
Online Learning for Adversaries with Memory:
Price of Past Mistakes

Oren Anava
Technion

Haifa, Israel
oanava@tx.technion.ac.il

Elad Hazan
Princeton University

New York, USA
ehazan@cs.princeton.edu

Shie Mannor
Technion

Haifa, Israel
shie@ee.technion.ac.il

Abstract

The framework of online learning with memory naturally captures learning prob-
lems with temporal effects, and was previously studied for the experts setting. In
this work we extend the notion of learning with memory to the general Online
Convex Optimization (OCO) framework, and present two algorithms that attain
low regret. The first algorithm applies to Lipschitz continuous loss functions, ob-
taining optimal regret bounds for both convex and strongly convex losses. The
second algorithm attains the optimal regret bounds and applies more broadly to
convex losses without requiring Lipschitz continuity, yet is more complicated to
implement. We complement the theoretical results with two applications: statisti-
cal arbitrage in finance, and multi-step ahead prediction in statistics.

1 Introduction

Online learning is a well-established learning paradigm which has both theoretical and practical
appeals. The goal in this paradigm is to make a sequential decision, where at each trial the cost
associated with previous prediction tasks is given. In recent years, online learning has been widely
applied to several research fields including game theory, information theory, and optimization. We
refer the reader to [1, 2, 3] for more comprehensive survey.

One of the most well-studied frameworks of online learning is Online Convex Optimization (OCO).
In this framework, an online player iteratively chooses a decision in a convex set, then a convex loss
function is revealed, and the player suffers loss that is the convex function applied to the decision
she chose. It is usually assumed that the loss functions are chosen arbitrarily, possibly by an all-
powerful adversary. The performance of the online player is measured using the regret criterion,
which compares the accumulated loss of the player with the accumulated loss of the best fixed
decision in hindsight.

The above notion of regret captures only memoryless adversaries who determine the loss based on
the player’s current decision, and fails to cope with bounded-memory adversaries who determine
the loss based on the player’s current and previous decisions. However, in many scenarios such
as coding, compression, portfolio selection and more, the adversary is not completely memoryless
and the previous decisions of the player affect her current loss. We are particularly concerned with
scenarios in which the memory is relatively short-term and simple, in contrast to state-action models
for which reinforcement learning models are more suitable [4].

1

An important aspect of our work is that the memory is not used to relax the adaptiveness of the ad-
versary (cf. [5, 6]), but rather to model the feedback received by the player. In particular, throughout
this work we assume that the adversary is oblivious, that is, must determine the whole set of loss
functions in advance. In addition, we assume a counterfactual feedback model: the player is aware
of the loss she would suffer had she played any sequence of m decisions in the previous m rounds.
This model is quite common in the online learning literature; see for instance [7, 8].

Our goal in this work is to extend the notion of learning with memory to one of the most general
online learning frameworks - the OCO. To this end, we adapt the policy regret1 criterion of [5], and
propose two different approaches for the extended framework, both attain the optimal bounds with
respect to this criterion.

1.1 Summary of Results

We present and analyze two algorithms for the framework of OCO with memory, both attain policy
regret bounds that are optimal in the number of rounds. Our first algorithm utilizes the Lipschitz
property of the loss functions, and — to the best of our knowledge — is the first algorithm for this
framework that is not based on any blocking technique (this technique is detailed in the related work
section below). This algorithm attains O(T 1/2)-policy regret for general convex loss functions and
O(log T)-policy regret for strongly convex losses.

For the case of convex and non-Lipschitz loss functions, our second algorithm attains the nearly op-
timal Õ(T 1/2)-policy regret2; its downside is that it is randomized and more difficult to implement.
A novel result that follows immediately from our analysis is that our second algorithm attains an
expected Õ(T 1/2)-regret, along with Õ(T 1/2) decision switches in the standard OCO framework.
Similar result currently exists only for the special case of the experts problem [9]. We note that
the two algorithms we present are related in spirit (both designed to cope with bounded-memory
adversaries), but differ in the techniques and analysis.

