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Abstract

We present data-dependent learning bounds for the general scenario of non-
stationary non-mixing stochastic processes. Our learning guarantees are expressed
in terms of a data-dependent measure of sequential complexity and a discrepancy
measure that can be estimated from data under some mild assumptions. We use
our learning bounds to devise new algorithms for non-stationary time series fore-
casting for which we report some preliminary experimental results.

1 Introduction

Time series forecasting plays a crucial role in a number of domains ranging from weather fore-
casting and earthquake prediction to applications in economics and finance. The classical statistical
approaches to time series analysis are based on generative models such as the autoregressive moving
average (ARMA) models, or their integrated versions (ARIMA) and several other extensions [En-
gle, 1982, Bollerslev, 1986, Brockwell and Davis, 1986, Box and Jenkins, 1990, Hamilton, 1994].
Most of these models rely on strong assumptions about the noise terms, often assumed to be i.i.d.
random variables sampled from a Gaussian distribution, and the guarantees provided in their support
are only asymptotic.

An alternative non-parametric approach to time series analysis consists of extending the standard
i.i.d. statistical learning theory framework to that of stochastic processes. In much of this work, the
process is assumed to be stationary and suitably mixing [Doukhan, 1994]. Early work along this
approach consisted of the VC-dimension bounds for binary classification given by Yu [1994] under
the assumption of stationarity and �-mixing. Under the same assumptions, Meir [2000] presented
bounds in terms of covering numbers for regression losses and Mohri and Rostamizadeh [2009]
proved general data-dependent Rademacher complexity learning bounds. Vidyasagar [1997] showed
that PAC learning algorithms in the i.i.d. setting preserve their PAC learning property in the �-mixing
stationary scenario. A similar result was proven by Shalizi and Kontorovitch [2013] for mixtures
of �-mixing processes and by Berti and Rigo [1997] and Pestov [2010] for exchangeable random
variables. Alquier and Wintenberger [2010] and Alquier et al. [2014] also established PAC-Bayesian
learning guarantees under weak dependence and stationarity.

A number of algorithm-dependent bounds have also been derived for the stationary mixing setting.
Lozano et al. [2006] studied the convergence of regularized boosting. Mohri and Rostamizadeh
[2010] gave data-dependent generalization bounds for stable algorithms for '-mixing and �-mixing
stationary processes. Steinwart and Christmann [2009] proved fast learning rates for regularized
algorithms with ↵-mixing stationary sequences and Modha and Masry [1998] gave guarantees for
certain classes of models under the same assumptions.

However, stationarity and mixing are often not valid assumptions. For example, even for Markov
chains, which are among the most widely used types of stochastic processes in applications, station-
arity does not hold unless the Markov chain is started with an equilibrium distribution. Similarly,
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long memory models such as ARFIMA, may not be mixing or mixing may be arbitrarily slow [Bail-
lie, 1996]. In fact, it is possible to construct first order autoregressive processes that are not mixing
[Andrews, 1983]. Additionally, the mixing assumption is defined only in terms of the distribution
of the underlying stochastic process and ignores the loss function and the hypothesis set used. This
suggests that mixing may not be the right property to characterize learning in the setting of stochastic
processes.

A number of attempts have been made to relax the assumptions of stationarity and mixing. Adams
and Nobel [2010] proved asymptotic guarantees for stationary ergodic sequences. Agarwal and
Duchi [2013] gave generalization bounds for asymptotically stationary (mixing) processes in the
case of stable on-line learning algorithms. Kuznetsov and Mohri [2014] established learning guar-
antees for fully non-stationary �- and '-mixing processes.

In this paper, we consider the general case of non-stationary non-mixing processes. We are not
aware of any prior work providing generalization bounds in this setting. In fact, our bounds appear
to be novel even when the process is stationary (but not mixing). The learning guarantees that we
present hold for both bounded and unbounded memory models. Deriving generalization bounds for
unbounded memory models even in the stationary mixing case was an open question prior to our
work [Meir, 2000]. Our guarantees cover the majority of approaches used in practice, including
various autoregressive and state space models.

