
Learnability of Influence in Networks

Appendix

A Proofs/Additional Material for Section 3

Recall that in the LT model, given a set of nodes Z influenced at a previous time step, the local
influence for a node u (that has not been influenced so far) is given by 1

(∑
v∈N(u)∩Z wuv ≥ ku

)
,

where w denotes a vector of edge weights and threshold parameters of the model. Let us use the
notation fwu to denote this local influence function at u (for ease of notation, we superscript f with
w though the function is defined on only a subset of indices of w relevant to u; note that the notation
here is slightly different from the one in the main text). In the following we shall sometimes overload
notation and allow influence functions to take boolean membership vector in {0, 1}n as inputs (rather
than sets) with each entry u in the vector indicating whether node u is present in the seed set. We
shall use VCdim(F) to denote the VC-dimension of a (binary) function class F . As before for any
Z ⊆ V , we use the membership indicator χu(Z) = 1(u ∈ Z).

A.1 Proof of Theorem 1

We provide here the proof for the partial observation setting. The proof for the full observation
setting is the same for most part, except that the training set contains more fine-grained information
about the set of nodes influenced in each time step of a cascade Y1, . . . , Yn, which for the purpose of
the proof can all be aggregated into one set:

⋃n
t=1 Yt. Recall that the learning algorithm here simply

picks an influence function with zero training error. To show that this procedure PAC learns from
the LT class, we start by bounding the VC-dimension of the class of LT influence functions Fw

u for
a given node u. The proof then follows from standard uniform convergence arguments for function
classes with finite VC-dimension.

Lemma 7 (VC-dimension of global LT influence functions). Fix node u. The class of all LT
influence functions Fu : 2V →{0, 1} has a VC-dimension of at most Õ(r + n).

Proof. We shall describe how the influence function Fw
u can be seen as a neural network and then

extend classic results on the VC-dimension of neural networks to derive the VC-dimension of the
class of all influence functions for node u. To build intuition, let us start with the neural network
construction for a simpler setting where a node, once influenced, can influence its neighbors in all
subsequent time steps. While the resulting influence process can now last for more than n steps,
we describe the construction for only n time steps. We shall then extend this network to the setting
considered in this paper where a node can influence its neighbors only once.

1. Local influence as a two-layer neural network. Recall that the (local) influence at a node
u is given by fwu (Z) = 1

(∑
v∈N(u)∩Z wuv ≥ ku

)
. This function can be modeled as a

linear (binary) classifier, or equivalently as a two-layer NN with linear threshold activations.
Here the input layer contains a unit for each node in the social network and takes a binary
value indicating whether the node is present in Z; the output layer contains a binary unit
indicating whether u is influenced after one time step; the connections between the two
layers correspond to the edges between u and other nodes; and the threshold term on the
output unit is the threshold parameter ku. Thus the first step of the influence process can be
modeled using a NN with two n-node layers (the input layer takes information about the
seed set, and output is a binary vector indicating which nodes got influenced).

2. From local to global: the multilayer network. The two-layer network can be extended
to multiple time steps by replicating the second layer described above once for each step,
along with the associated connections and thresholds. Additionally, let us add an edge
from each node u to itself with a weight that exceeds threshold ku. Thus once a node u
is activated in a layer, it remains active thereafter. The LT influence function Fw

u (which
outputs for any seed set, whether or not node u will be influenced in the corresponding
cascade) is given by the status of node u in the last layer.
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Thus Fw
u can be represented as a neural network with n+1 layers, with each layer containing r+n

parameters. If we ignore for a moment that the same parameters repeat across layers, an application
of classic VC-dimension results for neural networks with n(r + n) parameters, will give us that the
VC-dimension of the class of all functions Fw

u for node u is at most O
(
(n(r + n)) log(n(r + n))

)
.

However, using a more careful analysis one can get a tighter bound of O((r + n) log(r + n)). This
is because with each new layer with the same connection weights, the ability of a neural network to
shatter a subset of points can only reduce.

To see this, let us denote by Fw
t,u : {0, 1}n→{0, 1} the function computed at node u in layer

t + 1 for a given seed set encoded as binary vector in {0, 1}n (recall that layer 1 is the input layer,
and hence we only consider layer two onwards). Clearly, the function computed in the second
layer Fw

1,u is equivalent to the local LT influence function fwu , and that computed in the (n + 1)th

layer Fw
n,u is the required global influence function Fw

u . Let Ft,u denote the class of all functions
Fw
t,u under the LT model for different parameters w ∈ Rr+n+ . It is easy to see F1,u is a class of

linear binary classifiers with r + 1 parameters, and hence we have from standard results that the
VCdim(F1,u) = r + 1. Similarly, F2,u can be seen as a class of neural networks (linear threshold
activations) with O(r + n) parameters, and we have VCdim(F2,u) = O((r + n) ln(r + n)). We
shall now prove that VCdim(Ft,u) ≤ O((r + n) ln(r + n)) for all t ≥ 3. Consider a set of points
{x1, . . . ,xN} ⊆ {0, 1}n shattered by Ft,k, t ≥ 3. In other words, consider points such that

2N = |{Fw
t,u(x1), . . . , F

w
t,u(xN ) | w ∈ Rr+n+ }|

= |{Fw
t−1,u(F

w
1,1(x1), . . . , F

w
1,n(x1)), . . . , F

w
t−1,u(F

w
1,1(xN ), . . . , Fw

1,N (xN )) | w ∈ Rr+n+ }|
= |{Fw

t−1,u(z1), . . . , F
w
t−1,u(zN ) | w ∈ Rr+n+ }|,

where z1 = [Fw
1,1(x1), . . . , F

w
1,n(x1)], . . . , zN = [Fw

1,1(xN ), . . . , Fw
1,n(xN )] ∈ {0, 1}n. Since

|{Fw
t−1,u(z1), . . . , F

w
t−1,u(zN ) | w ∈ Rr+n+ }| = 2N , it is necessarily the case that z1, . . . , zN

are different (if not, not all binary assignments in {0, 1}N can be realized). This implies that
the set of points {z1, . . . , zN} is shattered by Ft−1,u. Thus for any set of points of a given
size shattered by Ft,u, there exists a set of points of the same size shattered by Ft−1,u. This
gives us that the VC-dimension of Ft,u is no greater than the VC-dimension of Ft−1,u, i.e.
VCdim(Ft,u) ≤ VCdim(Ft−1,u) for all t ≥ 3; applying this argument recursively, we have
VCdim(Ft,u) ≤ VCdim(F2,u) = O((r+n) ln(r+n)). Thus VCdim(Fn,u) ≤ O((r+n) ln(r+n)).

