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Abstract

Recently, there has been growing interest in lifting MAP inference algorithms for
Markov logic networks (MLNs). A key advantage of these lifted algorithms is that
they have much smaller computational complexity than propositional algorithms
when symmetries are present in the MLN and these symmetries can be detected
using lifted inference rules. Unfortunately, lifted inference rules are sound but
not complete and can often miss many symmetries. This is problematic because
when symmetries cannot be exploited, lifted inference algorithms ground the MLN,
and search for solutions in the much larger propositional space. In this paper, we
present a novel approach, which cleverly introduces new symmetries at the time of
grounding. Our main idea is to partition the ground atoms and force the inference
algorithm to treat all atoms in each part as indistinguishable. We show that by
systematically and carefully refining (and growing) the partitions, we can build
advanced any-time and any-space MAP inference algorithms. Our experiments
on several real-world datasets clearly show that our new algorithm is superior to
previous approaches and often finds useful symmetries in the search space that
existing lifted inference rules are unable to detect.

Markov logic networks (MLNs) [5] allow application designers to compactly represent and reason
about relational and probabilistic knowledge in a large number of application domains including
computer vision and natural language understanding using a few weighted first-order logic formulas.
These formulas act as templates for generating large Markov networks – the undirected probabilistic
graphical model. A key reasoning task over MLNs is maximum a posteriori (MAP) inference, which
is defined as the task of finding an assignment of values to all random variables in the Markov network
that has the maximum probability. This task can be solved using propositional (graphical model)
inference techniques. Unfortunately, these techniques are often impractical because the Markov
networks can be quite large, having millions of variables and features.

Recently, there has been growing interest in developing lifted inference algorithms [4, 6, 17, 22]
for solving the MAP inference task [1, 2, 3, 7, 13, 14, 16, 18, 19]. These algorithms work, as much
as possible, on the much smaller first-order specification, grounding or propositionalizing only as
necessary and can yield significant complexity reductions in practice. At a high level, lifted algorithms
can be understood as algorithms that identify symmetries in the first-order specification using lifted
inference rules [9, 13, 19], and then use these symmetries to simultaneously infer over multiple
symmetric objects. Unfortunately, in a vast majority of cases, the inference rules are unable to identify
several useful symmetries (the rules are sound but not complete), either because the symmetries are
approximate or because the symmetries are domain-specific and do not belong to a known type. In
such cases, lifted inference algorithms partially ground some atoms in the MLN and search for a
solution in this much larger partially propositionalized space.

In this paper, we propose the following straight-forward yet principled approach for solving this
partial grounding problem [21, 23]: partition the ground atoms into groups and force the inference
algorithm to treat all atoms in each group as indistinguishable (symmetric). For example, consider
a first-order atom R(x) and assume that x can be instantiated to the following set of constants:
{1, 2, 3, 4, 5}. If the atom possesses the so-called non-shared or single-occurrence symmetry [13, 19],
then the lifted inference algorithm will search over only two assignments: all five groundings of R(x)
are either all true or all false, in order to find the MAP solution. When no identifiable symmetries
exist, the lifted algorithm will inefficiently search over all possible 32 truth assignments to the 5
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ground atoms and will be equivalent in terms of (worst-case) complexity to a propositional algorithm.
In our approach, we would partition the domain, say as {{1, 3}, {2, 4, 5}}, and search over only
the following 4 assignments: all groundings in each part can be either all true or all false. Thus, if
we are lucky and the MAP solution is one of the 4 assignments, our approach will yield significant
reductions in complexity even though no identifiable symmetries exist in the problem.

Our approach is quite general and includes the fully lifted and fully propositional approaches as
special cases. For instance, setting the partition size k to 1 and n respectively where n is the number
of constants will yield exactly the same solution as the one output by the fully lifted and fully
propositional approach. Setting k to values other than 1 and n yields a family of inference schemes
that systematically explores the regime between these two extremes. Moreover, by controlling the
size k of each partition we can control the size of the ground theory, and thus the space and time
complexity of our algorithm.