The key ingredients of our generalization bounds are a data-dependent measure of sequential com-
plexity (expected sequential covering number or sequential Rademacher complexity [Rakhlin et al.,
2010]) and a measure of discrepancy between the sample and target distributions. Kuznetsov and
Mohri [2014] also give generalization bounds in terms of discrepancy. However, unlike the result
of Kuznetsov and Mohri [2014], our analysis does not require any mixing assumptions which are
hard to verify in practice. More importantly, under some additional mild assumption, the discrep-
ancy measure that we propose can be estimated from data, which leads to data-dependent learning
guarantees for non-stationary non-mixing case.

We devise new algorithms for non-stationary time series forecasting that benefit from our data-
dependent guarantees. The parameters of generative models such as ARIMA are typically estimated
via the maximum likelihood technique, which often leads to non-convex optimization problems. In
contrast, our objective is convex and leads to an optimization problem with a unique global solution
that can be found efficiently. Another issue with standard generative models is that they address non-
stationarity in the data via a differencing transformation which does not always lead to a stationary
process. In contrast, we address the problem of non-stationarity in a principled way using our
learning guarantees.

The rest of this paper is organized as follows. The formal definition of the time series forecasting
learning scenario as well as that of several key concepts is given in Section 2. In Section 3, we
introduce and prove our new generalization bounds. In Section 4, we give data-dependent learn-
ing bounds based on the empirical discrepancy. These results, combined with a novel analysis of
kernel-based hypotheses for time series forecasting (Appendix B), are used to devise new forecast-
ing algorithms in Section 5. In Appendix C, we report the results of preliminary experiments using
these algorithms.

2 Preliminaries

We consider the following general time series prediction setting where the learner receives a real-
ization (X1, Y1), . . . , (XT

, Y
T

) of some stochastic process, with (X
t

, Y
t

) 2 Z = X ⇥ Y . The ob-
jective of the learner is to select out of a specified family H a hypothesis h : X ! Y that achieves a
small generalization error E[L(h(X

T+1), YT+1)|Z1, . . . , ZT

] conditioned on observed data, where
L : Y ⇥ Y ! [0,1) is a given loss function. The path-dependent generalization error that we
consider in this work is a finer measure of the generalization ability than the averaged generaliza-
tion error E[L(h(X

T+1), YT+1)] = E[E[L(h(X
T+1), YT+1)|Z1, . . . , ZT

]] since it only takes into
consideration the realized history of the stochastic process and does not average over the set of all
possible histories. The results that we present in this paper also apply to the setting where the time
parameter t can take non-integer values and prediction lag is an arbitrary number l � 0. That is, the
error is defined by E[L(h(X

T+l

), Y
T+l

)|Z1, . . . , ZT

] but for notational simplicity we set l = 1.
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Our setup covers a larger number of scenarios commonly used in practice. The case X = Yp

corresponds to a large class of autoregressive models. Taking X = [1
p=1Yp leads to growing

memory models which, in particular, include state space models. More generally, X may contain
both the history of the process {Y

t

} and some additional side information.

To simplify the notation, in the rest of the paper, we will use the shorter notation f(z) = L(h(x), y),
for any z = (x, y) 2 Z and introduce the family F = {(x, y) ! L(h(x), y) : h 2 H} containing
such functions f . We will assume a bounded loss function, that is |f |  M for all f 2 F for
some M 2 R+. Finally, we will use the shorthand Z

b

a

to denote a sequence of random variables
Z

a

, Z
a+1, . . . , Zb

.

The key quantity of interest in the analysis of generalization is the following supremum of the
empirical process defined as follows:

�(Z

T

1 ) = sup

f2F

 

E[f(Z
T+1)|ZT

1 ]�
T

X

t=1

q
t

f(Z
t

)

!

, (1)

where q1, . . . , qT

are real numbers, which in the standard learning scenarios are chosen to be uni-
form. In our general setting, different Z

t

s may follow different distributions, thus distinct weights
could be assigned to the errors made on different sample points depending on their relevance to
forecasting the future Z

T+1. The generalization bounds that we present below are for an arbitrary
sequence q = (q1, . . . qT

) which, in particular, covers the case of uniform weights. Remarkably, our
bounds do not even require the non-negativity of q.