The above result is for a simpler setting where a node, once influenced, can influence its neighbors
in all subsequent time steps. In the setting that we consider in this paper, a node gets influenced
only by neighbors who were influenced in the previous time step, and moreover, a node cannot get
influenced more than once during a cascade. To incorporate this additional constraint in the neural
network structure, we introduce an additional binary unit u′ for each node u in a layer, which will
record whether node u was influenced in previous time steps. In particular, whenever node u is
influenced in a layer, a strong positive signal is sent to activate u′ in the next layer, which in turn will
send out strong negative signals to ensure u is never activated in subsequent layer; we use additional
connections to ensure that u′ remains active there after. In the resulting neural network, a node u
is activated in layer t + 1 whenever u is influenced exactly at time step t; a node is never activated
again in subsequent time steps (see Figure 1). Hence, if Fw

t,u : 2V →{0, 1} is the function computed
at node u in layer t+1, then the global LT influence function is given by Fw

u (X) =
∑n
t=1 F

w
t,u(X).

It can be verified that Fw
u can also be modeled as a neural network with n + 1 layers and r + n

parameters. The same analysis used above can be retraced to show that the VC-dimension of all
functions Fw

u for node u is O((r + n) ln(r + n)).4

We are now ready to prove our theorem.

Proof of Theorem 1. As before, µ denotes the distribution over the initial seed sets and w∗ de-
notes the parameters of the underlying model; note that in this setting, infw∈Rr+n

+
err0-1[Fw] =

err0-1[Fw∗ ] = 0; this also means that E
[
1(χu(Y )) 6= Fw∗

u (X)
]
= 0 ∀u ∈ V . Also, let w de-

note the parameters obtained from Eq. (1); since w minimizes the training error, we have for all u,

4Note that even with auxiliary connections with constant weights, the VC-dimension of the given class of
neural networks is at most O((r + n) ln(r + n)).
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1
m

∑m
i=1 1

(
χu(Y

i) 6= Fw
u (Xi)

)
= 0. We also know from Lemma 7, that for each u, the class of all

influence functions Fw
u : 2V →{0, 1} has a VC-dimension ofO((r+n) ln(r+n)). We can then use

standard VC-dimension based learnability results for empirical risk minimization in settings where
there is a function in the given function class that correctly labels all examples [20]. In particular,

we have for any ε, δ ∈ (0, 1), and m = O

(
(r + n) ln(r + n) ln(1/ε) + ln(1/δ)

ε

)
, with probability

at least 1 − δ (over draw of the training sample), E
[
1(χu(Y )) 6= Fw

u (X)
]
≤ ε. Taking a union

bound over all of n nodes now gives us that when m = O

(
(r + n) ln(r + n) ln(1/ε) + ln(n/δ)

ε

)
,

with probability at least 1− δ,

err0-1[Fw] =
1

n

n∑
u=1

E
[
1
(
χu(Y ) 6= Fw

u (X)
)]
≤ ε.

This completes the proof.

A.2 Formulating the learning problem as a LP under full observation

Let nu = |N(u)|. Under full observation, the problem of obtaining parameters for which the local
prediction error is zero for a given node u ∈ V can be equivalently framed as the following linear
program. Here the optimization is over wu ∈ Rnu+1

+ and over slack variables ξi,t for each cascade
i and time step t, subject to ‘margin’ constraints enforcing that the predicted influence status agrees
with the true status of a node for each time step and training cascade.

min
wu∈Rnu+1

+ , ξi,t≥0

m∑
i=1

n∑
t=1

ξi,t

(
2χu(Y

i
t )− 1

)( ∑
v∈N(u)∩Y i

t−1

wuv − ku

)
≥ 1− ξi,t, ∀ i ∈ [m], t ∈ [T ].

Let w∗ ∈ Rr+n+ denote the parameters of the LT model from which the training sample was gener-
ated and w∗u ∈ Rnu+1

+ denote the parameters corresponding to node u ∈ V . Then w∗u yields zero
prediction error for node u; this also means that there exists a scaled version of w∗u which yields
optimal slack values ξ∗i,t = 0 in the above problem. Clearly, solving the above LP will recover a
scaled version of w∗u.

B Proofs/Additional Details for Section 4

Here, given a set of nodes Z ⊆ V influenced at a time step, the probability of node u (that has not
been influenced so far) being influenced in the next time step is fwu (Z) = 1−

∏
v∈N(u)∩Z(1−wuv).

As before, for any Z ⊆ V , χu(Z) = 1(u ∈ Z).

B.1 Proof of Theorem 2

We deal with the partial observation setting here. The full observation case is handled in the proof of
Proposition 5 in Section B.6. The algorithm prescribed for the partial observation setting is a global
maximum likelihood estimation described in Section 4; the specific optimization problem that needs
to be solved is given in Eq. (3).

We start with an outline of the proof:

• We first show that the IC influence function Fw
u is 1-Lipschitz w.r.t. the L1 norm (i.e. bounded

changes in parameters only produce bounded changes in the function values). This was stated
in Lemma 3 in the main text (restated below).

Lemma 3. (Lipschitzness of IC influence function w.r.t. L1 norm). Fix X ⊆ V . For any
w,w′ ∈ Rr with ‖w −w′‖1 ≤ ε,

∣∣Fw
u (X) − Fw′

u (X)
∣∣ ≤ ε.
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Proof. See Section B.2.

• We then establish an ε-cover over the space of parameters [0, 1]r and translate this using the
above Lipschitz property to a ε-cover over the space of IC influence functions, thus obtaining a
bound on the covering number of this space.

Lemma 8 (Covering number of IC influence functions). The L∞ covering number of the
class of all IC influence functions Fu for radius ε is O((r/ε)r).

Proof. See Section B.3.

