
A Convergence Guarantees with Dense Noise and Sparse Corruptions

We will now present recovery guarantees for the TORRENT-FC algorithm when both, dense noise,
as well as sparse adversarial corruptions are present. Extensions for TORRENT-GD and TORRENT-
HYB will follow similarly.
Theorem 10. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b + ε
be the corrupted output with sparse corruptions ‖b‖0 ≤ α · n as well as dense bounded noise ε.
Let Algorithm 2 be executed on this data with the thresholding parameter set to β ≥ α. Let Σ0 be
an invertible matrix such that X̃ = Σ

−1/2
0 X satisfies the SSC and SSS properties at level γ with

constants λγ and Λγ respectively (see Definition 1). If the data satisfies
4
√

Λβ√
λ1−β

< 1, then after t =

O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤

ε+ C
‖ε‖2√
n

for some constant C > 0.

Proof. We being by observing that the optimality of the model wt+1 on the active set St ensures∥∥ySt −X>Stwt+1
∥∥

2
=
∥∥X>St(w∗ −wt+1) + εSt + bSt

∥∥
2
≤
∥∥yt −X>Stw∗∥∥2

= ‖εSt + bSt‖2 ,
which, upon the application of the triangle inequality, gives us∥∥X>St(w∗ −wt+1)

∥∥
2
≤ 2 ‖εSt + bSt‖2 .

Since
∥∥X>St(w∗ −wt+1)

∥∥
2
≥
√
λ1−β

∥∥w∗ −wt+1
∥∥

2
, we get∥∥w∗ −wt+1

∥∥
2
≤ 2√

λ1−β
‖εSt + bSt‖2 ≤

2√
λ1−β

(‖ε‖2 + ‖bSt‖2) .

The hard thresholding step, on the other hand, guarantees that∥∥∥X>St+1
(w∗ −wt+1) + εSt+1 + bSt+1

∥∥∥2

2
=
∥∥∥ySt+1 −X>St+1

wt+1
∥∥∥2

2

≤
∥∥yS∗ −X>S∗wt+1

∥∥
2

=
∥∥X>S∗(w∗ −wt+1) + εS∗

∥∥2

2
.

As before, let CRt+1 = St+1\S∗ and MDt+1 = S∗\St+1. Then we have∥∥∥X>CRt+1
(w∗ −wt+1) + εCRt+1

+ bCRt+1

∥∥∥
2
≤
∥∥∥X>MDt+1

(w∗ −wt+1) + εMDt+1

∥∥∥
2
.

An application of the triangle inequality and the fact that
∥∥bCRt+1

∥∥
2

=
∥∥bSt+1

∥∥ gives us∥∥bSt+1

∥∥
2
≤
∥∥∥X>MDt+1

(w∗ −wt+1)
∥∥∥

2
+
∥∥∥X>CRt+1

(w∗ −wt+1)
∥∥∥

2
+
∥∥εCRt+1

∥∥
2

+
∥∥εMDt+1

∥∥
2

≤ 2
√

Λβ
∥∥w∗ −wt+1

∥∥
2

+
√

2 ‖ε‖2 ,

=
4
√

Λβ√
λ1−β

‖bSt‖2 + (
4
√

Λβ√
λ1−β

+
√

2) ‖ε‖2

≤ η · ‖bSt‖2 + (1 +
√

2) ‖ε‖2 ,
where the second step uses the fact that max {|CRt+1| , |MDt+1|} ≤ β ·n and the Cauchy-Schwartz

inequality, and the last step uses the fact that for sufficiently small β, we have η :=
4
√

Λβ√
λ1−β

. Using

the inequality for
∥∥wt+1 −w∗

∥∥
2

again gives us∥∥w∗ −wt+1
∥∥

2
≤ 2√

λ1−β
(‖ε‖2 + ‖bSt‖2)

≤ 4 + 2
√

2√
λ1−β

‖ε‖2 +
2 · ηt√
λ1−β

‖b‖2

For large enough n we have
√
λ1−β ≥ O (

√
n), which completes the proof.
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Notice that for random Gaussian noise, this result gives the following convergence guarantee.

Corollary 11. Let the date be generated as before with random Gaussian dense noise i.e. y =
XTw∗ + b + ε with ‖b‖0 ≤ α · n and ε ∼ N (0, σ2 · I). Let Algorithm 2 be executed on
this data with the thresholding parameter set to β ≥ α. Let Σ0 be an invertible matrix such that
X̃ = Σ

−1/2
0 X satisfies the SSC and SSS properties at level γ with constants λγ and Λγ respectively

(see Definition 1). If the data satisfies
4
√

Λβ√
λ1−β

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations,

Algorithm 2 obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε + 2σC, where C > 0 is the
constant in Theorem 10.

Proof. Using tail bounds on Chi-squared distributions [16], we get, with probability at least 1− δ,

‖ε‖22 ≤ σ
2

(
n+ 2

√
n log

1

δ
+ 2 log

1

δ

)
.

Thus, for n > 4 log 1
δ , we have ‖ε‖22 ≤ 2σn which proves the result.

Remark 6. We note that the design assumptions made by Theorem 10 (i..e
4
√

Λβ√
λ1−β

< 1) are similar

to those made by Theorem 3 and would be satisfied with high probability by data sampled from
sub-Gaussian distributions (see Appendix G for details).
Remark 7. We also note that Corollary 11 does not guarantee a consistent estimate of w∗ whereas
the least squares estimate is a consistent one in the non-corrupted regression setting. This is indeed a
point of interest. However, we notice that existing works [6, 5] also are unable to tolerate a high level
of adversarial corruption along with dense noise. Whereas [6] are only able to tolerate a vanishing
1/
√
p fraction of corruptions, [5] require the corruptions not be adaptive and be added independently

of the data points and the white noise.