Our generalization bounds are expressed in terms of data-dependent measures of sequential com-
plexity such as expected sequential covering number or sequential Rademacher complexity [Rakhlin
et al., 2010]. We give a brief overview of the notion of sequential covering number and refer the
reader to the aforementioned reference for further details. We adopt the following definition of a
complete binary tree: a Z-valued complete binary tree z is a sequence (z1, . . . , zT

) of T mappings
z
t

: {±1}t�1 ! Z , t 2 [1, T ]. A path in the tree is � = (�1, . . . ,�T�1). To simplify the notation we
will write z

t

(�) instead of z
t

(�1, . . . ,�t�1), even though z
t

depends only on the first t�1 elements
of �. The following definition generalizes the classical notion of covering numbers to sequential
setting. A set V of R-valued trees of depth T is a sequential ↵-cover (with respect to q-weighted `

p

norm) of a function class G on a tree z of depth T if for all g 2 G and all � 2 {±}T , there is v 2 V
such that

 

T

X

t=1

�

�

v

t

(�)� g(z

t

(�))

�

�

p

!

1
p

 kqk�1
q

↵,

where k · k
q

is the dual norm. The (sequential) covering number N
p

(↵,G, z) of a function class G
on a given tree z is defined to be the size of the minimal sequential cover. The maximal covering
number is then taken to be N

p

(↵,G) = sup

z

N
p

(↵,G, z). One can check that in the case of uniform
weights this definition coincides with the standard definition of sequential covering numbers. Note
that this is a purely combinatorial notion of complexity which ignores the distribution of the process
in the given learning problem.

Data-dependent sequential covering numbers can be defined as follows. Given a stochastic process
distributed according to the distribution p with p

t

(·|zt�1
1 ) denoting the conditional distribution at

time t, we sample a Z ⇥ Z-valued tree of depth T according to the following procedure. Draw two
independent samples Z1, Z 01 from p1: in the left child of the root draw Z2, Z 02 according to p2(·|Z1)

and in the right child according to p2(·|Z 02). More generally, for a node that can be reached by a
path (�1, . . . ,�t

), we draw Z
t

, Z 0
t

according to p

t

(·|S1(�1), . . . , St�1(�t�1)), where S
t

(1) = Z
t

and S
t

(�1) = Z 0
t

. Let z denote the tree formed using Z
t

s and define the expected covering number
to be E

z⇠T (p)[Np

(↵,G, z)], where T (p) denotes the distribution of z.

In a similar manner, one can define other measures of complexity such as sequential Rademacher
complexity and the Littlestone dimension [Rakhlin et al., 2015] as well as their data-dependent
counterparts [Rakhlin et al., 2011].
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The final ingredient needed for expressing our learning guarantees is the notion of discrepancy
between target distribution and the distribution of the sample:

� = sup

f2F

✓

E[f(Z
T+1)|ZT

1 ]�
T

X

t=1

q
t

E[f(Z
t

)|Zt�1
1 ]

◆

. (2)

The discrepancy � is a natural measure of the non-stationarity of the stochastic process Z with
respect to both the loss function L and the hypothesis set H . In particular, note that if the process
Z is i.i.d., then we simply have � = 0 provided that q

t

s form a probability distribution. It is also
possible to give bounds on � in terms of other natural distances between distribution. For instance,
Pinsker’s inequality yields

� M
�

�

�

P

T+1(·|ZT

1 )�PT

t=1 q
t

P

t

(·|Zt�1
1 )

�

�

�

TV

r

1
2D
⇣

P

T+1(·|ZT

1 ) kPT

t=1 q
t

P

t

(·|Zt�1
1 )

⌘

,

where k · kTV is the total variation distance and D(· k ·) the relative entropy, P
t+1(·|Zt