• Next, we appeal to standard uniform convergence arguments based on covering numbers [20] to
bound the difference between the expected log-likelihood for the estimated parameters w and
that for the true parameters w∗. This was stated in Lemma 4 in the main text (restated below).
Lemma 4 (Sample complexity guarantee on the log-likelihood objective). Fix ε, δ ∈ (0, 1)

and m = Õ
(
ε−2n3r

)
. Let w be the parameters obtained from global ML estimation. With

probability at least 1− δ (over draw of the training sample), we have that

sup
w∈[λ,1−λ]r

E

[
1

n
L(X,Y ;w)

]
− E

[
1

n
L(X,Y ;w)

]
≤ ε.

Proof. See Section B.4.

• Finally, the above guarantee is translated into a bound on the difference between the expected
squared error for w and that for w∗, as we shall see below.

Proof of Theorem 2. For PAC learnability in this setting, we need to show that errsq
[
Fw
]
−

infw∈Rr
+

errsq
[
Fw
]
= errsq

[
Fw
]
− errsq

[
Fw∗

]
can be made arbitrarily small w.h.p. Expanding

this, we have

errsq[Fw
]
− errsq[Fw∗

]
= EX,Y

[
`sq
(
Y, Fw(X)

)]
− EX,Y

[
`sq
(
Y, Fw∗(X)

)]
= EX,Y

[
`sq
(
Y, Fw(X)

)
− `sq

(
Y, Fw∗(X)

)]
,

=
1

n

n∑
u=1

EX,Y

[
χu(Y )(1− Fw

u (X))2 + (1− χu(Y ))Fw
u (X)2

− χu(Y )(1− Fw∗

u (X))2 − (1− χu(Y ))Fw∗

u (X)2
]

=
1

n

n∑
u=1

EX

[
EY |X

[
χu(Y )(1− Fw

u (X))2 + (1− χu(Y ))Fw
u (X)2

− χu(Y )(1− Fw∗

u (X))2 − (1− χu(Y ))Fw∗

u (X)2
]]

=
1

n

n∑
u=1

EX

[
Fw∗

u (X)(1− Fw
u (X))2 + (1− Fw∗

u (X))Fw
u (X)2

− Fw∗

u (X)(1− Fw∗

u (X))2 − (1− Fw∗

u (X))Fw∗

u (X)2
]

=
1

n

n∑
u=1

EX

[(
Fw
u (X) − Fw

u (X)
)2]

, (4)

where the fifth step follows from the fact that for any X , EY [χu(Y ) |X] = Fw∗

u (X).

We already have from Lemma 4 that when the number of training examples m = Õ
(
ε−2n3r

)
, we

have with probability at least 1− δ (over draw of training sample),

EX,Y

[
1

n
L(X,Y ;w∗)

]
− EX,Y

[
1

n
L(X,Y ;w)

]
≤ ε.
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Expanding the left-hand side of the above inequality,
1

n
EX,Y

[
L(X,Y ;w∗) − L(X,Y ;w)

]
=

1

n

n∑
u=1

EX,Y
[
χu(Y ) ln(Fw∗

u (X)) + (1− χu(Y )) ln(1− Fw∗

u (X))

− χu(Y ) ln(Fw
u (X)) − (1− χu(Y )) ln(1− Fw

u (X))
]

=
1

n

n∑
u=1

EX
[
Fw∗

u (X) ln(Fw∗

u (X)) + (1− Fw∗

u (X)) ln(1− Fw∗

u (X))

− Fw∗

u (X) ln(Fw
u (X)) − (1− Fw∗

u (X)) ln(1− Fw
u (X))

]
=

1

n

n∑
u=1

EX
[
Llog

(
Fw∗

u (X), Fw∗

u (X)
)
− Llog

(
Fw∗

u (X), Fw
u (X)

)]
≥ 1

n

n∑
u=1

EX
[
2
(
Fw∗

u (X)− Fw
u (X)

)2]
,

where the second equality follows from E[χu(Y )|X] = Fw∗

u (X); in the second-last step last, we
denote for any η, η′ ∈ [0, 1], Llog(η

′, η) = η′ ln
(
η
)
+(1− η′) ln

(
1− η

)
; the last step follows from

the fact Llog(η
′, η′) − Llog(η

′, η) ≥ 2(η − η′)2 (this is easy to show; see e.g. Eq. (12) in [22]).
Plugging this back into Eq. (4), the above implies that with probability at least 1− δ,

errsq[Fw
]
− inf

w∈[λ,1−λ]
errsq[Fw

]
≤ 0.5ε, as desired.

B.2 Proof of Lemma 3

Proof. We bound the L∞ norm of the gradient of Fw
u by 1, which would imply that the function is

1-Lipschitz w.r.t. the L1 norm. We have from Eq. (2), for any (c, d) ∈ E∣∣∣∣∂Fw
u (Z)

∂wcd

∣∣∣∣
=

∣∣∣∣ ∂

∂wcd

[
wcd

∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

+ (1− wcd)
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b)6=(c,d)

(1− wab)σu(A,Z)
]∣∣∣∣

=

∣∣∣∣ ∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

−
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)σu(A,Z)
∣∣∣∣

≤
∣∣∣∣ ∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A,(a,b) 6=(c,d)

(1− wab)
∣∣∣∣

= 1,

where the second last step follows from 0 ≤ σu(A,Z) ≤ 1. Clearly ‖∇wF
w
u (X)‖∞ ≤ 1, which

completes the proof of Lipschitzness of Fw
u .

B.3 Proof of Lemma 8

Proof. Note that the space of all parameters w ∈ [0, 1]r is bounded and can be covered by (r/ε)r

L1-balls of radius ε. Further, from the above lemma we known that Fw
u is 1-Lipschitz w.r.t. the L1

norm; we then have for any w,w′ ∈ [0, 1]r:

max
Z⊆V

∣∣Fw
u (Z) − Fw′

u (Z)
∣∣ ≤ ‖w −w′‖1.
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This says that if the parameters of two influence functions are separated by a distance of ε in the
L1 space, the influence functions are also within an L∞ distance of ε from each other. Clearly, an
L1 cover of radius ε over the parameter space can be translated to a L∞ cover of the over the space
of all influence functions for node u. In particular, if the parameter space is covered by R L1-balls
of radius ε and centers w1, . . . ,wR, then the influence functions Fw1 , . . . , FwR form a L∞ cover
of the space of influence functions, with the same radius. Thus the number of L∞-balls of radius ε
required to cover the space of influence functions is at most O

((
r/ε
)r)

.