Framework Previous bound Our first approach Our second approach
Experts O(T 1/2) Not applicable Õ(T 1/2)with Memory

OCO with memory O(T 2/3) O(T 1/2) Õ(T 1/2)(convex losses)
OCO with Memory Õ(T 1/3) O(log T) Õ(T 1/2)(strongly convex losses)

Table 1: State-of-the-art upper-bounds on the policy regret as a function of T (number of rounds)
for the framework of OCO with memory. The best known bounds are due to the works of [9], [8],
and [5], which are detailed in the related work section below.

1.2 Related Work

The framework of OCO with memory was initially considered in [7] as an extension to the experts
framework of [10]. Merhav et al. offered a blocking technique that guarantees a policy regret
bound ofO(T 2/3) against bounded-memory adversaries. Roughly speaking, the proposed technique
divides the T rounds into T 2/3 equal-sized blocks, while employing a constant decision throughout
each of these blocks. The small number of decision switches enables the learning in the extended
framework, yet the constant block size results in a suboptimal policy regret bound.

Later, [8] showed that a policy regret bound of O(T 1/2) can be achieved by simply adapting the
Shrinking Dartboard (SD) algorithm of [9] to the framework considered in [7]. In short, the SD
algorithm is aimed at ensuring an expected O(T 1/2) decision switches in addition to O(T 1/2)-
regret. These two properties together enable the learning in the considered framework, and the
randomized block size yields an optimal policy regret bound. Note that in both [7] and [8], the

1The policy regret compares the performance of the online player with the best fixed sequence of actions in
hindsight, and thus captures the notion of adversaries with memory. A formal definition appears in Section 2.

2The notation Õ(·) is a variant of the O(·) notation that ignores logarithmic factors.

2

presented techniques are applicable only to the variant of the experts framework to adversaries with
memory, and not to the general OCO framework.

The framework of online learning against adversaries with memory was studied also in the setting
of the adversarial multi-armed bandit problem. In this context, [5] showed how to convert an online
learning algorithm with regret guarantee of O(T q) into an online learning algorithm that attains
O(T 1/(2−q))-policy regret, also using a blocking technique. This approach is in fact a generalization
of [7] to the bandit setting, yet the ideas presented are somewhat simpler. Despite the original
presentation of [5] in the bandit setting, their ideas can be easily generalized to the framework of
OCO with memory, yielding a policy regret bound ofO(T 2/3) for convex losses and Õ(T 1/3)-policy
regret for strongly convex losses.

An important concept that is captured by the framework of OCO with memory is switching costs,
which can be seen as a special case where the memory is of length 1. This special case was studied in
the works of [11], who studied the relationship between second order regret bounds and switching
costs; and [12], who proved that the blocking algorithm of [5] is optimal for the setting of the
adversarial multi-armed bandit with switching costs.

2 Preliminaries and Model
We continue to formally define the notation for both the standard OCO framework and the frame-
work of OCO with memory. For sake of readability, we shall use the notation gt for memoryless
loss functions (that correspond to memoryless adversaries), and ft for loss functions with memory
(that correspond to bounded-memory adversaries).

2.1 The Standard OCO Framework

In the standard OCO framework, an online player iteratively chooses a decision xt ∈ K, and suffers
loss that is equal to gt(xt). The decision set K is assumed to be a bounded convex subset of Rn,
and the loss functions {gt}Tt=1 are assumed to be convex functions from K to [0, 1]. In addition,
the set {gt}Tt=1 is assumed to be chosen in advance, possibly by an all-powerful adversary that has
full knowledge of our learning algorithm (see [1], for instance). The performance of the player is
measured using the regret criterion, defined as follows:

RT =

T∑
t=1

gt(xt)−min
x∈K

T∑
t=1

gt(x),

where T is a predefined integer denoting the total number of rounds played. The goal in this frame-
work is to design efficient algorithms, whose regret grows sublinearly in T , corresponding to an
average per-round regret going to zero as T increases.