1) the condi-
tional distribution of Z

t+1, and
P

T

t=1 q
t

P

t

(·|Zt�1
1 ) the mixture of the sample marginals. Alterna-

tively, if the target distribution at lag l, P = P

T+l

is a stationary distribution of an asymptotically
stationary process Z [Agarwal and Duchi, 2013, Kuznetsov and Mohri, 2014], then for q

t

= 1/T
we have

�  M

T

T

X

t=1

kP�P

t+l

(·|Zt

�1)kTV  �(l),

where �(l) = sup

s

sup

z

[kP � P

l+s

(·|zs

�1)kTV] is the coefficient of asymptotic stationarity. The
process is asymptotically stationary if lim

l!1�(l) = 0. However, the most important property of
the discrepancy � is that, as shown later in Section 4, it can be estimated from data under some
additional mild assumptions. [Kuznetsov and Mohri, 2014] also give generalization bounds for
non-stationary mixing processes in terms of a related notion of discrepancy. It is not known if the
discrepancy measure used in [Kuznetsov and Mohri, 2014] can be estimated from data.

3 Generalization Bounds

In this section, we prove new generalization bounds for forecasting non-stationary time series. The
first step consists of using decoupled tangent sequences to establish concentration results for the
supremum of the empirical process �(Z

T

1 ). Given a sequence of random variables Z

T

1 we say that
Z

0T
1 is a decoupled tangent sequence if Z 0

t

is distributed according to P(·|Zt�1
1 ) and is independent

of Z

1
t

. It is always possible to construct such a sequence of random variables [De la Peña and Giné,
1999]. The next theorem is the main result of this section.
Theorem 1. Let ZT

1 be a sequence of random variables distributed according to p. Fix ✏ > 2↵ > 0.
Then, the following holds:

P
�

�(Z

T

1 )�� � ✏
�  E

v⇠T (p)

⇥N1(↵,F ,v)

⇤

exp

✓

� (✏� 2↵)

2

2M2kqk22

◆

.

Proof. The first step is to observe that, since the difference of the suprema is upper bounded by the
supremum of the difference, it suffices to bound the probability of the following event

(

sup

f2F

 

T

X

t=1

q
t

(E[f(Z
t

)|Zt�1
1 ]� f(Z

t

))

!

� ✏

)

.

By Markov’s inequality, for any � > 0, the following inequality holds:

P
 

sup

f2F

 

T

X

t=1

q
t

(E[f(Z
t

)|Zt�1
1 ]� f(Z

t

))

!

� ✏

!

 exp(��✏) E
"

exp

 

� sup

f2F

 

T

X

t=1

q
t

(E[f(Z
t

)|Zt�1
1 ]� f(Z

t

))

!!#

.
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Since Z

0T
1 is a tangent sequence the following equalities hold: E[f(Z

t

)|Zt�1
1 ] = E[f(Z 0

t

)|Zt�1
1 ] =

E[f(Z 0
t

)|ZT

1 ]. Using these equalities and Jensen’s inequality, we obtain the following:

E


exp

⇣

� sup

f2F

T

X

t=1

q
t

�

E[f(Z
t

)|Zt�1
1 ]� f(Z

t

)

�

⌘

�

= E


exp

⇣

� sup

f2F
E
h

T

X

t=1

q
t

�

f(Z 0
t

)� f(Z
t

)

�|ZT

1

i⌘

�

 E


exp

⇣

� sup

f2F

T

X

t=1

q
t

�

f(Z 0
t

)� f(Z
t

)

�

⌘

�

,

where the last expectation is taken over the joint measure of Z

T

1 and Z

0T
1 . Applying Lemma 5

(Appendix A), we can further bound this expectation by

E
(z,z

0)⇠T (p)
E
�



exp

✓

� sup

f2F

T

X

t=1

�
t

q
t

⇣

f(z

0
t

(�))� f(z

t

(�))

⌘

◆�

 E
(z,z

0)⇠T (p)
E
�



exp

✓

� sup

f2F

T

X

t=1

�
t

q
t

f(z

0
t

(�)) + � sup

f2F

T

X

t=1

��
t

q
t

f(z

t

(�))

◆�

 1
2 E

(z,z

0)
E
�



exp

✓

2� sup

f2F

T

X

t=1

�
t

q
t

f(z

0
t

(�))