B.4 Proof of Lemma 4

The proof makes use of standard covering number based uniform convergence result for empirical
risk minimization (or equivalently for log-likelihood maximization) over a real-valued function class
[20]. To apply these standard results, we must ensure the log-likelihood is bounded and Lipschitz.
We shall first establish this.

We once again use nu = |N(u)|. Define for any Z ⊆ V , y ∈ {0, 1}, w ∈ [λ, 1− λ]r and u ∈ V , a
function: gu(Z, y;w) = y ln

(
Fw
u (Z)

)
+ (1− y) ln

(
1− Fw

u (Z)
)
. Note that for a cascade (X,Y ),

L(X,Y ;w) = 1
n

∑n
u=1 gu(X,χu(Y );w). In the following lemma, whenever we refer to a subset

Z ⊆ V in the context of a node u, we shall assume that u /∈ Z and that there exists a path in the
graph from a node in Z to u; cases where this assumption fails can be easily handled, but have been
ignored here to make the proof easier to follow. Below, we show that gu is bounded and Lipschitz
for any u.
Lemma 9 (Boundedness and Lipschitz continuity of log-likelihood function). Fix parameters
w ∈ [λ, 1− λ]r. Then

1. λn ≤ Fw
u (Z) ≤ 1− λn.

2. |gu(Z, y;w)| ≤ n ln(1/λ).

3. gu(Z, y;w) is 1/λn-Lipschitz in w w.r.t. the L1 norm.

Proof.
1. Starting with the lower bound, recall the interpretation of the IC influence function in

Eq. (2) as an expectation of an indicator term over random draw of a subgraph. From
this interpretation, it is clear that the probability of node u being influenced is at least the
probability that all edges in a path from a node in Z to u get activated. Since the mini-
mum probability on any edge is λ and the length of any path can be at most n, we have
Fw
u (Z) ≥ λn. For the upper bound, note that the probability of u not being influenced

in any of n time steps for a seed set Z is at least the probability that none of the neigh-
bors of u ever influenced it (i.e. none of the incoming edges incident on u got activated):∏
v∈N(u)(1− wuv) ≥ (1− (1− λ))nu ≥ λn. Hence Fw

u (Z) ≤ 1− λn.

2. |gu(Z, y;w)| = |y ln
(
Fw
u (Z)

)
+(1−y) ln

(
1−Fw

u (Z)
)
| ≤ |y ln(λn)+(1−y) ln(λn)| ≤

n ln(λ) (from lower and upper bounds on Fw
u derived above and from λ < 1).

3. To show Lipschitzness of gu w.r.t. L1 norm, we bound the L∞ norm of its gradient. In
particular, gu(Z, y;w) = y ln

(
1− Fw

u (Z)
)
− (1− y) ln

(
Fw
u (Z)

)
and

∇w gu(Z, y;w) =

[
y

Fw
u (Z)

− 1− y
1− Fw

u (Z)

]
∇wF

w
u (Z).

Since 1− λn ≥ Fw
u (Z) ≥ λn, we have∣∣∣∣ y

Fw
u (Z)

− 1− y
1− Fw

u (Z)

∣∣∣∣ ≤ 1

λn
.

In addition, from the Lipschitz property of the IC influence function in Lemma 3, we know
its gradient norm is bounded by 1,∥∥∇w gu(Z, y;w)

∥∥
∞ ≤

1

λn
‖∇wF

w
u (Z)‖∞ ≤

1

λn
(1).

Hence gu is 1/λn-Lipschitz in w w.r.t. the L1 norm.
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Proof of Lemma 4. Let w be the parameters obtained by solving Eq. (3). Similarly, let w∗ ∈ [λ, 1−
λ]r be the the underlying model parameters. Since the cascades are generated from an IC model
defined by w∗, one can verify that maximizing the expected log-likelihood EX,Y

[
L(X,Y ;w)

]
over all w ∈ [λ, 1 − λ]r yields w∗. As mentioned above, the proof involves an application of
standard covering number based uniform convergence arguments[20]; we shall make use of the
covering number result in Lemma 8 and the Lipschitzness and boundedness of the likelihood shown
in Lemma 9.

First, let us write the likelihood objective in Eq. (3) in terms of gu.

1

mn

m∑
i=1

L(Xi, Y i;w) =
1

n

n∑
u=1

1

m

m∑
i=1

gu(X,χu(Y
i);w)︸ ︷︷ ︸

Ĝu(w)

. (5)

Similarly, the expected log-likelihood can be written as

1

n
EX,Y

[
L(X,Y ;w)

]
=

1

n

n∑
u=1

EX,Y
[
gu(X,χu(Y );w)

]︸ ︷︷ ︸
Gu(w)

. (6)

We proceed by bounding the difference between the expected and empirical log-likelihood objective
for any model vector, and use this to bound the difference between the optimal likelihood and the
likelihood value of w.

We know from Lemma 9 that gu is bounded by n ln(1/λ) and is 1/λn-Lipschitz in w. We can then
invoke standard uniform convergence arguments based on the covering number result in Lemma 8,
followed by a union bound over all nodes, to bound the difference betweenGu and Ĝu. In particular,

whenm = O

(
n2 ln(1/λ)2

r ln(r/ε) + nr ln(1/λ) + ln(n/δ)

ε2

)
,with probability at least 1−δ (over

draw of training sample), for each u ∈ V and all w ∈ [λ, 1− λ]r,

|Gu(w) − Ĝu(w)| ≤ ε/2.