We prove properties and improve upon our basic idea in several ways. First, we prove that our
proposed approach yields a consistent assignment that is a lower-bound on the MAP value. Second,
we show how to improve the lower bound and thus the quality of the MAP solution by systematically
refining the partitions. Third, we show how to further improve the complexity of our refinement
procedure by exploiting the exchangeability property of successive refinements. Specifically, we show
that the exchangeable refinements can be arranged on a lattice, which can then be searched via a
heuristic search procedure to yield an efficient any-time, any-space algorithm for MAP inference.
Finally, we demonstrate experimentally that our method is highly scalable and yields close to optimal
solutions in a fraction of the time as compared to existing approaches. In particular, our results show
that for even small values of k (k bounds the partition size), our algorithm yields close to optimal
MAP solutions, clearly demonstrating the power of our approach.

1 Notation And Background
Partition of a Set. A collection of sets C is a partition of a set X if and only if each set in C is
nonempty, pairwise disjoint and the union of all sets equals X . The sets in C are called the cells or
parts of the partition. If two elements, a, b, of the set appear in a same cell of a partition ρ we denote
them by the operator ‘∼ρ’, i.e., a ∼ρ b. A partition α of a set X is a refinement of a partition ρ of
X if every element of α is a subset of some element of ρ. Informally, this means that α is a further
fragmentation of ρ. We say that α is finer than ρ (or ρ is coarser than α) and denote it as α ≺ ρ. We
will also use the notation α � ρ to denote that either α is finer than ρ, or α is the same as ρ. For
example, let ρ = {{1, 2}, {3}} be a partition of the set X = {1, 2, 3} containing two cells {1, 2} and
{3} and let α = {{1}, {2}, {3}} be another partition of X , then α is a refinement ρ, namely, α ≺ ρ.

First-order logic. We will use a strict subset of first-order logic that has no function symbols,
equality constraints or existential quantifiers. Our subset consists of (1) constants, denoted by upper
case letters (e.g., X , Y , etc.), which model objects in the domain; (2) logical variables, denoted
by lower case letters (e.g., x, y, etc.) which can be substituted with objects, (3) logical operators
such as ∨ (disjunction), ∧ (conjunction),⇔ (implication) and⇒ (equivalence), (4) universal (∀)
and existential (∃) quantifiers and (5) predicates which model properties and relationships between
objects. A predicate consists of a predicate symbol, denoted by typewriter fonts (e.g., Friends, R,
etc.), followed by a parenthesized list of arguments. A term is a logical variable or a constant. A literal
is a predicate or its negation. A formula in first order logic is an atom (a predicate), or any complex
sentence that can be constructed from atoms using logical operators and quantifiers. For example, ∀x
Smokes(x)⇒ Asthma(x) is a formula. A clause is a disjunction of literals. Throughout, we will
assume that all formulas are clauses and their variables are standardized apart.

A ground atom is an atom containing only constants. A ground formula is a formula obtained by
substituting all of its variables with a constant, namely a formula containing only ground atoms.
For example, the groundings of ¬ Smokes(x) ∨ Asthma(x) where ∆x = {Ana,Bob}, are the two
propositional formulas: ¬ Smokes(Ana) ∨ Asthma(Ana) and ¬ Smokes(Bob) ∨ Asthma(Bob).

Markov logic. A Markov logic network (MLN) is a set of weighted clauses in first-order logic. We
will assume that all logical variables in all formulas are universally quantified (and therefore we will
drop the quantifiers from all formulas), are typed and can be instantiated to a finite set of constants
(for a variable x, this set will be denoted by ∆x) and there is a one-to-one mapping between the
constants and objects in the domain (Herbrand interpretations). Note that the class of MLNs we
are assuming is not restrictive at all because almost all MLNs used in application domains such as
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natural language processing and the Web fall in this class. Given a finite set of constants, the MLN
represents a (ground) Markov network that has one random variable for each ground atom in its
Herbrand base and a weighted feature for each ground clause in the Herbrand base. The weight
of each feature is the weight of the corresponding first-order clause. Given a world ω, which is a
truth assignment to all the ground atoms, the Markov network represents the following probability
distribution P (ω) = Z−1 exp(

∑
i wiN(fi, ω)) where (fi, wi) is a weighted first-order formula,

N(fi, ω) is the number of true groundings of fi in ω and Z is the partition function.