2.2 The Framework of OCO with Memory

In this work we consider the framework of OCO with memory, detailed as follows: at each round
t, the online player chooses a decision xt ∈ K ⊂ Rn. Then, a loss function ft : Km+1 → R is
revealed, and the player suffers loss of ft(xt−m, . . . , xt). For simplicity, we assume that 0 ∈ K,
and that ft(x0, . . . , xm) ∈ [0, 1] for any x0, . . . , xm ∈ K. Notice that the loss at round t depends
on the previous m decisions of the player, as well as on his current one. We assume that after ft is
revealed, the player is aware of the loss she would suffer had she played any sequence of decisions
xt−m, . . . , xt (this corresponds to the counterfactual feedback model mentioned earlier).

Our goal in this framework is to minimize the policy regret, as defined in [5]3:

RT,m =

T∑
t=m

ft(xt−m, . . . , xt)−min
x∈K

T∑
t=m

ft(x, . . . , x).

We define the notion of convexity for the loss functions {ft}Tt=1 as follows: we say that ft is a con-
vex loss function with memory if f̃t(x) = ft(x, . . . , x) is convex in x. From now on, we assume that

3The rounds in which t < m are ignored since we assume that the loss per round is bounded by a constant;
this adds at most a constant to the final regret bound.

3

Algorithm 1
1: Input: learning rate η > 0, σ-strongly convex and smooth regularization functionR(x).
2: Choose x0, . . . , xm ∈ K arbitrarily.
3: for t = m to T do
4: Play xt and suffer loss ft(xt−m, . . . , xt).
5: Set xt+1 = argminx∈K

{
η ·
∑t
τ=m f̃τ (x) +R(x)

}
6: end for

{ft}Tt=1 are convex loss functions with memory. This assumption is necessary in some cases, if ef-
ficient algorithms are considered; otherwise, the optimization problem minx∈K

∑T
t=m ft(x, . . . , x)

might not be solvable efficiently.

3 Policy Regret for Lipschitz Continuous Loss Functions
In this section we assume that the loss functions {ft}Tt=1 are Lipschitz continuous for some Lipschitz
constant L, that is

|ft(x0, . . . , xm)− ft(y0, . . . , ym)| ≤ L · ‖(x0, . . . , xm)− (y0, . . . , ym)‖,
and adapt the well-known Regularized Follow The Leader (RFTL) algorithm to cope with bounded-
memory adversaries. In the above and throughout the paper, we use ‖ · ‖ to denote the `2-norm.
Due to space constraints we present here only the algorithm and the main theorem, and defer the
complete analysis to the supplementary material.

Intuitively, Algorithm 1 relies on the fact that the corresponding functions {f̃t}Tt=1 are memoryless
and convex. Thus, standard regret minimization techniques are applicable, yielding a regret bound
of O(T 1/2) for {f̃t}Tt=1. This however, is not the policy regret bound we are interested in, but is in
fact quite close if we use the Lipschitz property of {ft}Tt=1 and set the learning rate properly. The
algorithm requires the following standard definitions of R and λ (see supplementary material for
more comprehensive background and exact norm definitions):

λ = sup
t∈{1,...,T},x,y∈K

{(
‖∇f̃t(x)‖∗y

)2}
and R = sup

x,y∈K
{R(x)−R(y)} . (1)

Additionally, we denote by σ the strong convexity4 parameter of the regularization functionR(x).
For Algorithm 1 we can prove the following:
Theorem 3.1. Let {ft}Tt=1 be Lipschitz continuous loss functions with memory (from Km+1 to
[0, 1]), and let R and λ be as defined in Equation (1). Then, Algorithm 1 generates an online
sequence {xt}Tt=1, for which the following holds:

RT,m =

T∑
t=m

ft(xt−m, . . . , xt)−min
x∈K

T∑
t=m

ft(x, . . . , x) ≤ 2Tλη(m+ 1)3/2 +
R

η
.

