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Abstract

One of the central questions in statistical learning theory is to determine the con-
ditions under which agents can learn from experience. This includes the neces-
sary and sufficient conditions for generalization from a given finite training set
to new observations. In this paper, we prove that algorithmic stability in the in-
ference process is equivalent to uniform generalization across all parametric loss
functions. We provide various interpretations of this result. For instance, a rela-
tionship is proved between stability and data processing, which reveals that algo-
rithmic stability can be improved by post-processing the inferred hypothesis or by
augmenting training examples with artificial noise prior to learning. In addition,
we establish a relationship between algorithmic stability and the size of the obser-
vation space, which provides a formal justification for dimensionality reduction
methods. Finally, we connect algorithmic stability to the size of the hypothesis
space, which recovers the classical PAC result that the size (complexity) of the
hypothesis space should be controlled in order to improve algorithmic stability
and improve generalization.

1 Introduction

One fundamental goal of any learning algorithm is to strike a right balance between underfitting
and overfitting. In mathematical terms, this is often translated into two separate objectives. First,
we would like the learning algorithm to produce a hypothesis that is reasonably consistent with the
empirical evidence (i.e. to have a small empirical risk). Second, we would like to guarantee that the
empirical risk (training error) is a valid estimate of the true unknown risk (test error). The former
condition protects against underfitting while the latter condition protects against overfitting.

The rationale behind these two objectives can be understood if we define the generalization risk
Ryep by the absolute difference between the empirical and true risks: Rgep, = |Remp — Ripuel-
Then, it is elementary to observe that the true risk Ry, is bounded from above by the sum
Remp + Rgen. Hence, by minimizing both the empirical risk (underfitting) and the generalization
risk (overfitting), one obtains an inference procedure whose true risk is minimal.

Minimizing the empirical risk alone can be carried out using the empirical risk minimization (ERM)
procedure [[1] or some approximations to it. However, the generalization risk is often impossible to
deal with directly. Instead, it is a common practice to bound it analyticaly so that we can establish
conditions under which it is guaranteed to be small. By establishing conditions for generalization,
one hopes to design better learning algorithms that both perform well empirically and generalize
well to novel observations in the future. A prominent example of such an approach is the Support
Vector Machines (SVM) algorithm for binary classification [2].

However, bounding the generalization risk is quite intricate because it can be approached from
various angles. In fact, several methods have been proposed in the past to prove generaliza-
tion bounds including uniform convergence, algorithmic stability, Rademacher and Gaussian com-
plexities, generic chaining bounds, the PAC-Bayesian framework, and robustness-based analysis



[ 3114, 150 164 [7, 18, 9]]. Concentration of measure inequalities form the building blocks of these rich
theories.

The proliferation of generalization bounds can be understood if we look into the general setting of
learning introduced by Vapnik [1]. In this setting, we have an observation space Z and a hypothesis
space ‘H. A learning algorithm, henceforth denoted £ : UZ_; Z™ — H, uses a finite set of
observations to infer a hypothesis H € #. In the general setting, the inference process end-to-end
is influenced by three key factors: (1) the nature of the observation space Z, (2) the nature of the
hypothesis space H, and (3) the details of the learning algorithm £. By imposing constraints on
any of these three components, one may be able to derive new generalization bounds. For example,
the Vapnik-Chervonenkis (VC) theory derives generalization bounds by assuming constraints on H,
while stability bounds, e.g. [6}[10} 11} [12], are derived by assuming constraints on L.

Given that different generalization bounds can be established by imposing constraints on any of
Z, H,or L, it is intriguing to ask if there exists a single view for generalization that ties all of these
different components together. In this paper, we answer this question in the affirmative by establish-
ing that algorithmic stability alone is equivalent to uniform generalization. Informally speaking, an
inference process is said to generalize uniformly if the generalization risk vanishes uniformly across
all bounded parametric loss functions at the limit of large training sets. A more precise definition
will be presented in the sequel. We will show why constraints that are imposed on either H, Z, or
L to improve uniform generalization can be interpreted as methods of improving the stability of the
learning algorithm £. This is similar in spirit to a result by Kearns and Ron, who showed that hav-
ing a finite VC dimension in the hypothesis space H implies a certain notion of algorithmic stability
in the inference process [13]. Our statement, however, is more general as it applies to all learning
algorithms that fall under Vapnik’s general setting of learning, well beyond uniform convergence.