B Proof of Theorem 3

Theorem 3. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖b‖0 ≤ α · n. Let Algorithm 2 be executed on this data with the thresholding
parameter set to β ≥ α. Let Σ0 be an invertible matrix such that X̃ = Σ

−1/2
0 X satisfies the

SSC and SSS properties at level γ with constants λγ and Λγ respectively (see Definition 1). If the

data satisfies (1+
√

2)Λβ
λ1−β

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains an

ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.

Proof. Let rt = y −X>wt be the vector of residuals at time t and Ct = XStX
>
St

. Since λα > 0
(something which we shall establish later), we get

wt+1 = C−1
t XStySt = C−1

t XSt

(
X>Stw

∗ + bSt
)

= w∗ + C−1
t XStbSt .

Thus, for any set S ⊂ [n], we have

rt+1
S = yS −X>S wt+1 = bS −X>S C−1

t XStbSt

This, gives us∥∥bSt+1

∥∥2

2
=
∥∥∥bSt+1

−X>St+1
C−1
t XStbSt

∥∥∥2

2
−
∥∥∥X>St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

ζ1
≤
∥∥bS∗ −X>S∗C−1

t XStbSt
∥∥2

2
−
∥∥∥X>St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

ζ2
=
∥∥X>S∗C−1

t XStbSt
∥∥2

2
−
∥∥∥X>St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt

≤
∥∥∥X>S∗\St+1

C−1
t XStbSt

∥∥∥2

2
+ 2 · b>St+1

X>St+1
C−1
t XStbSt
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ζ3
=

∥∥∥∥X̃>S∗\St+1

(
X̃StX̃

T
St

)−1

X̃StbSt

∥∥∥∥2

2

+ 2 · b>St+1
X̃>St+1

(
X̃StX̃

T
St

)−1

X̃StbSt

ζ4
≤

Λ2
β

λ2
1−β
· ‖bSt‖

2
2 + 2 · Λβ

λ1−β
· ‖bSt‖2

∥∥bSt+1

∥∥
2
,

where ζ1 follows since the hard thresholding step ensures
∥∥∥rt+1
St+1

∥∥∥2

2
≤
∥∥rt+1
S∗

∥∥2

2
(see Claim 19 and

use the fact that β ≥ α), ζ2 notices the fact that bS∗ = 0. ζ3 follows from setting X̃ = Σ
−1/2
0 X and

X>S C
−1
t XS′ = X̃>S (X̃StX̃

>
St

)−1X̃S′ . ζ4 follows from the definition of SSC and SSS properties,
‖bSt‖0 ≤ ‖b‖0 ≤ β · n and |S∗\St+1| ≤ β · n. Solving the quadratic equation gives us∥∥bSt+1

∥∥
2
≤ (1 +

√
2) · Λβ

λ1−β
· ‖bSt‖2 . (4)

Let η :=
(1+
√

2)Λβ
λ1−β

denote the convergence rate in (4). We shall show below that for a large family
of random designs, we have η < 1 if n ≥ Ω

(
p+ log 1

δ

)
. We now recall from our earlier discussion

that wt+1 = w∗ + C−1
t XStbSt which gives us∥∥wt+1 −w∗
∥∥

2
=
∥∥C−1

t XStbSt
∥∥

2
≤
√

Λβ

λ1−β
· ‖bSt‖2 ≤ η

t ·
√

Λβ

λ1−β
‖b‖2 ≤ ε,

for t ≥ log 1
η

(√
Λβ

λ1−β
· ‖b‖2ε

)
. Noting that

√
Λβ

λ1−β
≤ O

(
1√
n

)
establishes the convergence result.

C Proof of Theorem 4

Theorem 4. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix with each xi ∼ N (0,Σ). Let
y = X>w∗+b and ‖b‖0 ≤ α ·n. Also, let α ≤ β < 1

65 and n ≥ Ω
(
p+ log 1

δ

)
. Then, with proba-

bility at least 1−δ, the data satisfies (1+
√

2)Λβ
λ1−β

< 9
10 . More specifically, after T ≥ 10 log

(
1√
n

‖b‖2
ε

)
iterations of Algorithm 1 with the thresholding parameter set to β, we have

∥∥wT −w∗
∥∥ ≤ ε.

Proof. We note that whenever x ∼ N (0,Σ) then Σ−1/2x ∼ N (0, I). Thus, Theorem 15 assures
us that with probability at least 1 − δ, the data matrix X̃ = Σ−1/2X satisfies the SSC and SSS
properties with the following constants

Λβ ≤ βn
(

1 + 3e

√
6 log

e

β

)
+O

(√
np+ n log

1

δ

)

λ1−β ≥ n− βn
(

1 + 3e

√
6 log

e

β

)
− Ω

(√
np+ n log

1

δ

)
Thus, the convergence given be Algorithm 1, when invoked with Σ0 = Σ, relies on the quantity
η =

(1+
√

2)Λβ
λ1−β

being less than unity. This translates to the requirement (1 +
√

2)Λβ ≤ λ1−β . Using
the above bounds translates that requirement to

(2 +
√

2)β

(
1 + 3e

√
6 log

e

β

)
︸ ︷︷ ︸

(A)

+O

(√
p

n
+

1

n
log

1

δ

)
︸ ︷︷ ︸

(B)

< 1.

For n = Ω
(
p+ log 1

δ

)
, the second quantity (B) can be made as small a constant as necessary.

Tackling the first quantity (A) turns out to be more challenging. However, we can show that for all

β < 1
190 , we get η =

(1+
√

2)Λβ
λ1−β

< 9
10 which establishes the claimed result. Thus, Algorithm 1 can

tolerate a corruption index of upto α ≤ 1
190 . However, we note that using a more finely tuned setting

of the constant ε in the proof of Theorem 15 and a more careful proof using tight tail inequalities
for chi-squared distributions [16], we can achieve a better corruption level tolerance of α < 1

65 . The
constants in the expression for n can be optimized as well. The current bound can be shown to hold
for n ≥ 270

(
p+ log 1

δ

)
.