◆�

+

1
2 E

(z,z

0)
E
�



exp

✓

2� sup

f2F

T

X

t=1

�
t

q
t

f(z

t

(�))

◆�

= E
z⇠T (p)

E
�



exp

✓

2� sup

f2F

T

X

t=1

�
t

q
t

f(z

t

(�))

◆�

,

where for the second inequality we used Young’s inequality and for the last equality we used sym-
metry. Given z let C denote the minimal ↵-cover with respect to the q-weighted `1-norm of F on
z. Then, the following bound holds

sup

f2F

T

X

t=1

�
t

q
t

f(z

t

(�))  max

c2C

T

X

t=1

�
t

q
t

c

t

(�) + ↵.

By the monotonicity of the exponential function,

E
�



exp

✓

2� sup

f2F

T

X

t=1

�
t

q
t

f(z

t

(�))

◆�

 exp(2�↵) E
�



exp

✓

2� max

c2C

T

X

t=1

�
t

q
t

c

t

(�)

◆�

 exp(2�↵)

X

c2C

E
�



exp

✓

2�
T

X

t=1

�
t

q
t

c

t

(�)

◆�

.

Since c

t

(�) depends only on �1, . . . ,�T�1, by Hoeffding’s bound,

E
�



exp

✓

2�
T

X

t=1

�
t

q
t

c

t

(�)

◆�

= E


exp

✓

2�
T�1
X

t=1

�
t

q
t

c

t

(�)

◆

E
�T



exp

✓

2��
T

q
T

c

T

(�)

◆

�

�

�

�

�T�1
1

��

 E


exp

✓

2�
T�1
X

t=1

�
t

q
t

c

t

(�)

◆

exp(2�2q2
T

M2
)

�

and iterating this inequality and using the union bound, we obtain the following:

P
✓

sup

f2F

T

X

t=1

q
t

(E[f(Z
t

)|Zt�1
1 ]�f(Z

t

)) � ✏

◆

 E
v⇠T (p)

[N1(↵,G,v)] exp

⇣

��(✏�2↵)+2�2M2kqk22
⌘

.

Optimizing over � completes the proof.

An immediate consequence of Theorem 1 is the following result.
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Corollary 2. For any � > 0, with probability at least 1� �, for all f 2 F and all ↵ > 0,

E[f(Z
T+1)|ZT

1 ] 
T

X

t=1

q
t

f(Z
t

) +�+ 2↵ + Mkqk2
r

2 log

E
v⇠T (P)[N1(↵,G,v)]

�
.

We are not aware of other finite sample bounds in a non-stationary non-mixing case. In fact, our
bounds appear to be novel even in the stationary non-mixing case. Using chaining techniques
bounds, Theorem 1 and Corollary 2 can be further improved and we will present these results in
the full version of this paper.

While Rakhlin et al. [2015] give high probability bounds for a different quantity than the quantity of
interest in time series prediction,

sup

f2F

 

T

X

t=1

q
t

(E[f(Z
t

)|Zt�1
1 ]� f(Z

t

))

!

, (3)

their analysis of this quantity can also be used in our context to derive high probability bounds for
�(Z

T

1 ) � �. However, this approach results in bounds that are in terms of purely combinatorial
notions such as maximal sequential covering numbers N1(↵,F). While at first sight, this may seem
as a minor technical detail, the distinction is crucial in the setting of time series prediction. Consider
the following example. Let Z1 be drawn from a uniform distribution on {0, 1} and Z

t

⇠ p(·|Z
t�1)

with p(·|y) being a distribution over {0, 1} such that p(x|y) = 2/3 if x = y and 1/3 otherwise. Let G
be defined by G = {g(x) = 1

x�✓

: ✓ 2 [0, 1]}. Then, one can check that E
v⇠T (P)[N1(↵,G,v)] = 2,

while N1(↵,G) � 2

T . The data-dependent bounds of Theorem 1 and Corollary 2 highlight the fact
that the task of time series prediction lies in between the familiar i.i.d. scenario and adversarial
on-line learning setting.