For simplicity, we will assume that the MLN is in normal form, which is defined as an MLN that
satisfies the following two properties: (i) there are no constants in any formula; and (ii) if two distinct
atoms of predicate R have variables x and y as the same argument of R, then ∆x = ∆y. Because of
the second condition, in normal MLNs, we can associate domains with each argument of a predicate.
Let iR denote the i-th argument of predicate R and let D(iR) denote the number of elements in the
domain of iR. We will also assume that all domains are of the form {1, ..., D(iR)}. Since domain size
is finite, any domain can be converted to this form.

A common optimization inference task over MLNs is finding the most probable state of the world ω,
that is finding a complete assignment to all ground atoms which maximizes the probability. Formally,

arg max
ω

PM(ω) = arg max
ω

1

Z(M)
exp

(∑
i

wiN(fi, ω)

)
= arg max

ω

∑
i

wiN(fi, ω) (1)

From Eq. (1), we can see that the MAP problem reduces to finding a truth assignment that max-
imizes the sum of weights of satisfied clauses. Therefore, any weighted satisfiability solver such
as MaxWalkSAT [20] can used to solve it. However, MaxWalkSAT is a propositional solver and is
unable to exploit symmetries in the first-order representation, and as a result can be quite inefficient.

Alternatively, the MAP problem can be solved in a lifted manner by leveraging various lifted inference
rules such as the decomposer, the binomial rule [6, 9, 22] and the recently proposed single occurrence
rule [13, 19]. A schematic of such a procedure is given in Algorithm 1. Before presenting the
algorithm, we will describe some required definitions. Let iR denote the i-th argument of predicate R.
Given an MLN, two arguments iR and jS of its predicates R and S respectively are called unifiable
if they share a logical variable in an MLN formula. Being symmetric and transitive, the unifiable
relation splits the arguments of all the predicates into a set of domain equivalence classes.

Example 1. Consider a normal MLN M having two weighted formulas (R(x) ∨ S(x, y), w1) and
(R(z) ∨ T(z), w2). Here, we have two sets of domain equivalence classes {1R, 1S, 1T} and {2S}.

Algorithm 1 LMAP(MLN M )
// base case
if M is empty return 0
Simplify(M )
// Propositional decomposition
if M has disjoint MLNs M1, . . . ,Mk then

return
∑k

i=1 LMAP(Mi)
// Lifted decomposition
if M has a liftable domain equivalence class U then

return LMAP(M |U)
// Lifted conditioning
if M has a singleton atom A then

return max
D(1A)
i=0 LMAP(M |(A, i)) + w(A, i)

// Partial grounding
Heuristically select a domain equivalence class U
and ground it yielding a new MLN M ′

return LMAP(M ′)

Algorithm 1 has five recursive steps and returns
the optimal MAP value. The first two lines are
the base case and the simplification step, in
which the MLN is simplified by deleting redun-
dant formulas, rewriting predicates by remov-
ing constants (so that lifted conditioning can be
applied) and assigning values to ground atoms
whose values can be inferred using assignments
made so far. The second step is the propositional
decomposition step in which the algorithm re-
curses over disjoint MLNs (if any) and returns
their sum. In the lifted decomposition step, the
algorithm finds a domain equivalence class U
such that in the MAP solution all ground atoms
of the predicates that have elements of U as ar-
guments are either all true or all false. To find
such a class, rules given in [9, 13, 19] can be
used. In the algorithm, M |U denotes the MLN
obtained by setting the domain of all elements
of U to 1 and updating the formula weights accordingly. In the lifted conditioning step, if there is
an atom having just one argument (singleton atom), then the algorithm partitions the possible truth
assignments to groundings of A such that, in each part all truth assignments have the same number
of true atoms. In the algorithm, M |(A, i) denotes the MLN obtained by setting i groundings of A
to true and the remaining to false. w(A, i) is the total weight of ground formulas satisfied by the