12



D Proof of Theorem 5

Theorem 5. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖b‖0 ≤ α · n. Let X satisfy the SSC and SSS properties at level γ with
constants λγ and Λγ respectively (see Definition 1). Let Algorithm 1 be executed on this data with
the GD update (Algorithm 3) with the thresholding parameter set to β ≥ α and the step length set
to η = 1

Λ1−β
. If the data satisfies max

{
η
√

Λβ , 1− ηλ1−β
}
≤ 1

4 , then after t = O
(

log
(
‖b‖2√
n

1
ε

))
iterations, Algorithm 1 obtains an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε.

Proof. Let rt = y −X>wt be the vector of residuals at time t and Ct = XStX
>
St

. We have

wt+1 = wt + η ·XStr
t
St = wt + η ·XSt(ySt −X>Stw

t)

The thresholding step ensures that
∥∥∥rt+1
St+1

∥∥∥2

2
≤
∥∥rt+1
S∗

∥∥2

2
(see Claim 19 and use β ≥ α) which

implies ∥∥∥rt+1
CRt+1

∥∥∥2

2
≤
∥∥∥rt+1

MDt+1

∥∥∥2

2
,

where CRt+1 = St+1\S∗ are the corrupted recoveries and MDt+1 = S∗\St+1 are the clean points
missed out from detection. Note that |CRt+1| ≤ α · n and |MDt+1| ≤ β · n. Since bS∗ = 0 and
MDt+1 ⊆ S∗, we get∥∥∥bCRt+1 +X>CRt+1

(w∗ −wt+1)
∥∥∥

2
≤
∥∥∥X>MDt+1

(w∗ −wt+1)
∥∥∥

2

Using the SSS conditions and the fact that
∥∥bSt+1

∥∥
2

=
∥∥bSt+1\S∗

∥∥
2

gives us∥∥bSt+1

∥∥
2

=
∥∥bCRt+1

∥∥
2
≤ (
√

Λα +
√

Λβ)
∥∥w∗ −wt+1

∥∥
2
≤ 2
√

Λβ
∥∥w∗ −wt+1

∥∥
2

Now, using the expression for wt+1 gives us∥∥w∗ −wt+1
∥∥

2
≤
∥∥(I − ηCt)(w∗ −wt)

∥∥
2

+ η ‖XStbSt‖2
We will bound the two terms on the right hand separately. We can bound the second term easily as

η ‖XStbSt‖2 ≤ η
√

Λα ‖bSt‖2 ≤ η
√

Λβ ‖bSt‖2 ,
since ‖bSt‖0 ≤ α · n. For the first term we observe that for η ≤ 1

Λ1−β
, we have

‖I − ηCt‖2 = sup
v∈Sp−1

∣∣1− η · v>Ctv∣∣ = sup
v∈Sp−1

{
1− η · v>Ctv

}
≤ 1− ηλ1−β ,

which we can use to bound∥∥w∗ −wt+1
∥∥

2
≤ (1− ηλ1−β)

∥∥w∗ −wt
∥∥

2
+ η
√

Λβ ‖bSt‖2
This gives us, for η = 1

Λ1−β
,∥∥bSt+1

∥∥
2
≤ 2
√

Λβ
∥∥w∗ −wt+1

∥∥
2
≤ 2

(
1− λ1−β

Λ1−β

)
︸ ︷︷ ︸

(P )

√
Λβ
∥∥w∗ −wt

∥∥
2

+ 2
Λβ

Λ1−β︸ ︷︷ ︸
(Q)

‖bSt‖2 .

For Gaussian designs and small enough β, we can show (Q) ≤ 1
4 as we did in Theorem 4. To bound

(P ), we use the lower bound on λ1−β given by Theorem 15 and use the following tighter upper
bound for Λ1−β :

Λ1−β ≤
(

(1− β) + 3e

√
6β(1− β) log

e

β

)
n+O

(√
np+ n log

1

δ

)
The above bound is obtained similarly to the one in Theorem 15 but uses the identity

(
n
k

)
=
(
n

n−k
)
≤(

en
n−k

)n−k
for values of k ≥ n/2 instead. For small enough β and n = Ω

(
κ2(Σ)(p+ log 1

δ )
)
,

we can then show (P ) ≤ 1
4 as well. Let Ψt :=

√
n ‖w∗ −wt‖2 + ‖bSt‖. Using elementary

manipulations and the fact that
√

Λβ ≥ Ω (
√
n), we can then show that

Ψt+1 ≤ 3/4 ·Ψt.

Thus, in t = O
(

log
((
‖w∗‖2 +

‖b‖2√
n

)
1
ε

))
iterations of the algorithm, we arrive at an ε-optimal

solution i.e. ‖w∗ −wt‖2 ≤ ε. A similar argument holds true for sub-Gaussian designs as well.
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E Proof of Theorem 6

Theorem 6. Suppose Algorithm 4 is executed on data that allows Algorithms 2 and 3 a convergence
rate of ηFC and ηGD respectively. Suppose we have 2·ηFC ·ηGD < 1. Then for any interleavings of the
FC and GD steps that the policy may enforce, after t = O

(
log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 4

ensures an ε-optimal solution i.e. ‖wt −w∗‖ ≤ ε.

Proof. Our proof shall essentially show that the FC and GD steps do not undo the progress made by
the other if executed in succession and if 2 · ηFC · ηGD < 1, actually ensure non-trivial progress. Let

ΨFC
t = ‖bSt‖2

ΨGD
t =

√
n
∥∥wt −w∗

∥∥+ ‖bSt‖2
denote the potential functions used in the analyses of the FC and GD algorithms before. Then we
will show below that if the FC and GD algorithms are executed in steps t and t+ 1 then we have

ΨFC
t+2 ≤ 2 · ηFC · ηGD ·ΨFC

t

Alternatively, if the GD and FC algorithms are executed in steps t and t+ 1 respectively, then

ΨGD
t+2 ≤ 2 · ηFC · ηGD ·ΨGD

t

Thus, if algorithm executes the FC step at the time step t, then it would at least ensure ΨFC
t ≤

(2 · ηFC · ηGD)
t/2 ·ΨFC

0 (similarly if the last step is a GD step). Since both the FC and GD algorithms

ensure ‖wt −w∗‖2 ≤ ε for t ≥ O
(

log
(

1√
n

‖b‖2
ε

))
, the claim would follow.