However, the key component of our learning guarantees is the discrepancy term �. Note that in the
general non-stationary case, the bounds of Theorem 1 may not converge to zero due to the discrep-
ancy between the target and sample distributions. This is also consistent with the lower bounds of
Barve and Long [1996] that we discuss in more detail in Section 4. However, convergence can be
established in some special cases. In the i.i.d. case our bounds reduce to the standard covering num-
bers learning guarantees. In the drifting scenario, with Z

T

1 being a sequence of independent random
variables, our discrepancy measure coincides with the one used and studied in [Mohri and Muñoz
Medina, 2012]. Convergence can also be established in asymptotically stationary and stationary
mixing cases. However, as we show in Section 4, the most important advantage of our bounds is
that the discrepancy measure we use can be estimated from data.

4 Estimating Discrepancy

In Section 3, we showed that the discrepancy � is crucial for forecasting non-stationary time se-
ries. In particular, if we could select a distribution q over the sample Z

T

1 that would minimize the
discrepancy � and use it to weight training points, then we would have a better learning guarantee
for an algorithm trained on this weighted sample. In some special cases, the discrepancy � can
be computed analytically. However, in general, we do not have access to the distribution of Z

T

1
and hence we need to estimate the discrepancy from the data. Furthermore, in practice, we never
observe Z

T+1 and it is not possible to estimate � without some further assumptions. One natural
assumption is that the distribution P

t

of Z
t

does not change drastically with t on average. Under
this assumption the last s observations Z

T

T�s+1 are effectively drawn from the distribution close to
P

T+1. More precisely, we can write

�  sup

f2F

✓

1

s

T

X

t=T�s+1

E[f(Z
t

)|Zt�1
1 ]�

T

X

t=1

q
t

E[f(Z
t

)|Zt�1
1 ]

◆

+ sup

f2F

✓

E[f(Z
T+1)|ZT

1 ]� 1

s

T

X

t=T�s+1

E[f(Z
t

)|Zt�1
1 ]

◆

.

We will assume that the second term, denoted by�
s

, is sufficiently small and will show that the first
term can be estimated from data. But, we first note that our assumption is necessary for learning in
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this setting. Observe that

sup

f2F

⇣

E[Z
T+1|ZT

1 ]� E[f(Z
r

)|Zr�1
1 ]

⌘


T

X

t=r

sup

f2F

⇣

E[f(Z
t+1)|Zt

1]� E[f(Z
t

)|Zt�1
1 ]

⌘

M
T

X

t=r

kP
t+1(·|Zt

1)�P

t

(·|Zt�1
1 )kTV,

for all r = T � s + 1, . . . , T . Therefore, we must have

�

s

 1

s

X

t=T�s+1

sup

f2F

⇣

E[Z
T+1|ZT

1 ]� E[f(Z
t

)|Zt

1]

⌘

 s + 1

2

M�,

where �=sup

t

kP
t+1(·|Zt

1)�P

t

(·|Zt�1
1 )kTV. Barve and Long [1996] showed that [VC-dim(H)�]

1
3

is a lower bound on the generalization error in the setting of binary classification where Z

T

1 is a
sequence of independent but not identically distributed random variables (drifting). This setting is a
special case of the more general scenario that we are considering.

The following result shows that we can estimate the first term in the upper bound on�.
Theorem 3. Let Z

T

1 be a sequence of random variables. Then, for any � > 0, with probability at
least 1� �, the following holds for all ↵ > 0:

sup

f2F

 

T

X

t=1

(p
t

� q
t

) E[f(Z
t

)|Zt�1
1 ]

!

 sup

f2F

 

T

X

t=1

(p
t

� q
t

)f(Z
t

)

!

+ B,

where B = 2↵+Mkq�pk2
q

2 log

Ez⇠T (p)[N1(↵,G,z)]
�

and where p is the uniform distribution over
the last s points.