Setting η = R1/2(TL)−1/2(m+1)−3/4(λ/σ)−1/4 yieldsRT,m ≤ 3(TRL)1/2(m+1)3/4(λ/σ)1/4.

The following is an immediate corollary of Theorem 3.1 to H-strongly convex losses:
Corollary 3.2. Let {ft}Tt=1 be Lipschitz continuous andH-strongly convex loss functions with mem-
ory (from Km+1 to [0, 1]), and denote G = supt,x∈K ‖∇f̃t(x)‖. Then, Algorithm 1 generates an
online sequence {xt}Tt=1, for which the following holds:

RT,m ≤ 2(m+ 1)3/2G2
T∑
t=m

ηt +

T∑
t=m

‖xt − x∗‖2
(

1

ηt+1
− 1

ηt
−H

)
.

Setting ηt = 1
Ht yields RT,m ≤ 2(m+1)3/2G2

H (1 + log(T)).

The proof simply requires plugging time-dependent learning rate in the proof of Theorem 3.1, and
is thus omitted here.

4f(x) is σ-strongly convex if ∇2f(x) � σIn×n for all x ∈ K. We say that ft : Km+1 → R is σ-strongly
convex loss function with memory if f̃t(x) = ft(x, . . . , x) is σ-strongly convex in x.

4

Algorithm 2
1: Input: learning parameter η > 0.
2: Initialize w1(x) = 1 for all x ∈ K, and choose x1 ∈ K arbitrarily.
3: for t = 1 to T do
4: Play xt and suffer loss gt(xt).
5: Define weights wt+1(x) = e−α

∑t
τ=1 ĝτ (x), where α = η

4G2 and ĝt(x) = gt(x) +
η
2‖x‖

2.
6: Set xt+1 = xt with probability wt+1(xt)

wt(xt)
.

7: Otherwise, sample xt+1 from the density function pt+1(x) = wt+1(x) ·
(∫
K wt+1(x)dx

)−1
.

8: end for

4 Policy Regret with Low Switches
In this section we present a different approach to the framework of OCO with memory — low
switches. This approach was considered before in [8], who adapted the Shrinking Dartboard (SD)
algorithm of [9] to cope with limited-delay coding. However, the authors in [9, 8] consider only the
experts setting, in which the decision set is the simplex and the loss functions are linear. Here we
adapt this approach to general decision sets and generally convex loss functions, and obtain optimal
policy regret against bounded-memory adversaries.

Due to space constraints, we present here only the algorithm and main theorem. The complete
analysis appears in the supplementary material.

Intuitively, Algorithm 2 defines a probability distribution over K at each round t. By sampling from
this probability distribution one can generate an online sequence that has an expected low regret
guarantee. This however is not sufficient in order to cope with bounded-memory adversaries, and
thus an additional element of choosing xt+1 = xt with high probability is necessary (line 6). Our
analysis shows that if this probability is equal to wt+1(xt)

wt(xt)
the regret guarantee remains, and we get

an additional low switches guarantee.

For Algorithm 2 we can prove the following:

Theorem 4.1. Let {gt}Tt=1 be convex functions from K to [0, 1], such that D = supx,y∈K ‖x − y‖

and G = supx,t ‖∇gt(x)‖, and define ĝt(x) = gt(x) +
η
2‖x‖

2 for η = 2G
D

√
1+log(T+1)

T . Then,
Algorithm 2 generates an online sequence {xt}Tt=1, for which it holds that

E [RT] = O
(√

T log(T)
)

and E [S] = O
(√

T log(T)
)
,

where S is the number of decision switches in the sequence {xt}Tt=1.

The exact bounds for E [RT] and E [S] are given in the supplementary material. Notice that Algo-
rithm 2 applies to memoryless loss functions, yet its low switches guarantee implies learning against
bounded-memory adversaries as stated and proven in Lemma C.5 (see supplementary material).