We now prove the two claimed results regarding the two types of interleaving below

1. FC −→ GD
The FC step guarantees

∥∥bSt+1

∥∥
2
≤ ηFC · ‖bSt‖ as well as

∥∥wt+1 −w∗
∥∥

2
≤ ηFC ·

‖bSt‖√
n

,
whereas the GD step guarantees ΨGD

t+2 ≤ ηGD ·ΨGD
t+1. Together these guarantee

√
n
∥∥wt+2 −w∗

∥∥
2

+
∥∥bSt+2

∥∥
2
≤ ηGD ·

√
n
∥∥wt+1 −w∗

∥∥
2

+
∥∥bSt+1

∥∥
2

≤ 2 · ηFC · ηGD · ‖bSt‖2
Since

√
n
∥∥wt+2 −w∗

∥∥
2
≥ 0, this yields the result.

2. GD −→ FC
The GD step guarantees ΨGD

t+1 ≤ ηGD · ΨGD
t whereas the FC step guarantees

∥∥bSt+2

∥∥
2
≤

ηFC ·
∥∥bSt+1

∥∥ as well as
∥∥wt+2 −w∗

∥∥
2
≤ ηFC ·

‖bSt+1‖√
n

. Together these guarantee
√
n
∥∥wt+2 −w∗

∥∥
2

+
∥∥bSt+2

∥∥
2
≤ 2ηFC

∥∥bSt+1

∥∥
2

≤ 2 · ηFC · ηGD ·ΨGD
t ,

where the second step follows from the GD step guarantee since
√
n
∥∥wt+1 −w∗

∥∥
2
≥ 0.

This finishes the proof.

F Proof of Theorem 9

Theorem 9. Let X = [x1, . . . ,xn] ∈ Rp×n be the given data matrix and y = XTw∗ + b be the
corrupted output with ‖w∗‖0 ≤ s∗ and ‖b‖0 ≤ α · n. Let Algorithm 2 be executed on this data
with the IHT update from [12] and thresholding parameter set to β ≥ α. Let Σ0 be an invertible
matrix such that Σ

−1/2
0 X satisfies the SRSC and SRSS properties at level (γ, 2s+s∗) with constants

α(γ,2s+s∗) and L(γ,2s+s∗) respectively (see Definition 8) for s ≥ 32
(
L(γ,2s+s∗)
α(γ,2s+s∗)

)
with γ = 1−β. If

X also satisfies 4L(β,s+s∗)
α(1−β,s+s∗)

< 1, then after t = O
(

log
(

1√
n

‖b‖2
ε

))
iterations, Algorithm 2 obtains

14



an ε-accurate solution wt i.e. ‖wt −w∗‖2 ≤ ε. In particular, if X is sampled from a Gaussian
distribution N (0,Σ) and n ≥ Ω

(
(2s+ s∗) log p+ log 1

δ

)
, then for all values of α ≤ β < 1

65 , we
can guarantee recovery as ‖wt −w∗‖2 ≤ ε.

Proof. We first begin with the guarantee provided by existing sparse recovery techniques. The
results of [12], for example, indicate that if the input to the algorithm indeed satisfies the RSC and
RSS properties at the level (1−β, 2s+s∗) with constants α2s+s∗ and L2s+s∗ for s ≥ 32

(
L2s+s∗

α2s+s∗

)
,

then in time τ = O
(
L2s+s∗

α2s+s∗
· log

(
‖b‖2
ρ

))
, the IHT algorithm [12, Algorithm 1] outputs an updated

model wt+1 that satisfies
∥∥wt+1

∥∥
0
≤ s, as well as∥∥ySt −X>Stwt+1

∥∥2

2
≤
∥∥ySt −X>Stw∗∥∥2

2
+ ρ.

We will set ρ later. Since the SRSC and SRSS properties ensure the above and y = X>w∗+b, this
gives us∥∥X>St(wt+1 −w∗)

∥∥2

2
≤ 2(wt+1 −w∗)>X>StbSt + ρ = 2(wt+1 −w∗)>X>St∩S̄∗bSt∩S̄∗ + ρ,

since bS = 0 for any set S ∩ S̄∗ = φ. We now analyze the two sides separately below using the
SRSC and SRSS properties below. For any S ⊂ [n], denote X̃S := Σ

−1/2
0 X .∥∥X>St(wt+1 −w∗)

∥∥2

2
=
∥∥∥X̃>StΣ1/2

0 (wt+1 −w∗)
∥∥∥2

2
≥ α(1−β,s+s∗)

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥2

2∥∥XSt∩S̄∗(w
t+1 −w∗)

∥∥ =
∥∥∥X̃St∩S̄∗Σ

1/2
0 (wt+1 −w∗)

∥∥∥ ≤√L(β,s+s∗)

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2
.

Now, if
∥∥wt+1 −w∗

∥∥
2
≥ ε, then

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2
≥
√
λmin(Σ0) · ε. This give us

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2
≤

2
√
L(β,s+s∗)

α(1−β,s+s∗)

∥∥bSt∩S̄∗∥∥2
+

ρ

α(1−β,s+s∗)

=
2
√
L(β,s+s∗)

α(1−β,s+s∗)
‖bSt‖2 +

ρ

ε ·
√
λmin(Σ0) · α(1−β,s+s∗)

.