3



assignment. The final step in LMAP is the partial grounding step and is executed only when the
algorithm is unable to apply lifted inference rules. In this step, the algorithm heuristically selects a
domain equivalence class U and grounds it completely. For example,
Example 2. Consider an MLN with two formulas: R(x, y) ∨ S(y, z), w1 and S(a, b) ∨ T(a, c), w2.
Let D(2R) = 2. After grounding the equivalence class {2R, 1S, 1T}, we get an MLN having four
formulas: (R(x1, 1)∨S(1, z1), w1), (R(x2, 2)∨S(1, z2), w1), (S(1, b1)∨T(1, c1), w2) and (S(2, b2)∨
T(2, c2), w2).1

2 Scaling up the Partial Grounding Step using Set Partitioning

Algorithm 2 Constrained-Ground
(MLN M , Size k and domain equivalence class U )
M ′ = M
Create a partition π of size k of ∆iR where iR ∈ U
foreach predicate R such that ∃ iR ∈ U do

foreach cell πj of π do
Add all possible hard formulas of the form
R(x1, . . . , xr)⇔ R(y1, . . . , yr)
such that xi = yi if iR /∈ U and
xi = Xa, yi = Xb if iR ∈ U where Xa, Xb ∈ πj .

return M ′

Partial grounding often yields a much big-
ger MLN than the original MLN and is the
chief reason for the inefficiency and poor
scalability of Algorithm LMAP. To address
this problem, we propose a novel approach
to speed up inference by adding additional
constraints to the existing lifted MAP for-
mulation. Our idea is as follows: reduce the
number of ground atoms by partitioning them
and treating all atoms in each part as indistin-
guishable. Thus, instead of introducingO(tn)
new ground atoms where t is the cardinality
of the domain equivalence class and n is the number of constants, our approach will only introduce
O(tk) ground atoms where k << n.

Our new, approximate partial grounding method (which will replace the partial grounding step in
Algorithm 1) is formally described in Algorithm 2. The algorithm takes as input an MLN M , an
integer k > 0 and a domain equivalence class U as input and outputs a new MLN M ′. The algorithm
first partitions the domain of the class U into k cells, yielding a partition π. Then, for each cell πj of
π and each predicate R such that one or more of its arguments is in U , the algorithm adds all possible
constraints of the form R(x1, . . . , xr)⇔ R(y1, . . . , yr) such that for each i: (1) we add the equality
constraint between the logical variables xi and yi if the i-th argument of the predicate is not in U
and (1) set xi = Xa and yi = Xb if i-th argument of R is in U where Xa, Xb ∈ πj . Since adding
constraints restricts feasible solutions to the optimization problem, it is easy to show that:
Proposition 1. Let M ′ = Constrain-Ground(M,k), where M is an MLN and k > 0 is an integer,
be the MLN used in the partial grounding step of Algorithm 1 (instead of the partial grounding step
described in the algorithm). Then, the MAP value returned by the modified algorithm will be smaller
than or equal to the one returned by Algorithm 1.

The following example demonstrates how Algorithm 2 constructs a new MLN.
Example 3. Consider the MLN in Example 2. Let {{1, D2,R}} be a 1-partition of the domain of
U . Then, after applying Algorithm 2, the new MLN will have the following three hard formulas in
addition to the formulas given in Example 2: (1) R(x3, 1)⇔ R(x3, 2), (2) S(1, x4)⇔ S(2, x4) and
(3) T(1, x5)⇔ T(2, x5).