The proof of this result is given in Appendix A. Theorem 1 and Theorem 3 combined with the union
bound yield the following result.
Corollary 4. Let Z

T

1 be a sequence of random variables. Then, for any � > 0, with probability at
least 1� �, the following holds for all f 2 F and all ↵ > 0:

E[f(Z
T+1)|ZT

1 ] 
T

X

t=1

q
t

f(Z
t

) +

e

�+�

s

+ 4↵ + M
⇥kqk2 + kq� pk2

⇤

q

2 log

2 Ev⇠T (p)[N1(↵,G,z)]
�

,

where e� = sup

f2F
⇣

P

T

t=1(pt

� q
t

)f(Z
t

)

⌘

.

5 Algorithms

In this section, we use our learning guarantees to devise algorithms for forecasting non-stationary
time series. We consider a broad family of kernel-based hypothesis classes with regression losses.
We present the full analysis of this setting in Appendix B including novel bounds on the sequential
Rademacher complexity. The learning bounds of Theorem 1 can be generalized to hold uniformly

over q at the price of an additional term in O
⇣

kq�uk1
q

log2 log2 kq� uk�1
1

⌘

. We prove this result
in Theorem 8 (Appendix B). Suppose L is the squared loss and H = {x! w · (x) : kwkH  ⇤},
where  : X ! H is a feature mapping from X to a Hilbert space H. By Lemma 6 (Appendix B),
we can bound the complexity term in our generalization bounds by

O
⇣

(log

3 T )

⇤rp
T

+ (log

3 T )kq� uk1
⌘

,

where K is a PDS kernel associated with H such that sup

x

K(x, x)  r and u is the uniform
distribution over the sample. Then, we can formulate a joint optimization problem over both q and
w based on the learning guarantee of Theorem 8, which holds uniformly over all q:

min

0q1,w

⇢

T

X

t=1

q
t

(w · (x
t

)� y
t

)

2
+ �1

T

X

t=1

d
t

q
t

+ �2kwk2H + �3kq� uk1
�

. (4)
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Here, we have upper bounded the empirical discrepancy term by
P

T

t=1 d
t

q
t

with each d
t

defined
by sup

w

0⇤ |
P

T

s=1 p
s

(w

0 ·  (x
s

) � y
s

)

2 � (w

0 ·  (x
t

) � y
t

)

2|. Each d
t

can be precomputed
using DC-programming. For general loss functions, the DC-programming approach only guarantees
convergence to a stationary point. However, for the squared loss, our problem can be cast as an
instance of the trust region problem, which can be solved globally using the DCA algorithm of Tao
and An [1998]. Note that problem (4) is not jointly convex in q and w. However, using the dual
problem associated to w yields the following equivalent problem, it can be rewritten as follows:

min

0q1

⇢

max

↵

n

� �2

T

X

t=1

↵2
t

q
t

�↵T

K↵ + 2�2↵
T

Y

o

+ �1(d·q) + �3kq� uk1
�

, (5)

where d = (d1, . . . , dT

)

T , K is the kernel matrix and Y = (y1, . . . , yT

)

T . We use the change of
variables r

t

= 1/q
t

and further upper bound �3kq � uk1 by �03kr � T 2
uk2, which follows from

|q
t

� u
t

| = |q
t

u
t

(r
t

� T )| and Hölder’s inequality. Then, this yields the following optimization
problem:

min

r2D

⇢

max

↵

n

� �2

T

X

t=1

r
t

↵2
t

�↵T

K↵ + 2�2↵
T

Y

o

+ �1

T

X

t=1

d
t

r
t

+ �3kr� T 2
uk22

�

, (6)

where D = {r : r
t

� 1, t 2 [1, T ]}. The optimization problem (6) is convex since D is a convex set,
the first term in (6) is convex as a maximum of convex (linear) functions of r. This problem can be
solved using standard descent methods, where, at each iteration, we solve a standard QP in ↵, which
admits a closed-form solution. Parameters �1, �2, and �3 are selected through cross-validation.