We note that although we declared the SRSC and SRSS properties for the action of matrices on
sparse vectors (such as w∗ − wt+1), we instead applied them above to the action of matrices on
sparse vectors transformed by Σ

1/2
0 (Σ1/2

0 (w∗ −wt+1)). Since Σ
1/2
0 v need not be sparse even if v

is sparse, this appears to pose a problem. However, all we need to resolve this is to notice that the
proof technique of Theorem 18 which would be used to establish the SRSC and SRSS properties,
holds in general for not just the action of a matrix on the set of sparse vectors, but on vectors in the
union of any fixed set of low dimensional subspaces.

More specifically, we can modify the RSC and RSS properties (and by extension, the SRSC and
SRSS properties), to requiring that the matrix X act as an approximate isometry on the following
set of vectors Sp−1

(s,Σ0) :=
{
v : v = Σ

−1/2
0 v′ for some v′ ∈ Sp−1

s

}
. We refer the reader to the work

of [17] which describes this technique in great detail. Proceeding with the proof, the assurance of
the thresholding step, as used in the proof of Theorem 5, along with a straightforward application of
the (modified) SRSS property gives us∥∥bSt+1

∥∥
2
≤
∥∥∥X>CRt+1

(wt+1 −w∗)
∥∥∥

2
+
∥∥∥X>MDt+1

(wt+1 −w∗)
∥∥∥

2

=
∥∥∥X̃>CRt+1

Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2

+
∥∥∥X̃>MDt+1

Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2

≤ 2
√
L(β,s+s∗)

∥∥∥Σ
1/2
0 (wt+1 −w∗)

∥∥∥
2

≤
4L(β,s+s∗)

α(1−β,s+s∗)
‖bSt‖2 +

2ρ
√
L(β,s+s∗)

ε ·
√
λmin(Σ0) · α(1−β,s+s∗)
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Thus, whenever
∥∥wt+1 −w∗

∥∥
2
> ε, in successive steps, ‖bSt‖2 undergoes a linear decrease. De-

noting η :=
4L(β,s+s∗)
α(1−β,s+s∗)

, we get∥∥bSt+1

∥∥
2
≤ ηt · ‖b‖2 +

(
1− ηt

1− η

)
2ρ
√
L(β,s+s∗)

ε ·
√
λmin(Σ0) · α(1−β,s+s∗)

and using
∥∥∥Σ

1/2
0 (wt −w∗)

∥∥∥
2
≥
√
λmin(Σ0) ‖wt −w∗‖2 gives us

∥∥wt+1 −w∗
∥∥

2
≤

2
√
L(β,s+s∗)√

λmin(Σ0) · α(1−β,s+s∗)

∥∥bSt+1

∥∥
2

+
ρ

λmin(Σ0) · α(1−β,s+s∗)

≤ ηt
2
√
L(β,s+s∗)√

λmin(Σ0) · α(1−β,s+s∗)
‖b‖2 +

36ρ

ε · λmin(Σ0) · α(1−β,s+s∗)
,

where we have assumed that 4L(β,s+s∗)
α(1−β,s+s∗)

< 9/10, something that we shall establish below. Note that
λmin(Σ0) > 0 since Σ is assumed to be invertible. In the random design settings we shall consider,

we also have
√
L(β,s+s∗)√

λmin(Σ0)·α(1−β,s+s∗)
= O

(
1√
n

)
. Then setting ρ ≤ 1

72ε
2 · λmin(Σ0) · α(1−β,s+s∗)

proves the convergence result.

As before, we can use the above result to establish sparse recovery guarantees in the statistical setting
for Gaussian and sub-Gaussian design models. If our data matrix X is generated from a Gaussian
distribution N (0,Σ) for some invertible Σ, then the results in Theorem 18 can be used to establish
that Σ−1/2X satisfies the SRSC and SRSS properties at the required levels and that for α < 1

190 and
n ≥ Ω

(
(2s+ s∗) log p+ log 1

δ

)
, we have η =

2L(β,s+s∗)
α(1−β,s+s∗)

< 9/10.

Thus, the above result can be applied with Σ0 = Σ to get convergence guarantees in the general
Gaussian setting. We note that the above analysis can tolerate the same level of corruption as Theo-
rem 4 and thus, we can improve the noise tolerance level to α ≤ 1

65 here as well. We also note that
these results can be readily extended to the sub-Gaussian setting as well.

G Robust Statistical Estimation

This section elaborates on how results on the convergence guarantees of our algorithms can be used
to give guarantees for robust statistical estimation problems. We begin with a few definition of
sampling models that would be used in our results.
Definition 12. A random variable x ∈ R is called sub-Gaussian if the following quantity is finite

sup
p≥1

p−1/2 (E |x|p)1/p
.

Moreover, the smallest upper bound on this quantity is referred to as the sub-Gaussian norm of x
and denoted as ‖x‖ψ2

.
Definition 13. A vector-valued random variable x ∈ Rp is called sub-Gaussian if its unidimen-
sional marginals 〈x,v〉 are sub-Gaussian for all v ∈ Sp−1. Moreover, its sub-Gaussian norm is
defined as follows

‖X‖ψ2
:= sup

v∈Sp−1

‖〈x,v〉‖ψ2

We will begin with the analysis of Gaussian designs and then extend our analysis for the class of
general sub-Gaussian designs.
Lemma 14. Let X ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any ε > 0, with probability at least 1− δ, X satisfies

smax(XX>) ≤ n+ (1− 2ε)−1

√
cnp+ c′n log

2

δ

smin(XX>) ≥ n− (1− 2ε)−1

√
cnp+ c′n log

2

δ
,

where c = 24e2 log 3
ε and c′ = 24e2.
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Proof. We will first use the fact that X is sampled from a standard Gaussian to show that its covari-
ance concentrates around identity. Thus, we first show that with high probability,∥∥XX> − nI∥∥

2
≤ ε1

for some ε1 < 1. Doing so will automatically establish the following result

n− ε1 ≤ smin(XX>) ≤ smax(XX>) ≤ n+ ε1.