Although, adding constraints reduces the search space of the MAP problem, Algorithm 2 still needs
to ground the MLN. This can be time consuming. Alternatively, we can group indistinguishable
atoms together without grounding the MLN using the following definition:
Definition 1. Let U be a domain equivalence class and let π be its partition. Two ground atoms
R(x1, ..., xr) and R(y1, ..., yr) of a predicate R such that ∃iR ∈ U are equivalent if xi = yi if iR /∈ U
and xi = Xa, yi = Xb if iR ∈ U where Xa, Xb ∈ πj . We denote this by R(x1, ..., xr)⊥πR(y1, ..., yr).

Notice that the relation ⊥π is symmetric and reflexive. Thus, we can group all the ground atoms
corresponding to the transitive closure of this relation, yielding a “meta ground atom” such that if
the meta atom is assigned to true (false), all the ground atoms in the transitive closure will be true
(false). This yields the partition-ground algorithm described as Algorithm 3. The algorithm starts

1The constants can be removed by renaming the predicates yielding a normal MLN. For example, we can
rename R(x1, 1) as R1(x1). This renaming occurs in the simplification step.
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by creating a k partition of the domain of U . It then updates the domain of U so that it only contains
k values, grounds all arguments of predicates that are in the set U and updates the formula weights
appropriately. The formula weights should be updated because, when the domain is compressed,
several ground formulas are replaced by just one ground formula. Intuitively, if t (partially) ground
formulas having weight w are replaced by one (partially) ground formula (f, w′) then w′ should be
equal to wt. The two for loops in Algorithm 3 accomplish this. We can show that:

Proposition 2. The MAP value output by replacing the partial grounding step in Algorithm 1 with
Algorithm Partition-Ground, is the same as the one output by replacing the the partial grounding step
in Algorithm 1 with Algorithm Constrained-Ground.

Algorithm 3 Partition-Ground
(MLN M , Size k and domain equivalence class U )
M ′ = M
Create a partition π of size k of ∆iR where iR ∈ U
Update the domain ∆iR to {1, . . . , k} in M ′

Ground all predicates R such that iR ∈ U
foreach formula (f ′, w′) in M ′ such that f
contains an atom of R where iR ∈ U do

Let f be the formula in M from which f ′ was derived
foreach logical variable in f that was substituted
by the j-th value in ∆iR to yield f ′ do
w′ = w′ × |πj | where πj is the j-th cell of π

return M ′

The key advantage using Algorithm Partition-
Ground is that the lifted algorithm (LMAP)
will have much smaller space complexity
than the one using Algorithm Constrained-
Ground. Specifically, unlike the latter, which
yields O(n|U |) ground atoms (assuming
each predicate has only one argument in
U ) where n is the number of constants in
the domain of U , the former generates only
O(k|U |) ground atoms, where k << n.

The following example illustrates how al-
gorithm partition-ground constructs a new
MLN.

Example 4. Consider an MLN M , with two formulas: (R(x, y) ∨ S(y, z), w1) and (S(a, b) ∨
T(a, c), w2). Let D(2R) = 3 and π = {{1, 2}, {3}} = {ν1, ν2}. After grounding 2R with respect to π,
we get an MLN, M ′, having four formulas: (Rν1(x1) ∨ Sν1(z1), 2w1), (Rν2(x2) ∨ Sν2(z2), w1),
(Sν1(b1) ∨ Tν1(c1), 2w2) and (Sν2(b2) ∨ Tν2(c2), w2). The total weight of grounding in M is
(3w1D(1R)D(2S) + 3w2D(2T)D(2S)) which is the same as in M ′.

The following example illustrates how the algorithm constructs a new MLN in presence of self-joins.