The rest of the paper is as follows. First, we review the current literature on algorithmic stability,
generalization, and learnability. Then, we introduce key definitions that will be repeatedly used
throughout the paper. Next, we prove the central theorem, which reveals that algorithmic stability is
equivalent to uniform generalization, and provide various interpretations of this result afterward.

2 Related Work

Perhaps, the two most fundamental concepts in statistical learning theory are those of learnability
and generalization [12} [14]. The two concepts are distinct from each other. As will be discussed
in more details next, whereas learnability is concerned with measuring the excess risk within a
hypothesis space, generalization is concerned with estimating the true risk.

In order to define learnability and generalization, suppose we have an observation space Z, a prob-
ability distribution of observations P(z), and a bounded stochastic loss function L(-; H) : Z —
[0, 1], where H € H is an inferred hypothesis. Note that L is implicitly a function of (parameter-
ized by) H as well. We define the true risk of a hypothesis H € H by the risk functional:

Rtrue(H) = ]EZNIP’(Z) [L(Zv H)] (1)

Then, a learning algorithm is called consistent if the true risk of its inferred hypothesis H converges
to the optimal true risk within the hypothesis space H at the limit of large training sets m — oco.
A problem is called learnable if it admits a consistent learning algorithm [[14]. It has been known
that learnability for supervised classification and regression problems is equivalent to uniform con-
vergence [3 [14]. However, Shalev-Shwartz et al. recently showed that uniform convergence is not
necessary in Vapnik’s general setting of learning and proposed algorithmic stability as an alternative
key condition for learnability [14].

Unlike learnability, the question of generalization is concerned primarily with how representative
the empirical risk Ry, is to the true risk Ry,.. To elaborate, suppose we have a finite training set
S = {Z;}i=1,..,m, which comprises of m i.i.d. observations Z; ~ P(z). We define the empirical
risk of a hypothesis H with respect to S, by:

1
Remp(H; Sm) =— > L(Z;; H) )
m
Zi ESWL
We also let Ry (H ) be the true risk as defined in Eq. @) Then, a learning algorithm £ is said to
generalize if the empirical risk of its inferred hypothesis converges to its true risk as m — oc.



Similar to learnability, uniform convergence is, by definition, sufficient for generalization [1], but
it is not necessary because the learning algorithm can always restrict its search space to a smaller
subset of H (artificially so to speak). By contrast, it is not known whether algorithmic stability is
necessary for generalization. It has been shown that various notions of algorithmic stability can be
defined that are sufficient for generalization [6, 10,11, 112}|15,/16]. However, it is not known whether
an appropriate notion of algorithmic stability can be defined that is both necessary and sufficient for
generalization in Vapnik’s general setting of learning. In this paper, we answer this question by
showing that stability in the inference process is not only sufficient for generalization, but it is, in
fact, equivalent to uniform generalization, which is a notion of generalization that is stronger than
the one traditionally considered in the literature.

3 Preliminaries

To simplify the discussion, we will always assume that all sets are countable, including the observa-
tion space Z and the hypothesis space H. This is similar to the assumptions used in some previous
works such as [6]. However, the main results, which are presented in Section @ can be readily
generalized. In addition, we assume that all learning algorithms are invariant to permutations of the
training set. Hence, the order of training examples is irrelevant.

Moreover, if X ~ P(x) is a random variable drawn from the alphabet X’ and f(X) is a function of
X, we write Ex .p(5) f(X) tomean ) _, P(z) f(x). Often, we will simply write Ex f(X) to
mean Ex . p(z) f(X) if the distribution of X is clear from the context. If X takes its values from
a finite set S uniformly at random, we write X ~ S to denote this distribution of X. If X is a
boolean random variable, then I{ X } = 1 if and only if X is true, otherwise I{ X } = 0. In general,
random variables are denoted with capital letters, instances of random variables are denoted with
small letters, and alphabets are denoted with calligraphic typeface. Also, given two probability mass
functions P and () defined on the same alphabet A, we will write (P, Q) to denote the overlapping
coefficient, i.e. intersection, between P and Q. That is, (P, Q) = > ., min{P(a), Q(a)}. Note
that (P, Q) =1—||P, Q||, where ||P, Q|| is the total variation distance. Last, we will write
B(k;¢,n) = (Z) #"* (1 — )" F to denote the binomial distribution.