Let A := XX> − I . We will use the technique of covering numbers [18] to establish the above.
Let Cp−1(ε) ⊂ Sp−1 be an ε cover for Sp−1 i.e. for all u ∈ Sp−1, there exists at least one v ∈ Cp−1

such that ‖u− v‖2 ≤ ε. Standard constructions [18, see Lemma 5.2] guarantee such a cover of size
at most

(
1 + 2

ε

)p ≤ ( 3
ε

)p
. Now for any u ∈ Sp−1 and v ∈ Cp−1 such that ‖u− v‖2 ≤ ε, we have∣∣u>Au− v>Av

∣∣ ≤ ∣∣u>A(u− v)
∣∣+
∣∣v>A(u− v)

∣∣ ≤ 2ε ‖A‖2 ,

which gives us ∥∥XX> − nI∥∥
2
≤ (1− 2ε)−1 · sup

v∈Cp−1(ε)

∣∣∣∥∥X>v∥∥2

2
− n

∣∣∣ .
Now for a fixed v ∈ Sn−1, the random variable

∥∥X>v∥∥2

2
is distributed as a χ2(n) distribution with

n degrees of freedom. Using Lemma 20, we get, for any µ < 1,

P
[∣∣∣∥∥X>v∥∥2

2
− n

∣∣∣ ≥ µn] ≤ 2 exp

(
−min

{
µ2n2

24ne2
,
µn

4
√

3e

})
≤ 2 exp

(
− µ

2n

24e2

)
.

Setting µ2 = c · pn + c′ · log 2
δ

n , where c = 24e2 log 3
ε and c′ = 24e2, and taking a union bound over

all Cp−1(ε), we get

P

[
sup

v∈Cp−1(ε)

∣∣∣∥∥X>v∥∥2

2
− n

∣∣∣ ≥√cnp+ c′n log
2

δ

]
≤ 2

(
3

ε

)p
exp

(
− µ

2n

24e2

)
≤ δ.

This implies that with probability at least 1− δ,∥∥XX> − nI∥∥
2
≤ (1− 2ε)−1

√
cnp+ c′n log

2

δ
,

which gives us the claimed bounds on the singular values of XX>.

Theorem 15. LetX ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any γ > 0, with probability at least 1 − δ, the matrix X
satisfies the SSC and SSS properties with constants

ΛGauss
γ ≤ γn

(
1 + 3e

√
6 log

e

γ

)
+O

(√
np+ n log

1

δ

)

λGauss
γ ≥ n− (1− γ)n

(
1 + 3e

√
6 log

e

1− γ

)
− Ω

(√
np+ n log

1

δ

)
.

Proof. For any fixed S ∈ Sγ , Lemma 14 guarantees the following bound

smax(XSX
>
S ) ≤ γn+ (1− 2ε)−1

√
cγnp+ c′γn log

2

δ
.

Taking a union bound over Sγ and noting that
(
n
k

)
≤
(
en
k

)k
for all 1 ≤ k ≤ n, gives us

Λγ ≤ γn+ (1− 2ε)−1

√
cγnp+ c′γ2n2 log

e

γ
+ c′γn log

2

δ

≤ γn
(

1 + (1− 2ε)−1

√
c′ log

e

γ

)
+ (1− 2ε)−1

√
cγnp+ c′γn log

2

δ
,

17



which finishes the first bound after setting ε = 1/6. For the second bound, we use the equality

XSX
>
S = XX> −XS̄X

>
S̄ ,

which provides the following bound for λγ

λγ ≥ smin(XX>)− sup
T∈S1−γ

XTX
>
T = smin(XX>)− Λ1−γ .

Using Lemma 14 to bound the first quantity and the first part of this theorem to bound the second
quantity gives us, with probability at least 1− δ,

λγ ≥ n− γ′n
(

1 + (1− 2ε)−1

√
c′ log

e

γ′

)
− (1− 2ε)−1

(
1 +

√
γ′
)√

cnp+ c′n log
2

δ
,

where γ′ = 1− γ. This proves the second bound after setting ε = 1/6.

We now extend our analysis to the class of isotropic subGaussian distributions. We note that this
analysis is without loss of generality since for non-isotropic sub-Gaussian distributions, we can
simply use the fact that Theorem 3 can admit whitened data for calculation of the SSC and SSS
constants as we did for the case of non-isotropic Gaussian distributions.
Lemma 16. LetX ∈ Rp×n be a matrix with columns sampled from some sub-Gaussian distribution
with sub-Gaussian norm K and covariance Σ. Then, for any δ > 0, with probability at least 1− δ,
each of the following statements holds true:

smax(XX>) ≤ λmax(Σ) · n+ CK ·
√
pn+ t

√
n

smin(XX>) ≥ λmin(Σ) · n− CK ·
√
pn− t

√
n,

where t =
√

1
cK

log 2
δ , and cK , CK are absolute constants that depend only on the sub-Gaussian

norm K of the distribution.

Proof. Since the singular values of a matrix are unchanged upon transposition, we shall prove the
above statements for X>. The benefit of this is that we get to work with a matrix with independent
rows, so that standard results can be applied. The proof technique used in [18, Theorem 5.39] (see
also Remark 5.40 (1) therein) can be used to establish the following result: with probability at least
1− δ, with t set as mentioned in the theorem statement, we have∥∥∥∥ 1

n
XX> − Σ

∥∥∥∥ ≤ CK√ p

n
+

t√
n

This implies that for any v ∈ Sp−1, we have∣∣∣∣ 1n ∥∥X>v∥∥2

2
− v>Σv

∣∣∣∣ =

∣∣∣∣ 1nv>XX>v − v>Σv

∣∣∣∣ ≤ ∣∣∣∣ 1nXX>v − Σv

∣∣∣∣ ≤ CK√ p

n
+

t√
n
.

