state-of-the-art deep CNNs by training a shallow
network on the outputs of a trained deep network. They report the improvement of performance
with the increase of the layer size and used up to 30 000 hidden units while restricting the matrix
rank of the weight matrix in order to be able to keep and to update it during the training. Restricting
the TT-ranks of the weight matrix (in contrast to the matrix rank) allows to use much wider layers
potentially leading to the greater expressive power of the model. We demonstrate this effect by
training a very wide model (262 144 hidden units) on the CIFAR-10 dataset that outperforms other
non-convolutional networks.
Matrix and tensor decompositions were recently used to speed up the inference time of CNNs [7,
14]. While we focus on fully-connected layers, Lebedev et al. [14] used the CP-decomposition to
compress a 4-dimensional convolution kernel and then used the properties of the decomposition to
speed up the inference time. This work shares the same spirit with our method and the approaches
can be readily combined.
Gilboa et al. exploit the properties of the Kronecker product of matrices to perform fast matrix-by-
vector multiplication [8]. These matrices have the same structure as TT-matrices with unit TT-ranks.
Compared to the Tucker format [23] and the canonical format [3], the TT-format is immune to
the curse of dimensionality and its algorithms are robust. Compared to the Hierarchical Tucker
format [11], TT is quite similar but has simpler algorithms for basic operations.

3 TT-format

Throughout this paper we work with arrays of different dimensionality. We refer to the one-
dimensional arrays as vectors, the two-dimensional arrays – matrices, the arrays of higher dimen-
sions – tensors. Bold lower case letters (e. g. a) denote vectors, ordinary lower case letters (e. g.
a(i) = ai) – vector elements, bold upper case letters (e. g. A) – matrices, ordinary upper case letters
(e. g. A(i, j)) – matrix elements, calligraphic bold upper case letters (e. g. A) – for tensors and
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ordinary calligraphic upper case letters (e. g. A(i) = A(i1, . . . , id)) – tensor elements, where d is
the dimensionality of the tensor A.
We will call arrays explicit to highlight cases when they are stored explicitly, i. e. by enumeration of
all the elements.
A d-dimensional array (tensor) A is said to be represented in the TT-format [17] if for each dimen-
sion k = 1, . . . , d and for each possible value of the k-th dimension index jk = 1, . . . , nk there
exists a matrix Gk[jk] such that all the elements of A can be computed as the following matrix
product:

A(j1, . . . , jd) = G1[j1]G2[j2] · · ·Gd[jd]. (1)
All the matrices Gk[jk] related to the same dimension k are restricted to be of the same
size rk−1× rk. The values r0 and rd equal 1 in order to keep the matrix product (1) of size 1× 1. In
what follows we refer to the representation of a tensor in the TT-format as the TT-representation or
the TT-decomposition. The sequence {rk}dk=0 is referred to as the TT-ranks of the TT-representation
of A (or the ranks for short), its maximum – as the maximal TT-rank of the TT-representation
of A: r = maxk=0,...,d rk. The collections of the matrices (Gk[jk])

nk

jk=1 corresponding to the same
dimension (technically, 3-dimensional arrays Gk) are called the cores.
Oseledets [17, Th. 2.1] shows that for an arbitrary tensor A a TT-representation exists but is not
unique. The ranks among different TT-representations can vary and it’s natural to seek a representa-
tion with the lowest ranks.
We use the symbols Gk[jk](αk−1, αk) to denote the element of the matrix Gk[jk] in the position
(αk−1, αk), where αk−1 = 1, . . . , rk−1, αk = 1, . . . , rk. Equation (1) can be equivalently rewritten
as the sum of the products of the elements of the cores:

A(j1, . . . , jd) =
∑

α0,...,αd

G1[j1](α0, α1) . . . Gd[jd](αd−1, αd). (2)

The representation of a tensor A via the explicit enumeration of all its elements requires to store∏d
k=1 nk numbers compared with

∑d
k=1 nk rk−1 rk numbers if the tensor is stored in the TT-format.

Thus, the TT-format is very efficient in terms of memory if the ranks are small.
An attractive property of the TT-decomposition is the ability to efficiently perform several types
of operations on tensors if they are in the TT-format: basic linear algebra operations, such as the
addition of a constant and the multiplication by a constant, the summation and the entrywise product
of tensors (the results of these operations are tensors in the TT-format generally with the increased
ranks); computation of global characteristics of a tensor, such as the sum of all elements and the
Frobenius norm. See [17] for a detailed description of all the supported operations.