Substituting this back into Eq. (5) and (6), gives us with probability at least 1 − δ, for all w ∈
[λ, 1− λ]r,∣∣∣∣EX,Y [ 1nL(X,Y ;w)

]
− 1

mn

m∑
i=1

L(Xi, Y i;w)

∣∣∣∣ ≤ 1

n

n∑
u=1

ε/2 = ε/2. (7)

The above bound will then allow us to in turn bound the difference between the optimal log-
likelihood and the log-likelihood of w, as shown below:

sup
w∈[λ,1−λ]r

EX,Y

[
1

n
L(X,Y ;w)

]
− EX,Y

[
1

n
L(X,Y ;w)

]
= EX,Y

[
1

n
L(X,Y ;w∗)

]
− EX,Y

[
1

n
L(X,Y ;w)

]
= EX,Y

[
1

n
L(X,Y ;w∗)

]
− 1

mn

m∑
i=1

L(Xi, Y i;w)

+
1

mn

m∑
i=1

L(Xi, Y i;w) − EX,Y

[
1

n
L(X,Y ;w)

]

≤
[
EX,Y

[
1

n
L(X,Y ;w∗)

]
− 1

mn

m∑
i=1

L(Xi, Y i;w∗)

]

+

[
1

mn

m∑
i=1

L(Xi, Y i;w) − EX,Y

[
1

n
L(X,Y ;w)

]]
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≤ ε/2 + ε/2 = ε,

where the second-last step uses the fact that w is the empirical maximizer of the log-likelihood, and
the last step follows from Eq. (7). This completes the proof.

B.5 Gradient Computation for Likelihood in Eq. (3)

We prescribe that the optimization problem in Eq. (3) be solved using a suitable gradient-based
solver. We describe here how the gradient for the objective can be computed approximately by
sampling subgraphs from G. In particular, for any Z, Y ⊆ V , and (c, d) ∈ E

∂L(Z, Y ;w)

∂wcd
=

∂

∂wcd

[ n∑
u=1

χu(Y ) ln
(
Fw
u (X)

)
+ (1− χu(Y )) ln

(
1− Fw

u

)]

=

n∑
u=1

[
χu(Y )

Fw
u (X)

− 1− χu(Y )

1− Fw
u (X)

]
∂Fw

u (Z)

∂wcd
.

Further,

∂Fw
u (Z)

∂wcd
=

∂

∂wcd

[
wcd

∑
A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b) 6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

+ (1− wcd)
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b) 6=(c,d)

(1− wab)σu(A,Z)
]

=
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b)6=(c,d)

(1− wab)σu(A ∪ {(c, d)}, Z)

−
∑

A⊆E\{(c,d)}

∏
(a,b)∈A

wab
∏

(a,b)/∈A, (a,b)6=(c,d)

(1− wab)σu(A,Z) (8)

=
∑

A⊆E\{(c,d)}

P(c,d)[A]σu(A ∪ {(c, d)}, Z)︸ ︷︷ ︸
term1

−
∑

A⊆E\{(c,d)}

P(c,d)[A]σu(A,Z)︸ ︷︷ ︸
term2

,

where P(c,d)[A] denotes the probability of sampling the edge subset A when each edge (u, v) 6=
(c, d) is chosen independently with probability wuv . Thus to compute the gradient of optimization
objective in Eq. (3), we will need to evaluate the values of Fw

u , term1 and term2 for every node
u and training example. While each of these involve a summation over an exponential number of
subgraphs, they can essentially be seen as expectations and estimated through suitable sampling-
based approaches.

B.6 Proof of Proposition 5

We now move to the fully observation setting. Here the algorithm that we analyze performs local
maximum likelihood estimation to estimate the parameters of the IC model (see Section 4.1). The
specific objective optimized is restated below:
m∑
i=1

L(Xi, Y i1 ;w) =

m∑
i=1

∑
u/∈Xi

[
χu(Y

i
1 ) ln

(
fwu (Xi)

)
+ (1− χu(Y i1 )) ln

(
1− fwu (Xi)

)]
=

m∑
i=1

n∑
u=1

[
χu(Y

i
1 ) ln

(
fwu (Xi)

)
+ (1− χu(Y i1 )) ln

(
1− fwu (Xi)

)]
1(u /∈ Xi),

(9)

where notice that the likelihood is not evaluated on nodes that are already present in the seed set.
Note that we did not have this issue with the partial observation case, as there the global influence
function Fu(X), by definition, would evaluate to 1 whenever X contains u (as u is influenced even
before the cascade begin; see Eq. (2)). On the other hand, the local influence function fwu (X) need
not evaluate to 1 when u ∈ X and hence this case is ignored in the above objective.
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Our analysis involves first showing guarantees on the estimated parameters, and transferring them
to guarantees on the global IC influence function. Unlike the partial observation case, here we seek
to derive optimality guarantees on the parameters themselves, and require stricter assumptions.

Discussion on Assumption 1 In particular, the following are the assumptions we make:

1. All edges have a minimum influence strength of λ. Note that the graph can still contain a
node that has no influence on its neighbor, by not having an edge between the two nodes.

2. Even when all neighbors of a node are influenced in a time step, there is a small probability
γ > 0 of the node not being influenced in the next step. Thus expect for the case where
none of a node’s neighbors are present in the seed set, there is always a small probability
of the node not being influenced in the first time step.

3. The seed distribution is such that each node is chosen independently with probability κ ∈
(0, 1).

The first and second assumptions ensure that the IC influence function and hence the log-likelihood
function is bounded, a property which is crucial to guarantee learnability. The third assumption
avoids pathological cases where the support of the seed distribution only covers a subset of nodes
(in which case, we will not be able to learn anything about the remaining nodes), or has its entire
probability mass concentrated on the full set V (in which case, we again learn nothing about the
individual edge probabilities). Indeed our analysis will go through if in place of the second assump-
tion, we just restricted the edge probabilities to be upper bounded by a value below 1, and the third
assumption allows for more general distributions with appropriate support. We have retained these
slightly stricter assumptions so that analysis is cleaner and easier to follow.

We begin rewriting the local influence functions fwu in terms of transformed parameters βuv =
− ln(1−wuv): fβu (Z) = 1− exp

(
−
∑
v∈N(u)∩Z βuv

)
, where σ(s) = 1− exp(−s). Let us use the

notation βu to denote the vector of parameters βuv , v ∈ N(u). Also, recall that the prescribed local
estimation procedure solves an optimization over all parameters that satisfy Assumption 1. Due to
this, in our analysis, we can safely assume that the parameters are bounded in a certain range. In
particular, it is clear that for all (u, v) ∈ E, wuv ≥ λ. One can also derive an upper bound from
Assumption 1 as follows: for any (u, v) ∈ E, wuv = 1− (1−wuv) ≤ 1−

∏
v′∈N(u)(1−wuv′) ≤

1− γ. Translating these bounds to the log-transformed space, we conclude that the log-transformed
parameters β ∈ Rr+ satisfy: − ln(1− λ) ≤ βuv ≤ − ln(γ).