The results then follow from elementary manipulations and the fact that the singular values and
eigenvalues of real symmetric matrices coincide.

Theorem 17. Let X ∈ Rp×n be a matrix with columns sampled from some sub-Gaussian distribu-
tion with sub-Gaussian norm K and covariance Σ. Let cK , CK and t be fixed to values as required
in Lemma 16. Note that cK and CK are absolute constants depend only on the sub-Gaussian norm
K of the distribution. Let γ ∈ (0, 1] be some fixed constant. Then, with we have the following:

ΛsubGauss(K,Σ)
γ ≤

(
λmax(Σ) · γ +

√
γ

cK
log

e

γ

)
· n+ CK ·

√
γpn+ t

√
n.

Furthermore, fix any ε ∈ (0, 1) and let γ be a value in (0, 1) satisfying the following

γ > 1−min

{
ε · λmin(Σ)

λmax(Σ)
, exp

(
1 +W−1

(
−cKε

2 · λ2
min(Σ)

e

))}
,

where W−1(·) is the lower branch of the real valued restriction of the Lambert W function. Then we
have, with the same confidence,

λsubGauss(K,Σ)
γ ≥ (1− 2ε) · λmin(Σ) · n− CK

(
1 +

√
1− γ

)√
pn− 2t

√
n
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Proof. The first result follows from an application of Lemma 16, a union bound over sets in Sγ , as
well as the bound

(
n
k

)
≤
(
en
k

)k
for all 1 ≤ k ≤ n which puts a bound on the number of sparse sets

as log |Sγ | ≤ γ · n log e
γ .

For the second result, we observe that XSX
>
S = XX> − XS̄X

>
S̄

, so that smin(XSX
>
S ) ≥

smin(XX>)− smax(XS̄X
>
S̄

). This gives us

inf
S∈Sγ

smin(XSX
>
S ) ≥ smin(XX>)− sup

S∈S1−γ
smax(XSX

>
S ).

Using Lemma 16 and the first part of this result gives us

inf
S∈Sγ

smin(XSX
>
S ) ≥ λmin(Σ) · n− CK ·

√
pn− t

√
n

−
(
λmax(Σ)(1− γ) +

√
1− γ
cK

log
e

1− γ

)
n− CK

√
(1− γ)pn− t

√
n

=

(
λmin(Σ)− λmax(Σ)(1− γ)−

√
1− γ
cK

log
e

1− γ

)
n

− CK
(

1 +
√

1− γ
)√

pn− 2t
√
n

≥ (1− 2ε) · λmin(Σ) · n− CK
(

1 +
√

1− γ
)√

pn− 2t
√
n,

where the last step follows from the assumptions on γ and by noticing that it suffices to show the
following two inequalities to establish the last step

1. λmax(Σ)(1− γ) ≤ ε · λmin(Σ)

2. (1− γ) log e
1−γ ≤ cKε

2 · λ2
min(Σ)

The first part gives us the condition γ > 1 − ε·λmin(Σ)
λmax(Σ) in a straightforward manner. For the second

part, denote v = cKε
2 · λ2

min(Σ). Note that for v ≥ 1, all values of γ ∈ (0, 1] satisfy the inequality.

Otherwise we require the use of the Lambert W function (also known as the product logarithm
function). This function ensures that its value W (z) for any z > −1/e satisfies z = W (z)eW (z). In
our case, making a change of variable (1 − γ) = eη gives us the inequality (η − 1)eη−1 ≥ −v/e.
Note that since v ≤ 1 in this case, −v/e ∈ (−1/e, 0) i.e. a valid value for the Lambert W function.
However, (−1/e, 0) is also the region in which the Lambert W function is multi-valued. Taking
the worse bound for γ by choosing the lower branch W−1(·) gives us the second condition γ ≥
1− exp

(
1 +W−1

(
− cKε

2·λ2
min(Σ)
e

))
.

It is important to note that for any −1/e ≤ z < 0, we have exp (1 +W−1(z)) > 0 which means
that the bounds imposed on γ by Theorem 17 always allow a non-zero fraction of the data points
to be corrupted in an adversarial manner. However, the exact value of that fraction depends, in
a complicated manner, on the sub-Gaussian norm of the underlying distribution, as well as the
condition number and the smallest eigenvalue of the second moment of the underlying distribution.

We also note that due to the generic nature of the previous analysis, which can handle the entire class
of sub-Gaussian distributions, the bounds are not as explicitly stated in terms of universal constants
as they are for the standard Gaussian design setting (Theorem 15).

We now establish that for a wide family of random designs, the SRSC and SRSS properties are
satisfied with high probability as well. For sake of simplicity, we will present our analysis for the
standard Gaussian design. However, the results would readily extend to general Gaussian and sub-
Gaussian designs using techniques similar to Theorem 17.

Theorem 18. LetX ∈ Rp×n be a matrix whose columns are sampled i.i.d from a standard Gaussian
distribution i.e. xi ∼ N (0, I). Then for any γ > 0 and s ≤ p, with probability at least 1 − δ, the
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matrix X satisfies the SRSC and SRSS properties with constants

LGauss
(γ,s) ≤ γn

(
1 + 3e

√
6 log

e

γ

)
+ Õ

(√
ns+ n log

1

δ

)

αGauss
(γ,s) ≥ n− (1− γ)n

(
1 + 3e

√
6 log

e

1− γ

)
− Ω̃

(√
ns+ n log

1

δ

)
.

Proof. The proof of this theorem proceeds similarly to that of Theorem 15. Hence, we simply point
out the main differences. First, we shall establish, that for any ε > 0, with probability at least 1− δ,
X satisfies the RSC and RSS properties at level s with the following constants

Ls ≤ n+ (1− 2ε)−1

√
bns+ b′n log

2

δ

αs ≥ n− (1− 2ε)−1

√
bns+ b′n log

2

δ
,

where b = 24e2 log 3ep
εs and b′ = 24e2. To do so we notice that the only change needed to be made

would be in the application of the covering number argument. Instead of applying the union bound
over an ε-cover Cp−1 of Sp−1, we would only have to consider an ε-cover Cp−1

s of the set Sp−1
s of

all s-sparse unit vectors in p-dimensions. A straightforward calculation shows us that∣∣Cp−1
s

∣∣ ≤ (p
s

)(
1 +

2

ε

)s
≤
(

3ep

εs

)s
.