3.1 TT-representations for vectors and matrices

The direct application of the TT-decomposition to a matrix (2-dimensional tensor) coincides with
the low-rank matrix format and the direct TT-decomposition of a vector is equivalent to explicitly
storing its elements. To be able to efficiently work with large vectors and matrices the TT-format
for them is defined in a special manner. Consider a vector b ∈ RN , where N =

∏d
k=1 nk. We

can establish a bijection µ between the coordinate ` ∈ {1, . . . , N} of b and a d-dimensional vector-
index µ(`) = (µ1(`), . . . , µd(`)) of the corresponding tensor B, where µk(`) ∈ {1, . . . , nk}. The
tensor B is then defined by the corresponding vector elements: B(µ(`)) = b`. Building a TT-
representation of B allows us to establish a compact format for the vector b. We refer to it as a
TT-vector.
Now we define a TT-representation of a matrix W ∈ RM×N , where M =

∏d
k=1mk and

N =
∏d
k=1 nk. Let bijections ν(t) = (ν1(t), . . . , νd(t)) and µ(`) = (µ1(`), . . . , µd(`)) map

row and column indices t and ` of the matrix W to the d-dimensional vector-indices whose k-th
dimensions are of length mk and nk respectively, k = 1, . . . , d. From the matrix W we can form
a d-dimensional tensor W whose k-th dimension is of length mknk and is indexed by the tuple
(νk(t), µk(`)). The tensor W can then be converted into the TT-format:
W (t, `) =W((ν1(t), µ1(`)), . . . , (νd(t), µd(`))) = G1[ν1(t), µ1(`)] . . .Gd[νd(t), µd(`)], (3)

where the matrices Gk[νk(t), µk(`)], k = 1, . . . , d, serve as the cores with tuple (νk(t), µk(`))
being an index. Note that a matrix in the TT-format is not restricted to be square. Although index-
vectors ν(t) and µ(`) are of the same length d, the sizes of the domains of the dimensions can vary.
We call a matrix in the TT-format a TT-matrix.
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All operations available for the TT-tensors are applicable to the TT-vectors and the TT-matrices as
well (for example one can efficiently sum two TT-matrices and get the result in the TT-format). Ad-
ditionally, the TT-format allows to efficiently perform the matrix-by-vector (matrix-by-matrix) prod-
uct. If only one of the operands is in the TT-format, the result would be an explicit vector (matrix); if
both operands are in the TT-format, the operation would be even more efficient and the result would
be given in the TT-format as well (generally with the increased ranks). For the case of the TT-matrix-
by-explicit-vector product c = Wb, the computational complexity is O(d r2mmax{M,N}),
where d is the number of the cores of the TT-matrix W , m = maxk=1,...,dmk, r is the maximal
rank and N =

∏d
k=1 nk is the length of the vector b.

The ranks and, correspondingly, the efficiency of the TT-format for a vector (matrix) depend on the
choice of the mapping µ(`) (mappings ν(t) and µ(`)) between vector (matrix) elements and the un-
derlying tensor elements. In what follows we use a column-major MATLAB reshape command 1

to form a d-dimensional tensor from the data (e. g. from a multichannel image), but one can choose
a different mapping.

4 TT-layer

In this section we introduce the TT-layer of a neural network. In short, the TT-layer is a fully-
connected layer with the weight matrix stored in the TT-format. We will refer to a neural network
with one or more TT-layers as TensorNet.
Fully-connected layers apply a linear transformation to an N -dimensional input vector x:

y =Wx+ b, (4)

where the weight matrix W ∈ RM×N and the bias vector b ∈ RM define the transformation.
A TT-layer consists in storing the weightsW of the fully-connected layer in the TT-format, allowing
to use hundreds of thousands (or even millions) of hidden units while having moderate number of
parameters. To control the number of parameters one can vary the number of hidden units as well
as the TT-ranks of the weight matrix.
A TT-layer transforms a d-dimensional tensor X (formed from the corresponding vector x) to the d-
dimensional tensor Y (which correspond to the output vector y). We assume that the weight matrix
W is represented in the TT-format with the cores Gk[ik, jk]. The linear transformation (4) of a
fully-connected layer can be expressed in the tensor form:

Y(i1, . . . , id) =
∑

j1,...,jd

G1[i1, j1] . . .Gd[id, jd]X (j1, . . . , jd) + B(i1, . . . , id). (5)

Direct application of the TT-matrix-by-vector operation for the Eq. (5) yields the computational
complexity of the forward pass O(dr2mmax{m,n}d) = O(dr2mmax{M,N}).