In this paper, we consider the general setting of learning introduced by Vapnik [1]. To reiterate, we
have an observation space Z and a hypothesis space H. Our learning algorithm L receives a set of
m observations S,, = {Zi}i:L__,m € Z™ generated i.i.d. from a fixed unknown distribution P(z),
and picks a hypothesis H € H with probability P, (H = h|S,,). Formally, £ : U°_, Z™ — Hisa
stochastic map. In this paper, we allow the hypothesis H to be any summary statistic of the training
set. It can be a measure of central tendency, as in unsupervised learning, or it can be a mapping from
an input space to an output space, as in supervised learning. In fact, we even allow H to be a subset
of the training set itself. In formal terms, £ is a stochastic map between the two random variables
H € H and S,,, € Z™, where the exact interpretation of those random variables is irrelevant.

In any learning task, we assume a non-negative bounded loss function L(Z; H) : Z — [0, 1] is
used to measure the quality of the inferred hypothesis H € H on the observation Z € Z. Most
importantly, we assume that L(-; H) : Z — [0, 1] is parametric:

Definition 1 (Parametric Loss Functions). A loss function L(-; H) : Z — [0, 1] is called paramet-
ric if it is independent of the training set Sy, given the inferred hypothesis H. That is, a parametric
loss function satisfies the Markov chain: S,, — H — L(-; H).

For any fixed hypothesis H € H, we define its true risk Ry(H) by Eq. (1), and define its
empirical risk on a training set .S,,,, denoted Re,,,(H; Sy,), by Eq. . We also define the true and
empirical risks of the learning algorithm L by the expected risk of its inferred hypothesis:

Rtrue (‘C) - ESm ]EH ~Pr(h|Sm) Rtrue (H) - ESm IEH|Sm Rtrue(H) (3)
Re1ﬂp (L) = ESm IEH ~Pr(h|Sm) Remp(H; Sm) = E’Sm EH|Sm Remp(H; S’m) (4)
To simplify notation, we will write Riyye and Ry instead of Rypye(L) and Repp(L). We will

consider the following definition of generalization:

Definition 2 (Generalization). A learning algorithm L : U)°_, Z™ — H with a parametric
loss function L(-;H) : Z — [0, 1] generalizes if for any distribution P(z) on Z, we have

lim,, oo |Remp —Rtrue| = 0, where Ry and Ry, are given in Eq. and Eq. respectively.



In other words, a learning algorithm £ generalizes according to Definition [2if its empirical perfor-
mance (training loss) becomes an unbiased estimator to the true risk as m — oo. Next, we define
uniform generalization:

Definition 3 (Uniform Generalization). A learning algorithm L : Uyo_; Z™ — H generalizes
uniformly if for any € > 0, there exists mo(e) > 0 such that for all distributions P(z) on Z, all

parametric loss functions, and all sample sizes m > my(€), we have \Remp(ﬁ) — Rtme(ﬁ)f <e

Uniform generalization is stronger than the original notion of generalization in Definition [2] In
particular, if a learning algorithm generalizes uniformly, then it generalizes according to Definition
[2 as well. The converse, however, is not true. Even though uniform generalization appears to be
quite a strong condition, at first sight, a key contribution of this paper is to show that it is not a strong
condition because it is equivalent to a simple condition, namely algorithmic stability.

4 Main Results

Before we prove that algorithmic stability is equivalent to uniform generalization, we introduce a
probabilistic notion of mutual stability between two random variables. In order to abstract away any
labeling information the random variables might possess, e.g. the observation space may or may not
be a metric space, we define stability by the impact of observations on probability distributions:

Definition 4 (Mutual Stability). Let X € X andY € ) be two random variables. Then, the mutual
stability between X and Y is defined by:

S(XGY) = (P(X)P(Y), P(X, Y)) = Ex (P(Y), P(Y[X)) = Ey (P(X), P(X[|Y))

If we recall that 0 < (P, @) < 1 is the overlapping coefficient between the two probability dis-
tributions P and ), we see that S(X;Y) given by Definition E] is indeed a probabilistic measure
of mutual stability. It measures how stable the distribution of Y is before and after observing an
instance of X, and vice versa. A small value of S(X;Y") means that the probability distribution of
X orY is heavily perturbed by a single observation of the other random variable. Perfect mutual
stability is achieved when the two random variables are independent of each other.

With this probabilistic notion of mutual stability in mind, we define the stability of a learning algo-
rithm £ by the mutual stability between its inferred hypothesis and a random training example.