Example 5. Consider an MLN, M , with the single formula: ¬R(x, y) ∨ R(y, x), w. Let D(1R) =
D(2R) = 3 and π = {{1, 2}, {3}} = {ν1, ν2}. After grounding 1R (and also onD(2R), as they belong
to the same domain equivalence class) with respect to π, we get an MLN, M ′, having following four
formulas: (Rν1,ν1 ∨ Rν1,ν1 , 4w), (Rν1,ν2 ∨ Rν2,ν1 , 2w), (Rν2,ν1 ∨ Rν1,ν2 , 2w) and (Rν2,ν2 ∨ Rν2,ν2 , w).

2.1 Generalizing the Partition Grounding Approach

Algorithm Partition-Ground allows us to group the equivalent atoms with respect to a partition and
has much smaller space complexity and time complexity than the partial grounding strategy described
in Algorithm 1. However, it yields a lower bound on the MAP value. In this section, we show how to
improve the lower bound using refinements of the partition. The basis of our generalization is the
following theorem:

Theorem 1. Given two partitions π and φ of U such that φ � π, the MAP value of the partially
ground MLN with respect to φ is less than or equal to the MAP value of the partially ground MLN
with respect to π .

Proof. Sketch: Since the partition φ is a finer refinement of π, any candidate MAP assignment corre-
sponding to the MLN obtained via φ already includes all the candidate assignments corresponding to
the MLN obtained via π, and since the MAP value of both of these MLNs are a lower bound of the
original MAP value, the theorem follows.

We can use Theorem 1 to devise a new any-time MAP algorithm which refines the partitions to get a
better estimate of MAP values. Our approach is presented in Algorithm 4.

The algorithm begins by identifying all non-liftable domains, namely domains Ui that will be
partially grounded during the execution of Algorithm 1, and associating a 1-partition πi with each
domain. Then, until there is timeout, it iterates through the following two steps. First, it runs the
LMAP algorithm, which uses the pair (Ui, πi) in Algorithm partition-ground during the i-th partial
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grounding step, yielding a MAP solution µ. Second, it heuristically selects a partition πj and refines
it. From Theorem 1, it is clear that as the number of iterations is increased, the MAP solution will
either improve or remain the same. Thus, Algorithm Refine-MAP is an anytime algorithm.

Algorithm 4 Refine-MAP(MLN M )
Let U = {Ui} be the non-liftable domains
Set πi = {∆jR} where jR ∈ Ui for all Ui ∈ U
µ = −∞
while timeout has not occurred do
µ =LMAP(M)
/* LMAP uses the pair (Ui, πi) and Algorithm
partition-ground for its i-th partial grounding step. */
Heuristically select a partition πj and refine it

return µ

Alternatively, we can also devise an any-space
algorithm using the following idea. We will
first determine k, the maximum size of a parti-
tion that we can fit in the memory. As different
partitions of size k will give us different MAP
values, we can search through them to find the
best possible MAP solution. A drawback of
the any-space approach is that it explores a
prohibitively large search space. In particular,
the number of possible partitions of size k for
a set of size n (denoted by

{
n
k

}
) is given by

the so called Stirling numbers of the second
kind which grows exponentially with n. (The total number of partitions of a set is given by the Bell
number,Bn =

∑n
k=1

{
n
k

}
). Clearly, searching over all the possible partitions of size k is not practical.

Luckily, we can exploit symmetries in the MLN representation to substantially reduce the number of
partitions we have to consider, since many of them will give us the same MAP value. Formally,

Theorem 2. Given two k-partitions π = {π1, . . . , πk} and φ = {φ1, . . . , φk} of U such that
|πi| = |φi| for all i, the MAP value of the partially ground MLN with respect to π is equal to the
MAP value of the partially ground MLN with respect to φ .

Proof. Sketch: A formula f , when ground on an argument iR with respect to a partition π creates |π|
copies of the formula. Since |φ| = |π| = k grounding on iR with respect to φ also creates the same
number of formulas which are identical upto a renaming of constants. Furthermore, since |πi| = |φi|
(each of their parts have identical cardinality) and as weight of a ground formula is determined by
the cell sizes (see Algorithm Partition-Ground) the ground formulas obtained using φ and π will
have same weights as well. As a result, MLNs obtained by grounding on any argument iR with
respect to φ and π are indistinguishable (subject to renaming of variables and constants) and the
proof follows.