We are now ready to sketch the proof of Proposition 5. Let w be the parameters obtained by local
ML estimation. We shall show guarantees on w and translate them to guarantees on Fw.

• We first establish an ε-cover of local IC influence functions fβu or fwu , and obtain a bound on the
covering number of this space.

Lemma 10 (Covering number of local IC influence functions). Under Assumption 1, the
L∞ covering number of the class of all local IC influence functions fβu for a node u with nu
parameters and radius ε is O((ln(1/γ)/ε)nu).

Proof. See Section B.7.

• The covering number result allows us to invoke standard uniform convergence arguments to
prove that the log-likelihood of the w can be taken arbitrarily close to the optimal value. But,
this does not imply that the estimated parameters are themselves close to the optimal parameters.
For this, we show that under Assumption 1, the expected log-likelihood objective is strongly
concave in the IC parameters, or equivalently that the negative likelihood is strongly convex,
which then implies the desired result.

Lemma 11 (Guarantees on parameters obtained by local ML estimation). Let w∗ ∈ [0, 1]r

be the true IC parameters and wuv = 1 − exp(−βuv) be obtained by local ML estimation. Fix
ε, δ ∈ (0, 1). Under Assumption 1, if m = Õ(nr(κ2(1− κ)4λ2γ2ε2)−1), with probability at
least 1− δ (over draw of the training sample), ∀(u, v) ∈ E, ‖w∗ − w‖22 ≤ ε.

Proof. See Section B.8.
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• Given that that the global IC influence function is Lipschitz (see Lemma 3), the above guarantees
translate to the following sample complexity guarantee on the IC influence function.
Lemma 12 (Translation to global influence function). Under the statement of Lemma 11, we
have with probability at least 1− δ,

(
Fw∗

u (X) − Fw
u (X)

)2 ≤ rε, ∀u ∈ V, X ⊆ V .

Proof. See Section B.9

Proposition 5 then directly follows from the above sequence of results.

Proof of Proposition 5. Let w∗ ∈ Rr+ be the parameters of the underlying IC model satisfying
Assumption 1. Fix ε, δ ∈ (0, 1), and let w be the parameters obtained from the local max-
imum likelihood estimation. From Lemma 12, when the number of training examples m =

Õ(nr(κ2(1− κ)4λ2γ2ε2)−1),we have with probability at least 1−δ (over draw of training sample),
for each node u ∈ V , and seed set X ⊆ V :(

Fw∗

u (X) − Fw
u (X)

)2 ≤ rε,

As in the proof of Theorem 2 (see Eq. (4)), we can show from this that with probability at least 1−δ,

errsq[Fw
]
− inf

w∈Rr
+

errsq[Fw
]
≤ 1

n

n∑
u=1

EX [rε] ≤ rε.

Absorbing r on the right hand side into the sample complexity bound, gives us the desired result.

B.7 Proof of Lemma 10

Proof. The local IC influence function for any Z ⊆ V is fβu (Z) = 1−exp
(
−
∑
v∈N(u)∩Z βuv

)
=

σ(
∑
v∈N(u)∩Z βuv), which is a linear function composed with link function σ(s) = 1 − exp(−s).

It is well-known that the class of all linear functions with nu parameters in a bounded range [a, b],
can be covered with at most O(((b − a)/ε)nu) L1-balls of radius ε [20]. In our case, each βuv ∈
[− ln(1− λ),− ln(γ)], and the number of L1-balls to cover the space of all linear functions defined
by parameters in this range is at most O((ln(1/γ)/ε)n) as 1 − λ < 1. Let a1, . . . ,aR be the
corresponding centers. Now, since σ is 1-Lipschitz on the positive real-line (follows from σ′(s) =
exp(−s) ≤ 1 for all s ≥ 0), a set of L∞-balls of radius ε with centers fa1

u , . . . , faR
u would then

constitute an ε-cover over the class of all local IC influence functions. Thus the L∞ covering number
of this function class for radius ε is at most O

((
ln(1/γ)/ε

)nu
)
.

B.8 Proof of Lemma 11

As with the partial observation setting, the proof makes use of standard covering number based
uniform convergence result for empirical risk minimization (or equivalently for log-likelihood max-
imization) over a real-valued function class [20]. To apply these standard results, we must ensure
the local log-likelihood is bounded and Lipschitz. We do this below.

As before, let nu = |N(u)| and define for any Z ⊆ V , y ∈ {0, 1}, and u ∈ V , the local log-
likelihood gu for parameters β as gu(Z, y;β) =

[
y ln

(
fβu (Z)

)
+(1−y) ln

(
1−fβu (Z)

)]
1(u /∈ Z);

the indicator term automatically ignore cases where u is already present in seed set Z. Note that for
a cascade (X,Y ), the local log-likelihood L(X,Y1;β) = 1

n

∑n
u=1 gu(X,χu(Y1);β). Whenever

we refer to a subset Z ⊆ V in the context of a node u, we shall assume that Z contains a neighbor
of u; cases where this assumption fails can be easily handled, but have been ignored here to make
the proof more accessible. Below, we show that gu is bounded and Lipschitz for any u.
Lemma 13 (Boundedness and Lipschitz continuity of log-likelihood function). Let β be ob-
tained from edge weights that satisfy Assumption 1. Then

1. λ ≤ fβu (Z) ≤ 1− γ.

2. |gu(Z, y;β)| ≤ ln(1/γ).

3. gu(Z, y;β) is 1/λ-Lipschitz in βu w.r.t. the L1 norm.
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Proof.

1. Starting with the upper bound, we have fβu (Z) = 1 − exp
(
−
∑
v∈N(u)∩Z βuv

)
≤ 1 −

exp
(
−
∑
v∈N(u) βuv

)
≤ 1 − γ (by Assumption 1). For the lower bound, fβu (Z) =

1− exp
(
−
∑
v∈N(u)∩Z βuv

)
≥ 1− exp

(
− βuv′

)
≥ λ, where u′ is some neighbor of u

in Z, which we have assumed exists.