5 Learning

Neural networks are usually trained with the stochastic gradient descent algorithm where the gradi-
ent is computed using the back-propagation procedure [18]. Back-propagation allows to compute
the gradient of a loss-function L with respect to all the parameters of the network. The method starts
with the computation of the gradient of L w.r.t. the output of the last layer and proceeds sequentially
through the layers in the reversed order while computing the gradient w.r.t. the parameters and the
input of the layer making use of the gradients computed earlier. Applied to the fully-connected lay-
ers (4) the back-propagation method computes the gradients w.r.t. the input x and the parameters
W and b given the gradients ∂L

∂y w.r.t to the output y:

∂L

∂x
=W ᵀ ∂L

∂y
,

∂L

∂W
=
∂L

∂y
xᵀ,

∂L

∂b
=
∂L

∂y
. (6)

In what follows we derive the gradients required to use the back-propagation algorithm with the TT-
layer. To compute the gradient of the loss function w.r.t. the bias vector b and w.r.t. the input vector
x one can use equations (6). The latter can be applied using the matrix-by-vector product (where the
matrix is in the TT-format) with the complexity of O(dr2nmax{m,n}d) = O(dr2nmax{M,N}).

1http://www.mathworks.com/help/matlab/ref/reshape.html
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Operation Time Memory
FC forward pass O(MN) O(MN)
TT forward pass O(dr2mmax{M,N}) O(rmax{M,N})
FC backward pass O(MN) O(MN)
TT backward pass O(d2 r4mmax{M,N}) O(r3 max{M,N})

Table 1: Comparison of the asymptotic complexity and memory usage of an M × N TT-layer and
an M ×N fully-connected layer (FC). The input and output tensor shapes are m1 × . . . ×md and
n1 × . . .× nd respectively (m = maxk=1...dmk) and r is the maximal TT-rank.

To perform a step of stochastic gradient descent one can use equation (6) to compute the gradient
of the loss function w.r.t. the weight matrix W , convert the gradient matrix into the TT-format
(with the TT-SVD algorithm [17]) and then add this gradient (multiplied by a step size) to the
current estimate of the weight matrix: Wk+1 =Wk + γk

∂L
∂W . However, the direct computation of

∂L
∂W requires O(MN) memory. A better way to learn the TensorNet parameters is to compute the
gradient of the loss function directly w.r.t. the cores of the TT-representation ofW .

In what follows we use shortened notation for prefix and postfix sequences of indices: i−k :=

(i1, . . . , ik−1), i+k := (ik+1, . . . , id), i = (i−k , ik, i
+
k ). We also introduce notations for partial

core products:
P−k [i−k , j

−
k ] := G1[i1, j1] . . .Gk−1[ik−1, jk−1],

P+
k [i+k , j

+
k ] := Gk+1[ik+1, jk+1] . . .Gd[id, jd].

(7)

We now rewrite the definition of the TT-layer transformation (5) for any k = 2, . . . , d− 1:

Y(i) = Y(i−k , ik, i
+
k ) =

∑
j−
k ,jk,j

+
k

P−k [i−k , j
−
k ]Gk[ik, jk]P

+
k [i+k , j

+
k ]X (j

−
k , jk, j

+
k ) + B(i). (8)

The gradient of the loss function L w.r.t. to the k-th core in the position [̃ik, j̃k] can be computed
using the chain rule:

∂L

∂Gk [̃ik, j̃k]︸ ︷︷ ︸
rk−1× rk

=
∑
i

∂L

∂Y(i)
∂Y(i)

∂Gk [̃ik, j̃k]
. (9)

Given the gradient matrices ∂Y(i)
∂Gk [̃ik,j̃k]

the summation (9) can be done explicitly in O(M rk−1 rk)

time, where M is the length of the output vector y.