{{1}, {2}, {3}, {4}}

{{1}, {2}, {3, 4}}

{{1}, {2, 3, 4}} {{1, 2}, {3, 4}}

{{1, 2, 3, 4}}
Figure 1: Exchangeable Partition Lattice corresponding
to the domain {1, 2, 3, 4}.

From Theorem 2, it follows that the number
of elements in cells and the number of cells
of a partition is sufficient to define a partially
ground MLN with respect to that partition.
Consecutive refinements of such partitions
will thus yield a lattice, which we will refer to
as Exchangeable Partition Lattice. The term
‘exchangeable’ refers to the fact that two parti-
tions containing same number of elements of
cells and same number of cells are exchange-
able with each other (in terms of MAP so-
lution quality). Figure 1 shows the Exchangeable Partition Lattice corresponding to the domain
{1, 2, 3, 4}. If we do not use exchangeability, the number of partitions in the lattice would have been
B4 =

{
4
1

}
+
{
4
2

}
+
{
4
3

}
+
{
4
4

}
= 1 + 7 + 6 + 1 = 15. On the other hand, the lattice has 5 elements.

Different traversal strategies of this exchangeable partition lattice will give rise to different lifted
MAP algorithms. For example, a greedy depth-first traversal of the lattice yields Algorithm 4. We can
also explore the lattice using systematic depth-limited search and return the maximum solution found
for a particular depth limit d. This yields an improved version of our any-space approach described
earlier. We can even combine the two strategies by traversing the lattice in some heuristic order. For
our experiments, we use greedy depth-limited search, because full depth-limited search was very
expensive. Note that although our algorithm assumes normal MLNs, which are pre-shattered, we can
easily extend it to use shattering as needed [10]. Moreover by clustering evidence atoms together
[21, 23] we can further reduce the size of the shattered theory [4].
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3 Experiments
We implemented our algorithm on top of the lifted MAP algorithm of Sarkhel et al. [18], which
reduces lifted MAP inference to an integer polynomial program (IPP). We will call our algorithm
P-IPP (which stands for partition-based IPP). We performed two sets of experiments. The first set
measures the impact of increasing the partition size k on the quality of the MAP solution output
by our algorithm. The second set compares the performance and scalability of our algorithm with
several algorithms from literature. All of our experiments were run on a third generation i7 quad-core
machine having 8GB RAM.

We used following five MLNs in our experimental study: (1) An MLN which we call Equiva-
lence that consists of following three formulas: Equals(x,x), Equals(x,y)→ Equals(y,x), and
Equals(x,y) ∧ Equals(y,z) → Equals(x,z); (2) The Student MLN from [18, 19], consisting
of four formulas and three predicates; (3) The Relationship MLN from [18], consisting of four
formulas and three predicates; (4) WebKB MLN [11] from the Alchemy web page, consisting of
three predicates and seven formulas; and (5) Citation Information-Extraction (IE) MLN from the
Alchemy web page [11], consisting of five predicates and fourteen formulas .

We compared the solution quality and scalability of our approach with the following algorithms
and systems: Alchemy (ALY) [11], Tuffy (TUFFY) [15], ground inference based on integer linear
programming (ILP) and the IPP algorithm of Sarkhel et al. [18]. Alchemy and Tuffy are two state-
of-the-art open source software packages for learning and inference in MLNs. Both of them ground
the MLN and then use an approximate solver, MaxWalkSAT [20] to compute the MAP solution.
Unlike Alchemy, Tuffy uses clever Database tricks to speed up computation and in principle can be
much more scalable than Alchemy. ILP is obtained by converting the MAP problem over the ground
Markov network to an Integer Linear Program. We ran each algorithm on the aforementioned MLNs
for varying time-bounds and recorded the solution quality, which is measured using the total weight
of the false clauses in the (approximate) MAP solution, also referred to as the cost. Smaller the cost,
better the MAP solution. For a fair comparison, we used a parallelized Integer Linear Programming
solver called Gurobi [8] to solve the integer linear programming problems generated by our algorithm
as well as by other competing algorithms.