Definition 5 (Algorithmic Stability). Let £ : US_; 2™ — H be a learning algorithm that receives
a finite set of training examples Sy, = {Z;}i=1,.,m € Z™ drawn i.i.d. from a fixed distribution
P(z). Let H ~ P.(h|Sy,) be the hypothesis inferred by L, and let Zy, ~ Sy, be a single ran-
dom training example. We define the stability of L by: S(L) = infp.) S(H; Ziy), where the
infimum is taken over all possible distributions of observations P(2). A learning algorithm is called
algorithmically stable if lim,,_, o, S(L) = 1.

Note that the above definition of algorithmic stability is rather weak; it only requires that the contri-
bution of any single training example on the overall inference process to be more and more negligible
as the sample size increases. In addition, it is well-defined even if the learning algorithm is deter-
ministic because the hypothesis H, if it is a deterministic function of an entire training set of m
observations, remains a stochastic function of any individual observation. We illustrate this concept
with the following example:

Example 1. Suppose that observations Z; € {0, 1} are i.i.d. Bernoulli trials with P(Z; = 1) = ¢,
and that the hypothesis produced by L is the empirical average H = % ZZil Z;. Because P(H =
k/m| Zyn =1) = Bk —1;¢,m — 1) and P(H = k/m | Zyr,, = 0) = B(k; ¢, m — 1), it can be
shown using Stirling’s approximation [17|] that the algorithmic stability of this learning algorithm
is asymptotically given by S(L) ~ 1 — —=——, which is achieved when ¢ = 1/2. A more general

2mm’
statement will be proved later in Section él

Next, we show that the notion of algorithmic stability in Definition [3]is equivalent to the notion of
uniform generalization in Definition [3| Before we do that, we first state the following lemma.

Lemma 1 (Data Processing Inequality). Let A, B, and C be three random variables that satisfy the
Markov chain A — B — C. Then: S(A; B) < S(4; C).



Proof. The proof consists of two steps ﬂ First, we note that because the Markov chain implies that
P(C|B,A) = P(C|B), we have S(A;(B,C)) = S(A; B) by direct substitution into Definition

Second, similar to the information-cannot-hurt inequality in information theory [18], it can be
shown that S(A4; (B,C)) < S(A;C) for any random variables A, B and C. This is proved using
some algebraic manipulation and the fact that the minimum of the sums is always larger than the
sum of minimums, i.e. min { Doy Yo ﬂi} > > ,min{a;, 8;}. Combining both results yields
S(A; B) = S(A;(B,C)) < S(A;C), which is the desired result. O

Now, we are ready to state the main result of this paper.

Theorem 1. For any learning algorithm L : UXS_; 2™ — H, algorithmic stability as given in Def-
inition 3 is both necessary and sufficient for uniform generalization (see Definition[3)). In addition,

Ripye — Remp‘ <1-S(H;Zypn) <1—S(L), where Rypye and Rey,, are the true and empirical
risks of the learning algorithm defined in Eq. and (H) respectively.

Proof. Here is an outline of the proof. First, because a parametric loss function L(-; H) : Z — [0, 1]
is itself a random variable that satisfies the Markov chain S,,, — H — L(-; H), it is not independent
of Ztyn, ~ Sy, Hence, the empirical risk is given by Repp = Er.m) Bz, 10(:m) L(Ztrn; H). By
contrast, the true risk is given by Ripue = Erc;m) Ez,,~p(z) L(Ztrn; H). The difference is:

—étrue - Remp = IEL(-;H) []EZ”,I L(Ztrn; H) - EZ”,,,\L(-;H) L(Ztrn; H):I

To sandwich the right-hand side between an upper and a lower bound, we note that if ;(z) and
Py (z) are two distributions defined on the same alphabet Z and F'(-) : Z — [0, 1] is a bounded loss

function, then ’Ezwpl(z) F(Z) - IEZNPQ(Z)F(Z)‘ < [[P1(2), Pa(2)||7, where [|P, Q|| is the

total variation distance. The proof to this result can be immediately deduced by considering the two
regions {z € Z : P1(2) > Pa(2)} and {z € Z : Py(z) < P2(z)} separately. This is, then, used to
deduce the inequalities:

Rtrue - Remp’ S 1 - S(L(,H), ZtTn) S 1 - S(H, Ztrn) S 1 - S(‘C)a

where the second inequality follows by the data processing inequality in Lemma [I] whereas the
last inequality follows by definition of algorithmic stability (see Definition [5). This proves that

if L is algorithmically stable, i.e. S(£) — 1 as m — oo, then |Rtme — Remp| converges to
zero uniformly across all parametric loss functions. Therefore, algorithmic stability is sufficient for
uniform generalization. The converse is proved by showing that for any § > 0, there exists a bounded
parametric loss and a distribution Ps(z) such that 1 — S(£) — § < ‘]:?tme — Remp| < 1-S(£).
Therefore, algorithmic stability is also necessary for uniform generalization. O

5 Interpreting Algorithmic Stability and Uniform Generalization

In this section, we provide several interpretations of algorithmic stability and uniform generalization.
In addition, we show how Theorem [I]recovers some classical results in learning theory.

5.1 Algorithmic Stability and Data Processing

The relationship between algorithmic stability and data processing is presented in Lemma|l} Given
the random variables A, B, and C and the Markov chain A — B — C, we always have S(A4; B) <
S(A;C). This presents us with qualitative insights into the design of machine learning algorithms.

First, suppose we have two different hypotheses H; and Hy. We will say that Hs contains less
informative than H; if the Markov chain S,, — H; — Hs holds. For example, if observations
Z; € {0,1} are Bernoulli trials, then H; € R can be the empirical average as given in Example E]
while Hy € {0, 1} can be the label that occurs most often in the training set. Because Hy = I{H; >
m/2}, the hypothesis Hs contains strictly less information about the original training set than Hj.
Formally, we have S,,, — H; — H>. In this case, H5 enjoys a better uniform generalization bound
than H; because of data-processing. Intuitively, we know that such a result should hold because H>
is less tied to the original training set than H;. This brings us to the following remark.

"Detailed proofs are available in the supplementary file.



Remark 1. We can improve the uniform generalization bound (or equivalently algorithmic stability)
of a learning algorithm by post-processing its inferred hypothesis H in a manner that is condition-
ally independent of the original training set given H.

Example 2. Post-processing hypotheses is a common technique used in machine learning. This
includes sparsifying the coefficient vector w € R® in linear methods, where w; is set to zero if it has
a small absolute magnitude. It also includes methods that have been proposed to reduce the number
of support vectors in SVM by exploiting linear dependence [\19|]. By the data processing inequality,
such methods improve algorithmic stability and uniform generalization.

Needless to mention, better generalization does not immediately translate into a smaller true risk.
This is because the empirical risk itself may increase when the inferred hypothesis is post-processed
independently of the original training set.

Second, if the Markov chain A — B — C holds, we also obtain S(A;C) > S(B;C) by applying
the data processing inequality to the reverse Markov chain C — B — A. As a result, we can im-
prove algorithmic stablhty by contaminating training examples with artificial noise prior to learning.
This is because if Sm is a perturbed version of a training set Sy, then Sy, — S,,, — H implies that
S(Zyym; H) > S(ZmL, H), when Zy,.,, ~ S, and Ztrn ~ S are random training examples drawn
uniformly at random from each training set respectively. This brings us to the following remark:

Remark 2. We can improve the algorithmic stability of a learning algorithm by introducing artificial
noise to training examples, and applying the learning algorithm on the perturbed training set.

Example 3. Corrupting training examples with artificial noise, such as the recent dropout method,
are popular techniques in neural networks to improve generalization [20]. By the data processing
inequality, such methods indeed improve algorithmic stability and uniform generalization.

5.2 Algorithmic Stability and the Size of the Observation Space

Next, we look into how the size of the observation space Z influences algorithmic stability. First,
we start with the following definition:

Definition 6 (Lazy Learning). A learning algorithm L is called lazy if its hypothesis H € H is
mapped one-to-one with the training set Sy, i.e. the mapping H — S, is injective.

A lazy learner is called lazy if its hypothesis is equivalent to the original training set in its infor-
mation content. Hence, no learning actually takes place. One example is instance-based learning
when H = S,,,. Despite their simple nature, lazy learners are useful in practice. They are useful
theoretical tools as well. In particular, because of the equivalence H = \S,,, and the data processing
inequality, the algorithmic stability of a lazy learner provides a lower bound to the stability of any
possible learning algorithm. Therefore, we can relate algorithmic stability (uniform generalization)
to the size of the observation space by quantifying the algorithmic stability of lazy learners. Because
the size of Z is usually infinite, however, we introduce the following definition of effective set size.