2. Using the above result, |gu(Z, y;β)| ≤ |y ln
(
fβu (Z)

)
+ (1 − y) ln

(
1 − fβu (Z)

)
| ≤

|y ln(λ) + (1− y) ln(γ)| ≤ | ln(γ)| = ln(1/γ), where we have used 0 < γ ≤ λ < 0.5.

3. To show Lipschitzness of gu w.r.t. L1 norm, we bound the L∞ norm of its gradient w.r.t.
βu. Let Z̃ ∈ {0, 1}nu be a boolean vector whose entries are 1(v ∈ Z) for each neighbor
v ∈ N(u). Then gu(Z, y;β) =

[
y ln

(
1− exp(−Z̃>βu)

)
− (1− y)Z̃>βu

]
1(u /∈ Z) and

∇βu

[
gu(Z, y;β)

]
= 1(u /∈ Z)

[
y exp(−Z̃>βu)

1− exp(−Z̃>βu)
− (1− y)

]
Z̃

= 1(u /∈ Z)
[
y
(
1− fβu (Z))
fβu (Z)

− (1− y)
]
Z̃.

Then we have,∥∥∇βu

[
gu(Z, y;β)

]∥∥
∞ ≤

1− fβu (Z))
fβu (Z)

max
v∈N(u)

1(v ∈ Z) ≤ 1

λ
,

where the numerator is upper bounded by 1, and in the denominator we have used the lower
bound on fβu shown in the part 1. Hence gu is 1/λ-Lipschitz in βu w.r.t. the L1 norm.

The above boundedness and Lipschitzness properties of the log-likelihood function will enable us
to apply standard covering number arguments to show that the log-likelihood of the estimated pa-
rameters can be taken close to the optimal value. This does not however imply that the estimated
parameters themselves converge to the optimal parameters; in order to show this, we will need the
(negative) likelihood objective to additional be strongly convex. We next show that under Assump-
tion 1, the expected (negative) log-likelihood is strongly convex. In particular, define for any Z ⊆ V
and η ∈ [0, 1], g̃u(Z, η;β) =

[
η ln

(
fβu (Z)

)
+(1−η) ln

(
1−fβu (Z)

)]
1(u /∈ Z); again the indicator

term automatically ignore cases where u is present in seed set Z. Then we have:

Lemma 14 (Strong convexity of negative expected log-likelihood). Let µ be a distribution over
subsets of nodes in V and β∗ be underlying IC parameters, both satisfying Assumption 1.Let η :
2V → [0, 1] with η(Z) ≥ λ. Then EZ∼µ

[
− g̃u

(
Z, η(Z);β

)]
is strongly convex in βu and the strong

convexity parameter is at least γλκ(1− κ)2.

Proof. As in the previous lemma, we use Z̃ ∈ {0, 1}nu to denote a boolean vector whose entries
are 1(v ∈ Z) for each neighbor v ∈ N(u). To show strong convexity of −EZ

[
g̃u
(
Z, η(Z);β

)]
,

we compute its Hessian w.r.t. βu and show that the Hessian is well-conditioned or that its smallest
Eigen value is bounded above zero. The Hessian is given by:

∇2
βu

[
−EZ

[
g̃u
(
Z, η(Z);β

)]]
= ∇2

βu

[
−EZ

[
1(u /∈ Z)

[
η(Z) ln

(
fβu (Z)

)
+(1− η(Z)) ln

(
1− fβu (Z)

)]]]
= EZ

[
1(u /∈ Z) η(Z) exp(−Z̃

>βu)(
1− exp(−Z̃>βu)

)2 Z̃Z̃>]

= EZ

[
1(u /∈ Z)

η(Z)
(
1− fβu (Z))
fβu (Z)2

Z̃Z̃>
]
.
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The following can then be verified to be the smallest Eigen value of the Hessian. Here x ∈ Rnu and
we have used for any Z ⊆ V and u ∈ V , Zu = 1(u ∈ Z):

inf
x>x=1

EZ

[
η(Z)

(
1− fβu (Z))
fβu (Z)2

(
Z̃>x

)2
1(u /∈ Z)

]
≥ γ inf

x>x=1
EZ
[
η(Z)

(
Z̃>x

)2
1(u /∈ Z)

]
= γ(1− κ) inf

x>x=1
EZ
[
η(Z)

(
Z̃>x

)2 ∣∣u /∈ Z]
= γ(1− κ) inf

x>x=1
EZ

[
η(Z)

∑
v∈N(u)

Zvx
2
v + η(Z)

∑
v∈N(u)

∑
k∈N(u)

ZuZkxvxk

∣∣∣∣u /∈ Z]

= γ(1− κ) inf
x>x=1

[ ∑
v∈N(u)

EZ
[
η(Z)Zv

∣∣u /∈ Z]x2v +
∑

v∈N(u)

∑
k∈N(u)

EZ
[
η(Z)ZvZk

∣∣u /∈ Z]xvxk]

≥ γ(1− κ) inf
x>x=1

[ ∑
v∈N(u)

λP
(
v ∈ Z

∣∣u /∈ Z)x2v +
∑

v∈N(u)

∑
k∈N(u)

λP
(
v ∈ Z, k ∈ Z

∣∣u /∈ Z)xvxk]

= γλ(1− κ) inf
x>x=1

[
κ
∑

v∈N(u)

x2v + κ2
∑

v∈N(u)

∑
k∈N(u)

xvxk

]

= γλ(1− κ) inf
x>x=1

[
(κ− κ2)

∑
v∈N(u)

x2v + κ2
( ∑
v∈N(u)

xv

)2]
≥ γλ(1− κ)

[
(κ− κ2)(1) + 0

]
≥ γλκ(1− κ)2,

where the first step follows from fβu (Z) ≤ 1 − γ < 1, the second and sixth step follow from Z
being drawn from a distribution that satisfies Assumption 1 (i.e. a distribution where each element
in V is chosen independently w.p. κ ∈ (0, 1)), and the fifth step follows from η(Z) ≥ λ. Thus the
given expected log-likelihood is strongly convex in βu under the given assumptions, and the strong
convexity parameter is at least γλκ(1− κ)2.