5 Application to Statistical Arbitrage
Our first application is motivated by financial models that are aimed at creating statistical arbitrage
opportunities. In the literature, “statistical arbitrage” refers to statistical mispricing of one or more
assets based on their expected value. One of the most common trading strategies, known as “pairs
trading”, seeks to create a mean reverting portfolio using two assets with same sectorial belonging
(typically using both long and short sales). Then, by buying this portfolio below its mean and selling
it above, one can have an expected positive profit with low risk.

Here we extend the traditional pairs trading strategy, and present an approach that aims at construct-
ing a mean reverting portfolio from an arbitrary (yet known in advance) number of assets. Roughly
speaking, our goal is to synthetically create a mean reverting portfolio by maintaining weights upon
n different assets. The main problem arises in this context is how do we quantify the amount of mean
reversion of a given portfolio? Indeed, mean reversion is somewhat an ill-defined concept, and thus

5

different proxies are usually defined to capture its notion. We refer the reader to [13, 14, 15], in
which few of these proxies (such as predictability and zero-crossing) are presented.

In this work, we consider a proxy that is aimed at preserving the mean price of the constructed
portfolio (over the lastm trading periods) close to zero, while maximizing its variance. We note that
due to the very nature of the problem (weights of one trading period affect future performance), the
memory comes unavoidably into the picture.

We proceed to formally define the new mean reversion proxy and the use of our new algorithm in
this model. Thus, denote by yt ∈ Rn the prices of n assets at time t, and by xt ∈ Rn a distribution
of weights over these assets. Since short selling is allowed, the norm of xt can sum up to an arbitrary
number, determined by the loan flexibility. Without loss of generality we assume that ‖xt‖2 = 1,
which is also assumed in the works of [14, 15]. Note that since xt determines the proportion of
wealth to be invested in each asset and not the actual wealth it self, any other constant would work
as well. Consequently, define:

ft(xt−m, . . . , xt) =

(
m∑
i=0

x>t−iyt−i

)2

− λ ·
m∑
i=0

(
x>t−iyt−i

)2
, (2)

for some λ > 0. Notice that minimizing ft iteratively yields a process {x>t yt}Tt=1 such that its
mean is close to zero (due to the expression on the left), and its variance is maximized (due to the
expression on the right). We use the regret criterion to measure our performance against the best
distribution of weights in hindsight, and wish to generate a series of weights {xt}Tt=1 such that the
regret is sublinear. Thus, define the memoryless loss function f̃t(x) = ft(x, . . . , x) and denote

At =

m−1∑
i=0

m−1∑
j=0

yt−iy
>
t−j and Bt = λ ·

(
m−1∑
i=0

yt−iy
>
t−i

)
.

Notice we can write f̃t(x) = x>Atx − x>Btx. Since f̃t is not convex in general, our techniques
are not straightforwardly applicable here. However, the hidden convexity of the problem allows us
to bypass this issue by a simple and tight Positive Semi-Definite (PSD) relaxation. Define

ht(X) = X ◦At −X ◦Bt, (3)
where X is a PSD matrix with Tr(X) = 1, and X ◦ A is defined as

∑n
i=1

∑n
j=1X(i, j) · A(i, j).

Now, notice that the problem of minimizing
∑T
t=m ht(X) is a PSD relaxation to the minimization

problem
∑T
t=m f̃t(x), and for the optimal solution it holds that:

min
X

T∑
t=m

ht(X) ≤
T∑
t=m

ht(x
∗x∗>) =

T∑
t=m

f̃t(x
∗).

where x∗ = argminx∈K
∑T
t=m f̃t(x). Also, we can recover a vector x from the PSD matrix X

using an eigenvector decomposition as follows: represent X =
∑n
i=1 λiviv

>
i , where each vi is

a unit vector and λi are non-negative coefficients such that
∑n
i=1 λi = 1. Then, by sampling

the eigenvector x = vi with probability λi, we get that E
[
f̃t(x)