An alternative simpler algorithm based on the data-dependent bounds of Corollary 4 consists of
first finding a distribution q minimizing the (regularized) discrepancy and then using that to find a
hypothesis minimizing the (regularized) weighted empirical risk. This leads to the following two-
stage procedure. First, we find a solution q

⇤ of the following convex optimization problem:

min

q�0

⇢

sup

w

0⇤

⇣

T

X

t=1

(p
t

� q
t

)(w

0 · (x
t

)� y
t

)

2
⌘

+ �1kq� uk1
�

, (7)

where �1 and ⇤ are parameters that can be selected via cross-validation. Our generalization bounds
hold for arbitrary weights q but we restrict them to being positive sequences. Note that other reg-
ularization terms such as kqk22 and kq � pk22 from the bound of Corollary 4 can be incorporated
in the optimization problem, but we discard them to minimize the number of parameters. This
problem can be solved using standard descent optimization methods, where, at each step, we use
DC-programming to evaluate the supremum over w

0. Alternatively, one can upper bound the supre-
mum by

P

T

t=1 q
t

d
t

and then solve the resulting optimization problem.

The solution q

⇤ of (7) is then used to solve the following (weighted) kernel ridge regression problem:

min

w

⇢

T

X

t=1

q⇤
t

(w · (x
t

)� y
t

)

2
+ �2kwk2H

�

. (8)

Note that, in order to guarantee the convexity of this problem, we require q

⇤ � 0.

6 Conclusion

We presented a general theoretical analysis of learning in the broad scenario of non-stationary non-
mixing processes, the realistic setting for a variety of applications. We discussed in detail several
algorithms benefitting from the learning guarantees presented. Our theory can also provide a finer
analysis of several existing algorithms and help devise alternative principled learning algorithms.

Acknowledgments

This work was partly funded by NSF IIS-1117591 and CCF-1535987, and the NSERC PGS D3.

8



References
T. M. Adams and A. B. Nobel. Uniform convergence of Vapnik-Chervonenkis classes under ergodic sampling.

The Annals of Probability, 38(4):1345–1367, 2010.
A. Agarwal and J. Duchi. The generalization ability of online algorithms for dependent data. Information

Theory, IEEE Transactions on, 59(1):573–587, 2013.
P. Alquier and O. Wintenberger. Model selection for weakly dependent time series forecasting. Technical

Report 2010-39, Centre de Recherche en Economie et Statistique, 2010.
P. Alquier, X. Li, and O. Wintenberger. Prediction of time series by statistical learning: general losses and fast

rates. Dependence Modelling, 1:65–93, 2014.
D. Andrews. First order autoregressive processes and strong mixing. Cowles Foundation Discussion Papers

664, Cowles Foundation for Research in Economics, Yale University, 1983.
R. Baillie. Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73

(1):5–59, 1996.
R. D. Barve and P. M. Long. On the complexity of learning from drifting distributions. In COLT, 1996.
P. Berti and P. Rigo. A Glivenko-Cantelli theorem for exchangeable random variables. Statistics & Probability

Letters, 32(4):385 – 391, 1997.
T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. J Econometrics, 1986.
G. E. P. Box and G. Jenkins. Time Series Analysis, Forecasting and Control. Holden-Day, Incorporated, 1990.
P. J. Brockwell and R. A. Davis. Time Series: Theory and Methods. Springer-Verlag, New York, 1986.
V. H. De la Peña and E. Giné. Decoupling: from dependence to independence: randomly stopped processes,

U-statistics and processes, martingales and beyond. Probability and its applications. Springer, NY, 1999.
P. Doukhan. Mixing: properties and examples. Lecture notes in statistics. Springer-Verlag, New York, 1994.
R. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom

inflation. Econometrica, 50(4):987–1007, 1982.
J. D. Hamilton. Time series analysis. Princeton, 1994.
V. Kuznetsov and M. Mohri. Generalization bounds for time series prediction with non-stationary processes.

In ALT, 2014.
A. C. Lozano, S. R. Kulkarni, and R. E. Schapire. Convergence and consistency of regularized boosting

algorithms with stationary �-mixing observations. In NIPS, pages 819–826, 2006.
R. Meir. Nonparametric time series prediction through adaptive model selection. Machine Learning, pages

5–34, 2000.
D. Modha and E. Masry. Memory-universal prediction of stationary random processes. Information Theory,

IEEE Transactions on, 44(1):117–133, Jan 1998.
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