We now show how to compute the matrix ∂Y(i)
∂Gk [̃ik,j̃k]

for any values of the core index k ∈ {1, . . . , d}
and ĩk ∈ {1, . . . ,mk}, j̃k ∈ {1, . . . , nk}. For any i = (i1, . . . , id) such that ik 6= ĩk the value
of Y(i) doesn’t depend on the elements ofGk [̃ik, j̃k] making the corresponding gradient ∂Y(i)

∂Gk [̃ik,j̃k]

equal zero. Similarly, any summand in the Eq. (8) such that jk 6= j̃k doesn’t affect the gradient
∂Y(i)

∂Gk [̃ik,j̃k]
. These observations allow us to consider only ik = ĩk and jk = j̃k.

Y(i−k , ĩk, i
+
k ) is a linear function of the coreGk [̃ik, j̃k] and its gradient equals the following expres-

sion:

∂Y(i−k , ĩk, i
+
k )

∂Gk [̃ik, j̃k]
=
∑

j−
k ,j

+
k

(
P−k [i−k , j

−
k ]
)ᵀ︸ ︷︷ ︸

rk−1×1

(
P+
k [i+k , j

+
k ]
)ᵀ︸ ︷︷ ︸

1×rk

X (j−k , j̃k, j
+
k ). (10)

We denote the partial sum vector asRk[j
−
k , j̃k, i

+
k ] ∈ Rrk :

Rk[j1, . . . , jk−1, j̃k, ik+1, . . . , id] = Rk[j
−
k , j̃k, i

+
k ] =

∑
j+
k

P+
k [i+k , j

+
k ] X (j

−
k , j̃k, j

+
k ).

Vectors Rk[j
−
k , j̃k, i

+
k ] for all the possible values of k, j−k , j̃k and i+k can be computed via dy-

namic programming (by pushing sums w.r.t. each jk+1, . . . , jd inside the equation and summing
out one index at a time) in O(dr2mmax{M,N}). Substituting these vectors into (10) and using
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Figure 1: The experiment on the MNIST dataset. We use a two-layered neural network and substitute
the first 1024× 1024 fully-connected layer with the TT-layer (solid lines) and with the matrix rank
decomposition based layer (dashed line). The solid lines of different colors correspond to different
ways of reshaping the input and output vectors to tensors (the shapes are reported in the legend). To
obtain the points of the plots we vary the maximal TT-rank or the matrix rank.

(again) dynamic programming yields us all the necesary matrices for summation (9). The overall
computational complexity of the backward pass is O(d2 r4mmax{M,N}).
The presented algorithm reduces to a sequence of matrix-by-matrix products and permutations of
dimensions and thus can be accelerated on a GPU device.

6 Experiments
6.1 Parameters of the TT-layer
In this experiment we investigate the properties of the TT-layer and compare different strategies for
setting its parameters: dimensions of the tensors representing the input/output of the layer and the
TT-ranks of the compressed weight matrix. We run the experiment on the MNIST dataset [15] for
the task of handwritten-digit recognition. As a baseline we use a neural network with two fully-
connected layers (1024 hidden units) and rectified linear unit (ReLU) achieving 1.9% error on the
test set. For more reshaping options we resize the original 28× 28 images to 32× 32.
We train several networks differing in the parameters of the single TT-layer. The networks contain
the following layers: the TT-layer with weight matrix of size 1024×1024, ReLU, the fully-connected
layer with the weight matrix of size 1024× 10. We test different ways of reshaping the input/output
tensors and try different ranks of the TT-layer. As a simple compression baseline in the place of
the TT-layer we use the fully-connected layer such that the rank of the weight matrix is bounded
(implemented as follows: the two consecutive fully-connected layers with weight matrices of sizes
1024× r and r×1024, where r controls the matrix rank and the compression factor). The results of
the experiment are shown in Figure 1. We conclude that the TT-ranks provide much better flexibility
than the matrix rank when applied at the same compression level. In addition, we observe that the
TT-layers with too small number of values for each tensor dimension and with too few dimensions
perform worse than their more balanced counterparts.