]
= ht(X). Technically, this

decomposition is possible due to the fact that X is a PSD matrix with Tr(X) = 1. Notice that ht
is linear in X , and thus we can apply regret minimization techniques on the loss functions {ht}Tt=1.
This procedure is formally given in Algorithm 3. For this algorithm we can prove the following:

Corollary 5.1. Let {ft}Tt=1 be as defined in Equation (2), and {ht}Tt=1 be the corresponding mem-
oryless functions, as defined in Equation (3). Then, applying Algorithm 2 to the loss functions
{ht}Tt=1 yields an online sequence {Xt}Tt=1, for which the following holds:

T∑
t=1

E [ht(Xt)]− min
X�0

Tr(X)=1

T∑
t=1

ht(X) = O
(√

T log(T)
)
.

Sampling xt ∼ Xt using the eigenvector decomposition described above yields:

E [RT,m] =

T∑
t=m

E [ft(xt−m, . . . , xt)]− min
‖x‖=1

T∑
t=m

ft(x, . . . , x) = O
(√

T log(T)
)
.

6

Algorithm 3 Online Statistical Arbitrage (OSA)
1: Input: Learning rate η, memory parameter m, regularizer λ.
2: Initialize X1 = 1

nIn×n.
3: for t = 1 to T do
4: Randomize xt ∼ Xt using the eigenvector decomposition.
5: Observe ft and define ht as in equation (3).
6: Apply Algorithm 2 to ht(Xt) to get Xt+1.
7: end for

Remark: We assume here that the prices of the n assets at round t are bounded for all t by a constant
which is independent of T .

The main novelty of our approach to the task of constructing mean reverting portfolios is the ability
to maintain the weight distributions online. This is in contrast to the traditional offline approaches
that require a training period (to learn a weight distribution), and a trading period (to apply a corre-
sponding trading strategy).

6 Application to Multi-Step Ahead Prediction

Our second application is motivated by statistical models for time series prediction, and in particular
by statistical models for multi-step ahead AR prediction. Thus, let {Xt}Tt=1 be a time series (that is,
a series of signal observations). The traditional AR (short for autoregressive) model, parameterized
by lag p and coefficient vector α ∈ Rp, assumes that each observation complies with

Xt =

p∑
k=1

αkXt−k + εt,

where {εt}t∈Z is white noise. In words, the model assumes that Xt is a noisy linear combination of
the previous p observations. Sometimes, an additional additive term α0 is included to indicate drift,
but we ignore this for simplicity.

The online setting for time series prediction is well-established by now, and appears in the works
of [16, 17]. Here, we adapt this setting to the task of multi-step ahead AR prediction as follows: at
round t, the online player has to predictXt+m, while at her disposal are all the previous observations
X1, . . . , Xt−1 (the parameter m determines the number of steps ahead). Then, Xt is revealed and
she suffers loss of ft(Xt, X̃t), where X̃t denotes her prediction for Xt. For simplicity, we consider
the squared loss to be our error measure, that is, ft(Xt, X̃t) = (Xt − X̃t)

2.

In the statistical literature, a common approach to the problem of multi-step ahead prediction is
to consider 1-step ahead recursive AR predictors [18, 19]: essentially, this approach makes use of
standard methods (e.g., maximum likelihood or least squares estimation) to extract the 1-step ahead
estimator. For instance, a least squares estimator for α at round t would be:

αLS = argmin
α

{
t−1∑
τ=1

(
Xτ − X̃AR

τ (α)
)2}

= argmin
α


t−1∑
τ=1

(
Xτ −

p∑
k=1

αkXτ−k

)2
 .