Thus, setting µ2 = b · sn + b′ · log 2
δ

n , where b = 24e2 log 3ep
εs and b′ = 24e2, we get

P

[
sup

v∈Cp−1
s

∣∣∣‖Xv‖22 − n
∣∣∣ ≥√bns+ b′n log

2

δ

]
≤ δ,

which establishes the required RSC and RSS constants forX . Now, moving on to the SRSS constant,
it follows simply by applying a union bound over all sets in Sγ much like in Theorem 15. One can
then proceed to bound the SRSC constant in a similar manner.

We note that the nature of the SRSC and SRSS bounds indicate that our TORRENT-FC algorithm
in the high dimensional sparse recovery setting has noise tolerance properties, characterized by
the largest corruption index α that can be tolerated, identical to its low dimnensional counterpart -
something that Theorem 9 states explicitly.

H Supplementary Results

Claim 19. Given any vector v ∈ Rn, let σ ∈ Sn be defined as the permutation that orders elements
of v in descending order of their magnitudes i.e.

∣∣vσ(1)

∣∣ ≥ ∣∣vσ(2)

∣∣ ≥ . . . ≥
∣∣vσ(n)

∣∣. For any
0 < p ≤ q ≤ 1, let S1 ∈ Sq be an arbitrary set of size q·n and S2 = {σ(i) : n− p · n+ 1 ≤ i ≤ n}.
Then we have ‖vS2‖

2
2 ≤

p
q ‖vS1‖

2
2 ≤ ‖vS1‖

2
2.

Proof. Let S3 = {σ(i) : n− q · n+ 1 ≤ i ≤ n} and S4 = {σ(i) : n− q · n+ 1 ≤ i ≤ n− p · n}.
Clearly, we have ‖vS3‖

2
2 ≤ ‖vS1‖

2
2 since S3 contains the smallest q · n elements (by magnitude).

Now we have ‖vS3
‖22 = ‖vS2

‖22 + ‖vS4
‖22. Moreover, since each element of S4 is larger in magni-

tude than every element of S2, we have

1

|S4|
‖vS4

‖22 ≥
1

|S2|
‖vS2

‖22 .

This gives us

‖vS2
‖22 = ‖vS3

‖22 − ‖vS4
‖22 ≤ ‖vS3

‖22 −
|S4|
|S2|
‖vS2

‖22 ,

which upon simple manipulations, gives us the claimed result.
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Lemma 20. LetZ be distributed according to the chi-squared distribution with k degrees of freedom
i.e. Z ∼ χ2(k). Then for all t ≥ 0,

P [|Z − k| ≥ t] ≤ 2 exp

(
−min

{
t2

24ke2
,

t

4
√

3e

})
Proof. This lemma requires a proof structure that traces several basic results in concentration in-
equalities for sub-exponential variables [18, Lemma 5.5, 5.15, Proposition 5.17]. The purpose of
performing this exercise is to explicate the constants involved so that a crisp bound can be provided
on the corruption index that our algorithm can tolerate in the standard Gaussian design case.

We first begin by establishing the sub-exponential norm of a chi-squared random variable with a
single degree of freedom. Let X ∼ χ2(1). Then using standard results on the moments of the
standard normal distribution gives us, for all p ≥ 2,

(E|X|p)1/p = ((2p− 1)!!)1/p =

(
(2p)!

2pp!

)1/p

≤
√

3

2
p

Thus, the sub-exponential norm of X is upper bounded by
√

3/2. By applying the triangle inequal-
ity, we obtain, as a corollary, an upper bound on the sub-exponential norm of the centered random
variable Y = X − 1 as ‖Y ‖ψ1

≤ 2 ‖X‖ψ1
≤
√

3.

Now we bound the moment generating function of the random variable Y . Noting that EY = 0, we
have, for any |λ| ≤ 1

2
√

3e
,

E exp(λY ) = 1+

∞∑
q=2

E(λY )q

q!
≤ 1+

∞∑
q=2

(
√

3|λ|q)q

q!
≤ 1+

∞∑
q=2

(
√

3e|λ|)q ≤ 1+6e2λ2 ≤ exp(6e2λ2).

Note that the second step uses the sub-exponentially of Y , the third step uses the fact that q! ≥
(q/e)q , and the fourth step uses the bound on |λ|. Now let X1, X2, . . . Xk be k independent random
variables distributed as χ2(1). Then we have Z ∼

∑k
i=1Xi. Using the exponential Markov’s

inequality, and the independence of the random variables Xi gives us

P [Z − k ≥ t] = P
[
eλ(Z−k) ≥ eλt

]
≤ e−λtEeλ(Z−k) = e−λt

k∏
i=1

E exp(λ(Xi − 1)).

For any |λ| ≤ 1
2
√

3e
, the above bounds on the moment generating function give us

P [Z − k ≥ t] ≤ e−λt
k∏
i=1

exp(6e2λ2) = exp(−λt+ 6ke2λ2).

Choosing λ = min
{

1
2
√

3e
, t

12ke2

}
, we get

P [Z − k ≥ t] ≤ exp

(
−min

{
t2

24ke2
,

t

4
√

3e

})
.

Repeating this argument gives us the same bound for P [k − Z ≥ t]. This completes the proof.
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Figure 3: (a), (b), (c) Variation of recovery error with varying p, σ and n. TORRENT was found to outperform
DALM-L1 in all these settings. (d) Recovery error as a function of runtime for various state-of-the-art L1

solvers as indicated in [15].
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