Comparison with HashedNet [4]. We consider a two-layered neural network with 1024 hidden
units and replace both fully-connected layers by the TT-layers. By setting all the TT-ranks in the
network to 8 we achieved the test error of 1.6% with 12 602 parameters in total and by setting all
the TT-ranks to 6 the test error of 1.9% with 7 698 parameters. Chen et al. [4] report results on the
same architecture. By tying random subsets of weights they compressed the network by the factor
of 64 to the 12 720 parameters in total with the test error equal 2.79%.

6.2 CIFAR-10

CIFAR-10 dataset [12] consists of 32 × 32 3-channel images assigned to 10 different classes: air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. The dataset contains 50000 train and
10000 test images. Following [10] we preprocess the images by subtracting the mean and perform-
ing global contrast normalization and ZCA whitening.
As a baseline we use the CIFAR-10 Quick [22] CNN, which consists of convolutional, pooling and
non-linearity layers followed by two fully-connected layers of sizes 1024× 64 and 64× 10. We fix
the convolutional part of the network and substitute the fully-connected part by a 1024×N TT-layer
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Architecture TT-layers
compr.

vgg-16
compr.

vgg-19
compr.

vgg-16
top 1

vgg-16
top 5

vgg-19
top 1

vgg-19
top 5

FC FC FC 1 1 1 30.9 11.2 29.0 10.1
TT4 FC FC 50 972 3.9 3.5 31.2 11.2 29.8 10.4
TT2 FC FC 194 622 3.9 3.5 31.5 11.5 30.4 10.9
TT1 FC FC 713 614 3.9 3.5 33.3 12.8 31.9 11.8
TT4 TT4 FC 37 732 7.4 6 32.2 12.3 31.6 11.7
MR1 FC FC 3 521 3.9 3.5 99.5 97.6 99.8 99
MR5 FC FC 704 3.9 3.5 81.7 53.9 79.1 52.4
MR50 FC FC 70 3.7 3.4 36.7 14.9 34.5 15.8

Table 2: Substituting the fully-connected layers with the TT-layers in vgg-16 and vgg-19 networks
on the ImageNet dataset. FC stands for a fully-connected layer; TT� stands for a TT-layer with
all the TT-ranks equal “�”; MR� stands for a fully-connected layer with the matrix rank restricted
to “�”. We report the compression rate of the TT-layers matrices and of the whole network in the
second, third and fourth columns.

followed by ReLU and by a N × 10 fully-connected layer. With N = 3125 hidden units (contrary
to 64 in the original network) we achieve the test error of 23.13% without fine-tuning which is
slightly better than the test error of the baseline (23.25%). The TT-layer treated input and output
vectors as 4 × 4 × 4 × 4 × 4 and 5 × 5 × 5 × 5 × 5 tensors respectively. All the TT-ranks equal
8, making the number of the parameters in the TT-layer equal 4 160. The compression rate of the
TensorNet compared with the baseline w.r.t. all the parameters is 1.24. In addition, substituting the
both fully-connected layers by the TT-layers yields the test error of 24.39% and reduces the number
of parameters of the fully-connected layer matrices by the factor of 11.9 and the total parameter
number by the factor of 1.7.
For comparison, in [6] the fully-connected layers in a CIFAR-10 CNN were compressed by the
factor of at most 4.7 times with the loss of about 2% in accuracy.

6.2.1 Wide and shallow network

With sufficient amount of hidden units, even a neural network with two fully-connected layers and
sigmoid non-linearity can approximate any decision boundary [5]. Traditionally, very wide shallow
networks are not considered because of high computational and memory demands and the over-
fitting risk. TensorNet can potentially address both issues. We use a three-layered TensorNet of
the following architecture: the TT-layer with the weight matrix of size 3 072× 262 144, ReLU, the
TT-layer with the weight matrix of size 262 144 × 4 096, ReLU, the fully-connected layer with the
weight matrix of size 4 096 × 10. We report the test error of 31.47% which is (to the best of our
knowledge) the best result achieved by a non-convolutional neural network.