We now make use of both the above results to prove Lemma 11.

Proof of Lemma 11. For the parameters w obtained by from local ML estimation, define log-
transformed parameters βuv = − ln(1 − wuv) (these parameters satisfy Assumption 1 due to the
way we have framed the optimization problem). Similarly, let β∗ ∈ Rr+ be the transformed version
of the underlying model parameters w∗ (satisfying Assumption 1). We shall begin by making use
of standard uniform convergence result based on covering numbers [20] and show that the expected
log-likelihood of the obtained parameters β is close to that of the true parameters β∗; here we will
use the covering number result in Lemmas 10 and the boundedness/Lipschitz properties in Lemma
13. We will then exploit the strong convexity of the expected (negative) log-likelihood (shown in
Lemma 14) to translate these bounds to guarantees on the parameters themselves.

First, let us write the empirical (local) log-likelihood objective for the first step optimized by the
prescribed procedure (shown in Eq. (9)) in terms of gu.

1

mn

m∑
i=1

L(Xi, Y i1 ;β) =
1

n

n∑
u=1

1

m

m∑
i=1

gu(X
i, χu(Y

i
1 );β)︸ ︷︷ ︸

Ĝu(βu)

.

Since each Ĝu involves a different set of parameters, they can be essentially maximized indepen-
dently. The maximizer of the above empirical log-likelihood is then simply a concatenation of the
maximizers βu ∈ Rnu

+ of each Ĝu. Similarly, one can write down the expected log-likelihood in
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terms of gu:
1

n
EX,Y1

[
L(X,Y1;β)

]
=

1

n

n∑
u=1

EX,Y1

[
gu(X,χu(Y1);β)︸ ︷︷ ︸

Gu(βu)

]
.

Again each Gu can be maximized independently; the optimal parameters β∗ for the above objective
is given by a concatenation of the optimal parameters β∗u for each Gu.

Now from the properties stated in Lemma 13, we have that gu is bounded by ln(1/γ) and is 1/λ-
Lipschitz in β. We then have based on the covering number result in Lemma 10 for the class of
local influence functions, followed by an application of a union bound over all nodes in V , that

when m = O

(
nu ln(1/γ)

2 ln(ln(1/γ)/λε) + ln(n/δ)

ε2

)
, with probability at least 1− δ (over draw

of training sample), for each u ∈ V

|Gu(βu) − Ĝu(βu)| ≤ ε,

where nu = |N(u)|. Equivalently, when m = O

(
ln(1/γ)2

ln(ln(1/γ)/λε
√
nu) + ln(n/δ)

ε2

)
, with

probability at least 1− δ (over draw of training sample), for each u ∈ V

|Gu(βu) − Ĝu(βu)| ≤ ε
√
nu,

which will further give us using straight-forward algebra (see proof of Theorem 2) that with proba-
bility at least 1− δ,

Gu(β
∗
u) − Gu(βu) ≤ ε

√
nu. (10)

Thus, β∗u and β are close in terms of their likelihood value. The rest of the proof involves using
strong convexity of the (negative) expected log-likelihood (in Lemma 14) to show that similar guar-
antees hold for the parameters themselves. In particular, we shall use the fact that if the negative of
a function h : Rd→R is q-strongly convex with z∗ = argmaxz∈Rdh(z) the following is true for any
z ∈ Rd: h(z∗)− h(z) ≥ q

2‖z− z∗‖22.

Expanding the left-hand side of the above inequality,

Gu(β
∗
u) − Ĝu(βu) = EX,Y1

[
gu(X,χu(Y1);β

∗) − gu(X,χu(Y1);β)
]

= EX,Y1

[
1(u /∈ X)

[
χu(Y1) ln(f

β∗

u (X)) + (1− χu(Y1)) ln(1− fβ
∗

u (X))

− χu(Y1) ln(f
β
u (X)) − (1− χu(Y1)) ln(1− fβu (X))

]]
= EX

[
1(u /∈ X)

[
fβ
∗

u (X) ln(fβ
∗

u (X)) + (1− fβ
∗

u (X)) ln(1− fβ
∗

u (X))

− fβ
∗

u (X) ln(fβu (X)) − (1− fβ
∗

u (X)) ln(1− fβu (X))
]]
f

= EX
[
g̃u
(
X, fβ

∗

u ;β∗
)
− g̃u

(
X, fβ

∗

u ;β
)]

≥ λγκ(1− κ)2

2
‖β∗u − βu‖22,

where the second equality follows from E[χu(Y1)|X] = fβ
∗

u (X), and the fourth step follows from
the strong convexity result in Lemma 13 with η = fβ

∗

u . Substituting this back in Eq. (10), we have
with probability at least 1− δ (over draw of the training sample), for each u

‖β∗u − βu‖22 ≤
2ε
√
nu

λγκ(1− κ)2
.

In other words, if m = O

(
ln(1/γ)2

ln(ln(1/γ)/λε
√
n) + ln(n/δ)

κ2(1− κ)4λ2γ2ε2

)
, then w.p. at least 1− δ,

‖β∗u − βu‖22 ≤ ε
√
nu.

Summing this over all u ∈ V ,

‖β∗ − β‖22 ≤ ε

n∑
u=1

√
nu ≤ ε

√√√√n

n∑
u=1

nu = ε
√
nr,
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where the second last step follows from Jensen’s inequality given that the square-root is a concave
function. We thus have guarantees on the log-transformed parameters. It is straight-forward to
show that the same guarantees also hold in the original parameter space, i.e. w.p. at least 1 − δ,
‖w∗ − w‖22 ≤ ε

√
nr. Absorbing the term

√
nr into the sample complexity bound completes the

proof.

B.9 Proof of Lemma 12

Proof. Recall from the Lemma 3 that Fw
u is 1-Lipschitz in w w.r.t. the `1 norm. So if ‖w∗−w‖22 ≤ ε

for all (u, v) ∈ E, then
∣∣Fw∗

u (X)− Fw
u (X)

∣∣2 ≤ ‖w∗−w‖21 ≤ r‖w∗−w‖22 ≤ rε. This, together
with the result in Lemma 11, leads to the desired guarantee on Fw

u .
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