Definition 7. In a countable space Z endowed with a probability mass function P(z), the effective
size of Z w.rt. P(z) is defined by: Ess [Z; P(2)] =1+ (>, vP(2) (1 — IP’(Z)))2

At one extreme, if P(z) is uniform over a finite alphabet Z, then Ess[Z; P(z)] = |Z|. At the
other extreme, if P(z) is a Kronecker delta distribution, then Ess [Z; P(z)] = 1. As proved next,
this notion of effective set size determines the rate of convergence of an empirical probability mass
function to its true distribution when the distance is measured in the total variation sense. As a result,
it allows us to relate algorithmic stability to a property of the observation space Z.

Theorem 2. Let Z be a countable space endowed with a probability mass function P(z). Let Sy,
be a set of m Li.d. samples Z; ~ P(z). Define Pg, (z) to be the empirical probability mass func-
tion induced by drawing samples uniformly at random from Sy,. Then: Eg,  ||P(z), Ps, (2)||7 =

W + o(1/y/m), where 1 < Ess[Z; P(2)] < |Z] is the effective size of Z (see Def-
inition [7]) In addition, for any learning algorithm L : USS_; Z™ — H, we have S(H; Zyyp) >
1— o/ EslZBE]-1 o(1/+/m), where the bound is achieved by lazy learners (see Deﬁnition

27Tm

2 A special case of Theoremwas proved by de Moivre in the 1730s, who showed that the empirical mean of
i.i.d. Bernoulli trials with a probability of success ¢ converges to the true mean at a rate of \/2¢(1 — ¢)/(mm



m

Proof. Here is an outline of the proof. First, we know that P(S,,) = (,,, 7 ) pi" py'?---, where

(") is the multinomial coefficient. Using the relation ||P, Q||7 = %||P — Q||, the multinomial
series, and De Moivre’s formula for the mean deviation of the binomial random variable [22]], it can
be shown with some algebraic manipulations that:

1 _ 1+m m'
Es, ||P(2), Ps, (2)|lr = — 1 — py,) A pe)mpltmpr
|| ( ) ( )|| mkzg( ) k (pkm) ((1_pk) 1)!
Using Stirling’s approximation to the factorial [17]], we obtain the simple asymptotic expression:
1 2pk(1 D) \/Ess [Z; P(2)] —
E P P ~ =
Sm [IP(2), Ps,, (2)l|7 ngg 5

which is tight due to the tightness of the Stirling approximation. The rest of the theorem follows
from the Markov chain S,,, — S,,, — H, the data processing inequality, and Definition [¢] O

Corollary 1. Given the conditions of Theorem if Z is in addition finite (i.e. |Z| < 00), then for
any learning algorithm L, we have: S(£) > 1 — /2= — o(1//m)

2mm

Proof. Because in a finite observation space Z, the maximum effective set size (see Definition|[7/)) is
| Z|, which is attained at the uniform distribution P(z) = 1/|Z]|.

Intuitively speaking, Theorem [2] and its corollary state that in order to guarantee good uniform
generalization for all possible learning algorithms, the number of observations must be sufficiently
large to cover the entire effective size of the observation space Z. Needless to mention, this is
difficult to achieve in practice so the algorithmic stability of machine learning algorithms must be
controlled in order to guarantee a good generalization from a few empirical observations. Similarly,
the uniform generalization bound can be improved by reducing the effective size of the observation
space, such as by using dimensionality reduction methods.

5.3 Algorithmic Stability and the Complexity of the Hypothesis Space
Finally, we look into the hypothesis space and how it influences algorithmic stability. First, we look
into the role of the size of the hypothesis space. This is formalized in the following theorem.

Theorem 3. Denote by H € H the hypothesis inferred by a learning algorithm L : UJS_; Z™ —
H. Then, the following bound on algorithmic stability always holds:

L AU e
- 2m - 2m
where H is the Shannon entropy measured in nats (i.e. using natural logarithms).