Figure 2 shows our experimental results. Note that if the curve for an algorithm is not present in a plot,
then it means that the corresponding algorithm ran out of either memory or time on the MLN and did
not output any solution. We observe that Tuffy and Alchemy are the worst performing systems both in
terms of solution quality and scalability. ILP scales slightly better than Tuffy and Alchemy. However,
it is unable to handle MLNs having more than 30K clauses. We can see that our new algorithm P-IPP,
run as an anytime scheme, by refining partitions, not only finds higher quality MAP solutions but also
scales better in terms of time complexity than IPP. In particular, IPP could not scale to the equivalence
MLN having roughly 1 million ground clauses and the relation MLN having roughly 125.8M ground
clauses. The reason is that these MLNs have self-joins (same predicate appearing multiple times in
a formula), which IPP is unable to lift. On the other hand, our new approach is able to find useful
approximate symmetries in these hard MLNs.

To measure the impact of varying the partition size on the MAP solution quality, we conducted the
following experiment. We first ran the IPP algorithm until completion to compute the optimum MAP
value. Then, we ran our algorithm multiple times, until completion as well, and recorded the solution
quality achieved in each run for different partition sizes. Figure 3 plots average cost across various
runs as a function of k (the error bars show the standard deviation). For brevity, we only show results
for the IE and Equivalence MLNs. The optimum solutions for the three MLNs were found in (a) 20
minutes, (b) 6 hours and (c) 8 hours respectively. On the other hand, our new approach P-IPP yields
close to optimal solutions in a fraction of the time, and for relatively small values of k (≈ 5− 10).

4 Summary and Future Work
Lifted inference techniques have gained popularity in recent years, and have quickly become the
approach of choice to scale up inference in MLNs. A pressing issue with existing lifted inference
technology is that most algorithms only exploit exact, identifiable symmetries and resort to grounding
or propositional inference when such symmetries are not present. This is problematic because
grounding can blow up the search space. In this paper, we proposed a principled, approximate
approach to solve this grounding problem. The main idea in our approach is to partition the ground
atoms into a small number of groups and then treat all ground atoms in a group as indistinguishable
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Figure 2: Cost vs Time: Cost of unsatisfied clauses(smaller is better) vs time for different domain sizes.
Notation used to label each figure: MLN(numvariables, numclauses). Note: the quantities reported are for ground
Markov network associated with the MLN. Standard deviation is plotted as error bars.
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Figure 3: Cost vs Partition Size: Notation used to label each figure: MLN(numvariables, numclauses).

(from each other). This simple idea introduces new, approximate symmetries which can help speed-up
the inference process. Although our proposed approach is inherently approximate, we proved that it
has nice theoretical properties in that it is guaranteed to yield a consistent assignment that is a lower-
bound on the MAP value. We further described an any-time algorithm which can improve this lower
bound through systematic refinement of the partitions. Finally, based on the exchangeability property
of the refined partitions, we demonstrated a method for organizing the partitions in a lattice structure
which can be traversed heuristically to yield efficient any-time as well as any-space lifted MAP
inference algorithms. Our experiments on a wide variety of benchmark MLNs clearly demonstrate the
power of our new approach. Future work includes connecting this work to the work on Sherali-Adams
hierarchy [2]; deriving a variational principle for our method [14]; and developing novel branch and
bound [12] as well as weight learning algorithms based on our partitioning approach.

Acknowledgments: This work was supported in part by the DARPA Probabilistic Programming for
Advanced Machine Learning Program under AFRL prime contract number FA8750-14-C-0005.
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