Then, αLS is used to generate a prediction for Xt: X̃AR
t (αLS) =

∑p
i=1 α

LS
i Xt−i, which is in turn

used as a proxy for it in order to predict the value of Xt+1:

X̃AR
t+1(α

LS) = αLS
1 X̃

AR
t (αLS) +

p∑
k=2

αLS
k Xt−k+1. (4)

The values of Xt+2, . . . , Xt+m are predicted in the same recursive manner. The most obvious
drawback of this approach is that not much can be said on the quality of this predictor even if the
AR model is well-specified, let alone if it is not (see [18] for further discussion on this issue).

In light of this, the motivation to formulate the problem of multi-step ahead prediction in the online
setting is quite clear: attaining regret in this setting would imply that our algorithm’s performance

7

Algorithm 4 Adaptation of Algorithm 1 to Multi-Step Ahead Prediction
1: Input: learning rate η, regularization functionR(x), signal {Xt}Tt=1.
2: Choose w0, . . . , wm ∈ KIP arbitrarily.
3: for t = m to T do
4: Predict X̃ IP

t (w
t−m) =

∑p
k=1 w

t−m
k Xt−m−k and suffer loss

(
Xt − X̃ IP

t (w
t−m)

)2
.

5: Set wt+1 = argminw∈KIP

{
η
∑t
τ=m

(
Xτ − X̃ IP

τ (w)
)2

+ ‖w‖22
}

6: end for

is comparable with the best 1-step ahead recursive AR predictor in hindsight (even if the latter is
misspecified). Thus, our goal is to minimize the following regret term:

RT =

T∑
t=1

(
Xt − X̃t

)2 −min
α∈K

T∑
t=1

(
Xt − X̃AR

t (α)
)2
,

where K denotes the set of all 1-step ahead recursive AR predictors, against which we want to
compete. Note that since the feedback is delayed (the AR coefficients chosen at round t−m are used
to generate the prediction at round t), the memory comes unavoidably into the picture. Nevertheless,
here also both of our techniques are not straightforwardly applicable due the non-convex structure
of the problem: each prediction X̃AR

t (α) contains products of α coefficients that cause the losses to
be non-convex in α.

To circumvent this issue, we use non-proper learning techniques, and let our predictions to be of
the form X̃NP

t+m(w) =
∑p
k=1 wkXt−k for a properly chosen set KNP ⊂ Rp of the w coefficients.

Basically, the idea is to show that (a) attaining regret bound with respect to the best predictor in the
new family can be done using the techniques we present in this work; and (b) the best predictor in
the new family is better than the best 1-step ahead recursive AR predictor. This would imply a regret
bound with respect to best 1-step ahead recursive AR predictor in hindsight. Our formal result is
given in the following corollary:
Corollary 6.1. Let D = supw1,w2∈KIP ‖w1 − w2‖2 and G = supw,t ‖∇ft(Xt, X̃t(w))‖2. Then,
Algorithm 4 generates an online sequence {wt}Tt=1, for which it holds that

T∑
t=1

(
Xt − X̃ IP

t (w
t−m)

)2 −min
α∈K

T∑
t=1

(
Xt − X̃AR

t (α)
)2 ≤ 3GD

√
Tm.

Remark: The tighter bound in m (m1/2 instead of m3/4) follows directly by modifying the proof
of theorem 3.1 to this setting (ft is affected only by wt−m and not by wt−m, . . . , wt).

In the above, the values of D and G are determined by the choice of the set K. For instance, if we
want to compete against the best α ∈ K = [−1, 1]p we need to use the restriction wk ≤ 2m for
all k. In this case, D ≈ 2m and G ≈ 1. If we consider K to be the set of all α ∈ Rp such that
αk ≤ (1/

√
2)k, we get that D ≈

√
m and G ≈ 1.

The main novelty of our approach to the task of multi-step ahead prediction is the elimination of
generative assumptions on the data, that is, we allow the time series to be arbitrarily generated. Such
assumptions are common in the statistical literature, and needed in general to extract ML estimators.