6.3 ImageNet

In this experiment we evaluate the TT-layers on a large scale task. We consider the 1000-class
ImageNet ILSVRC-2012 dataset [19], which consist of 1.2 million training images and 50 000
validation images. We use deep the CNNs vgg-16 and vgg-19 [21] as the reference models2. Both
networks consist of the two parts: the convolutional and the fully-connected parts. In the both
networks the second part consist of 3 fully-connected layers with weight matrices of sizes 25088×
4096, 4096× 4096 and 4096× 1000.
In each network we substitute the first fully-connected layer with the TT-layer. To do this we reshape
the 25088-dimensional input vectors to the tensors of the size 2× 7× 8× 8× 7× 4 and the 4096-
dimensional output vectors to the tensors of the size 4 × 4 × 4 × 4 × 4 × 4. The remaining fully-
connected layers are initialized randomly. The parameters of the convolutional parts are kept fixed
as trained by Simonyan and Zisserman [21]. We train the TT-layer and the fully-connected layers
on the training set. In Table 2 we vary the ranks of the TT-layer and report the compression factor of
the TT-layers (vs. the original fully-connected layer), the resulting compression factor of the whole
network, and the top 1 and top 5 errors on the validation set. In addition, we substitute the second
fully-connected layer with the TT-layer. As a baseline compression method we constrain the matrix
rank of the weight matrix of the first fully-connected layer using the approach of [2].

2After we had started to experiment on the vgg-16 network the vgg-* networks have been improved by
the authors. Thus, we report the results on a slightly outdated version of vgg-16 and the up-to-date version of
vgg-19.
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Type 1 im. time (ms) 100 im. time (ms)
CPU fully-connected layer 16.1 97.2
CPU TT-layer 1.2 94.7
GPU fully-connected layer 2.7 33
GPU TT-layer 1.9 12.9

Table 3: Inference time for a 25088 × 4096 fully-connected layer and its corresponding TT-layer
with all the TT-ranks equal 4. The memory usage for feeding forward one image is 392MB for the
fully-connected layer and 0.766MB for the TT-layer.

In Table 2 we observe that the TT-layer in the best case manages to reduce the number of the
parameters in the matrixW of the largest fully-connected layer by a factor of 194 622 (from 25088×
4096 parameters to 528) while increasing the top 5 error from 11.2 to 11.5. The compression
factor of the whole network remains at the level of 3.9 because the TT-layer stops being the storage
bottleneck. By compressing the largest of the remaining layers the compression factor goes up
to 7.4. The baseline method when providing similar compression rates significantly increases the
error.
For comparison, consider the results of [26] obtained for the compression of the fully-connected lay-
ers of the Krizhevsky-type network [13] with the Fastfood method. The model achieves compression
factors of 2-3 without decreasing the network error.

6.4 Implementation details

In all experiments we use our MATLAB extension3 of the MatConvNet framework4 [24]. For the
operations related to the TT-format we use the TT-Toolbox5 implemented in MATLAB as well. The
experiments were performed on a computer with a quad-core Intel Core i5-4460 CPU, 16 GB RAM
and a single NVidia Geforce GTX 980 GPU. We report the running times and the memory usage at
the forward pass of the TT-layer and the baseline fully-connected layer in Table 3.
We train all the networks with stochastic gradient descent with momentum (coefficient 0.9). We
initialize all the parameters of the TT- and fully-connected layers with a Gaussian noise and put
L2-regularization (weight 0.0005) on them.

7 Discussion and future work

Recent studies indicate high redundancy in the current neural network parametrization. To exploit
this redundancy we propose to use the TT-decomposition framework on the weight matrix of a
fully-connected layer and to use the cores of the decomposition as the parameters of the layer. This
allows us to train the fully-connected layers compressed by up to 200 000× compared with the
explicit parametrization without significant error increase. Our experiments show that it is possible
to capture complex dependencies within the data by using much more compact representations. On
the other hand it becomes possible to use much wider layers than was available before and the
preliminary experiments on the CIFAR-10 dataset show that wide and shallow TensorNets achieve
promising results (setting new state-of-the-art for non-convolutional neural networks).
Another appealing property of the TT-layer is faster inference time (compared with the correspond-
ing fully-connected layer). All in all a wide and shallow TensorNet can become a time and memory
efficient model to use in real time applications and on mobile devices.
The main limiting factor for an M × N fully-connected layer size is its parameters number MN .
The limiting factor for anM×N TT-layer is the maximal linear size max{M,N}. As a future work
we plan to consider the inputs and outputs of layers in the TT-format thus completely eliminating
the dependency on M and N and allowing billions of hidden units in a TT-layer.
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