Proof. The proof is information-theoretic. If we let I(X; V') be the mutual information between the
r.v’s X and Y and let S, = {Z1, Za, ..., Z,,} be a random choice of a training set, we have:

(S H) = H(S,,) — H(S,,, | H) [Z H(Z)| — [H(Z1[H) + B(Z|Z0, H) +
Because conditioning reduces entropy, i.e. H(A|B) < H(A) for any r.v.’s A and B, we have:
I(Sm; H) > Z H(Z; | H)] = m[H(Zyn) — H(Zyn | H)]
Therefore: :

I(Sm; H)

m

I(Ztrn; H) S (5)

on average. This is believed to be the first appearance of the square-root law in statistical inference in the
literature [21]]. Because the effective set size of the Bernoulli distribution, according to Deﬁnmon[’Z], is given
by 1+ 4¢(1 — ¢), Theoremlagrees with, in fact generalizes, de Moivre’s result.



Next, we use Pinsker’s inequality [18]], which states that for any probability distributions P and

1P, Qllr < \/w, where ||P, Q|| is total variation distance and D(P|| Q) is
the Kullback-Leibler divergence measured in nats (i.e. using natural logarithms). If we recall
that S(Sy; H) = 1 — ||P(Spm) P(H), P(Spm, H)||7 while mutual information is I(S,,; H) =
D(P(Sm, H) || P(Sy) P(H)), we deduce from Pinsker’s inequality and Eq. (5):

S(Ztrn; H) =1- ||P Ztrn 3 ZtT’IH ||T
/1 Ztm, S1- 1 Sm,H /H(H) > 1 /10g|7—[
In the last line, we used the fact that I(X;Y) for any random Varlables X and Y

Theorem [3| re-establishes the classical PAC result on the finite hypothesis space [23]]. In terms of
algorithmic stability, a learning algorithm will enjoy a high stability if the size of the hypothesis
space is small. In terms of uniform generalization, it states that the generalization risk of a learning

algorithm is bounded from above uniformly across all parametric loss functions by «/H(H)/(2m) <
Vlog|H|/(2m), where H(H) is the Shannon entropy of H.

Next, we relate algorithmic stability to the Vapnik-Chervonenkis (VC) dimension. Despite the fact
that the VC dimension is defined on binary-valued functions whereas algorithmic stability is a func-
tional of probability distributions, there exists a connection between the two concepts. To show this,
we first introduce a notion of an induced concept class that exists for any learning algorithm £:

Definition 8. The concept class C induced by a learning algorithm L : U3_; Z™ — H is defined
to be the set of total Boolean functions ¢(z) = I{P(Zip, = 2| H) > P(Zepr, = 2)} forall H € H.

Intuitively, every hypothesis H € H induces a total partition on the observation space Z given by
the Boolean function in Definition[8] That is, H splits Z into two disjoint sets: the set of values in
Z that are, a posteriori, less likely to have been present in the training set than before given that the
inferred hypothesis is H, and the set of all other values. The complexity (richness) of the induced
concept class C is related to algorithmic stability via the VC dimension.

Theorem 4. Let L : US_; Z™ — H be a learning algorithm with an induced concept class C. Let
dy ¢ (C) be the VC dimension of C. Then, the following bound holds if m > dy¢(C) + 1:

4+ +/dyc(C) (1 + log(2m))
V2m

In particular, L is algorithmically stable if its induced concept class C has a finite VC dimension.

S(L) >1—

Proof. The proof relies on the fact that algorithmic stability S(£) is bounded from below by 1 —
SUpPp(.) {Es SUPp, e ‘IEZNP(Z) cen(Z) — Egzes, ch(Z)’}, where ¢y (2) = I{P(Zi =
z|H) > P(Zrr,) = z}. The final bound follows by applying uniform convergence results [23]. O

6 Conclusions

In this paper, we showed that a probabilistic notion of algorithmic stability was equivalent to uniform
generalization. In informal terms, a learning algorithm is called algorithmically stable if the impact
of a single training example on the probability distribution of the final hypothesis always vanishes at
the limit of large training sets. In other words, the inference process never depends heavily on any
single training example. If algorithmic stability holds, then the learning algorithm generalizes well
regardless of the choice of the parametric loss function. We also provided several interpretations of
this result. For instance, the relationship between algorithmic stability and data processing reveals
that algorithmic stability can be improved by either post-processing the inferred hypothesis or by
augmenting training examples with artificial noise prior to learning. In addition, we established a
relationship between algorithmic stability and the effective size of the observation space, which pro-
vided a formal justification for dimensionality reduction methods. Finally, we connected algorithmic
stability to the complexity (richness) of the hypothesis space, which re-established the classical PAC
result that the complexity of the hypothesis space should be controlled in order to improve stability,
and, hence, improve generalization.
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