7 Discussion and Conclusion

In this work we extended the notion of online learning with memory to capture the general OCO
framework, and proposed two algorithms with tight regret guarantees. We then applied our algo-
rithms to two extensively studied problems: construction of mean reverting portfolios, and multistep
ahead prediction. It remains for future work to further investigate the performance of our algorithms
in these problems and other problems in which the memory naturally arises.

Acknowledgments

This work has been supported by the European Community’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement 306638 (SUPREL).

8

References
[1] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

[2] Elad Hazan. The convex optimization approach to regret minimization. Optimization for machine learn-
ing, page 287, 2011.

[3] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Ma-
chine Learning, 4(2):107–194, 2012.

[4] M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series
in Probability and Statistics. Wiley, 1994.

[5] Raman Arora, Ofer Dekel, and Ambuj Tewari. Online bandit learning against an adaptive adversary: from
regret to policy regret. 2012.

[6] Nicolò Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. Online learning with switching costs and other
adaptive adversaries. CoRR, abs/1302.4387, 2013.

[7] Neri Merhav, Erik Ordentlich, Gadiel Seroussi, and Marcelo J. Weinberger. On sequential strategies for
loss functions with memory. IEEE Transactions on Information Theory, 48(7):1947–1958, 2002.

[8] András György and Gergely Neu. Near-optimal rates for limited-delay universal lossy source coding. In
ISIT, pages 2218–2222, 2011.

[9] Sascha Geulen, Berthold Vöcking, and Melanie Winkler. Regret minimization for online buffering prob-
lems using the weighted majority algorithm. In COLT, pages 132–143, 2010.

[10] Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. In FOCS, pages 256–261,
1989.

[11] Eyal Gofer. Higher-order regret bounds with switching costs. In Proceedings of The 27th Conference on
Learning Theory, pages 210–243, 2014.

[12] Ofer Dekel, Jian Ding, Tomer Koren, and Yuval Peres. Bandits with switching costs: Tˆ{2/3} regret.
arXiv preprint arXiv:1310.2997, 2013.

[13] Anatoly B. Schmidt. Financial Markets and Trading: An Introduction to Market Microstructure and
Trading Strategies (Wiley Finance). Wiley, 1 edition, August 2011.

[14] Alexandre D’Aspremont. Identifying small mean-reverting portfolios. Quant. Finance, 11(3):351–364,
2011.

[15] Marco Cuturi and Alexandre D’aspremont. Mean reversion with a variance threshold. 28(3):271–279,
May 2013.

[16] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction.
arXiv preprint arXiv:1302.6927, 2013.

[17] Oren Anava, Elad Hazan, and Assaf Zeevi. Online time series prediction with missing data. In ICML,
2015.

[18] Michael P Clements and David F Hendry. Multi-step estimation for forecasting. Oxford Bulletin of
Economics and Statistics, 58(4):657–684, 1996.

[19] Massimiliano Marcellino, James H Stock, and Mark W Watson. A comparison of direct and iterated
multistep ar methods for forecasting macroeconomic time series. Journal of Econometrics, 135(1):499–
526, 2006.

[20] G.S. Maddala and I.M. Kim. Unit Roots, Cointegration, and Structural Change. Themes in Modern
Econometrics. Cambridge University Press, 1998.

[21] Soren Johansen. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autore-
gressive Models. Econometrica, 59(6):1551–80, November 1991.

[22] Jakub W Jurek and Halla Yang. Dynamic portfolio selection in arbitrage. In EFA 2006 Meetings Paper,
2007.

[23] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimiza-
tion. Machine Learning, 69(2-3):169–192, 2007.

[24] László Lovász and Santosh Vempala. Logconcave functions: Geometry and efficient sampling algorithms.
In FOCS, pages 640–649. IEEE Computer Society, 2003.

[25] Hariharan Narayanan and Alexander Rakhlin. Random walk approach to regret minimization. In John D.
Lafferty, Christopher K. I. Williams, John Shawe-Taylor, Richard S. Zemel, and Aron Culotta, editors,
NIPS, pages 1777–1785. Curran Associates, Inc., 2010.

9

