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Abstract

We consider the problem of binary classification when the covariates conditioned
on the each of the response values follow multivariate Gaussian distributions. We
focus on the setting where the covariance matrices for the two conditional dis-
tributions are the same. The corresponding generative model classifier, derived
via the Bayes rule, also called Linear Discriminant Analysis, has been shown to
behave poorly in high-dimensional settings. We present a novel analysis of the
classification error of any linear discriminant approach given conditional Gaussian
models. This allows us to compare the generative model classifier, other recently
proposed discriminative approaches that directly learn the discriminant function,
and then finally logistic regression which is another classical discriminative model
classifier. As we show, under a natural sparsity assumption, and letting s denote
the sparsity of the Bayes classifier, p the number of covariates, and n the num-
ber of samples, the simple (`1-regularized) logistic regression classifier achieves
the fast misclassification error rates of O

(
s log p
n

)
, which is much better than the

other approaches, which are either inconsistent under high-dimensional settings,

or achieve a slower rate of O
(√

s log p
n

)
.

1 Introduction
We consider the problem of classification of a binary response given p covariates. A popular class of
approaches are statistical decision-theoretic: given a classification evaluation metric, they then opti-
mize a surrogate evaluation metric that is computationally tractable, and yet have strong guarantees
on sample complexity, namely, number of observations required for some bound on the expected
classification evaluation metric. These guarantees and methods have been developed largely for the
zero-one evaluation metric, and extending these to general evaluation metrics is an area of active
research. Another class of classification methods are relatively evaluation metric agnostic, which
is an important desideratum in modern settings, where the evaluation metric for an application is
typically less clear: these are based on learning statistical models over the response and covariates,
and can be categorized into two classes. The first are so-called generative models, where we specify
conditional distributions of the covariates conditioned on the response, and then use the Bayes rule
to derive the conditional distribution of the response given the covariates. The second are the so-
called discriminative models, where we directly specify the conditional distribution of the response
given the covariates.

In the classical fixed p setting, we have now have a good understanding of the performance of
the classification approaches above. For generative and discriminative modeling based approaches,
consider the specific case of Naive Bayes generative models and logistic regression discriminative
models (which form a so-called generative-discriminative pair1), Ng and Jordan [27] provided qual-

1In such a so-called generative-discriminative pair, the discriminative model has the same form as that of
the conditional distribution of the response given the covariates specified by the Bayes rule given the generative
model
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itative consistency analyses, and showed that under small sample settings, the generative model
classifiers converge at a faster rate to their population error rate compared to the discriminative
model classifiers, though the population error rate of the discriminative model classifiers could be
potentially lower than that of the generative model classifiers due to weaker model assumptions.
But if the generative model assumption holds, then generative model classifiers seem preferable to
discriminative model classifiers.

In this paper, we investigate whether this conventional wisdom holds even under high-dimensional
settings. We focus on the simple generative model where the response is binary, and the covariates
conditioned on each of the response values, follows a conditional multivariate Gaussian distribution.
We also assume that the two covariance matrices of the two conditional Gaussian distributions are
the same. The corresponding generative model classifier, derived via the Bayes rule, is known in
the statistics literature as the Linear Discriminant Analysis (LDA) classifier [21]. Under classical
settings where p� n, the misclassification error rate of this classifier has been shown to converge to
that of the Bayes classifier. However, in a high-dimensional setting, where the number of covariates
p could scale with the number of samples n, this performance of the LDA classifier breaks down. In
particular, Bickel and Levina [3] show that when p/n→∞, then the LDA classifier could converge
to an error rate of 0.5, that of random chance. What should one then do, when we are even allowed
this generative model assumption, and when p > n?

Bickel and Levina [3] suggest the use of a Naive Bayes or conditional independence assumption,
which in the conditional Gaussian context, assumes the covariance matrices to be diagonal. As they
showed, the corresponding Naive Bayes LDA classifier does have misclassification error rate that is
better than chance, but it is asymptotically biased: it converges to an error rate that is strictly larger
than that of the Bayes classifier when the Naive Bayes conditional independence assumption does
not hold. Bickel and Levina [3] also considered a weakening of the Naive Bayes rule, by assuming
that the covariance matrix is weakly sparse, and an ellipsoidal constraint on the means, showed
that an estimator that leverages these structural constraints converges to the Bayes risk at a rate of
O(log(n)/nγ), where 0 < γ < 1 depends on the mean and covariance structural assumptions. A
caveat is that these covariance sparsity assumptions might not hold in practice. Similar caveats apply
to the related works on feature annealed independence rules [14], nearest shrunken centroids [29,
30], as well as those . Moreover, even when the assumptions hold, they do not yield the “fast” rates
of O(1/n).

An alternative approach is to directly impose sparsity on the linear discriminant [28, 7], which is
weaker than the covariance sparsity assumptions (though [28] impose these in addition). [28, 7]
then proposed new estimators that leveraged these assumptions, but while they were able to show

convergence to the Bayes risk, they were only able to show a slower rate of O
(√

s log p
n

)
.

It is instructive at this juncture to look at recent results on classification error rates from the machine
learning community. A key notion of importance here is whether the two classes are separable:
which can be understood as requiring that the classification error of the Bayes classifier is 0. Classi-
cal learning theory gives a rate of O(1/

√
n) for any classifier when two classes are non-separable,

and it shown that this is also minimax [12], with the note that this is relatively distribution agnostic,
since it assumes very little on the underlying distributions. When the two classes are non-separable,
only rates slower thanΩ(1/n) are known. Another key notion is a “low-noise condition” [25], under
which certain classifiers can be shown to attain a rate faster than o(1/

√
n), albeit not at the O(1/n)

rate unless the two classes are separable. Specifically, let α denote a constant such that

P (|P(Y = 1|X)− 1/2| ≤ t) ≤ O (tα) , (1)

holds when t → 0. This is said to be a low-noise assumption, since as α → +∞, the two classes
start becoming separable, that is, the Bayes risk approaches zero. Under this low-noise assumption,
known rates for excess 0-1 risk is O

(
( 1
n )

1+α
2+α

)
[23]. Note that this is always slower than O( 1

n )

when α < +∞.

There has been a surge of recent results on high-dimensional statistical statistical analyses of M -
estimators [26, 9, 1]. These however are largely focused on parameter error bounds, empirical and
population log-likelihood, and sparsistency. In this paper however, we are interested in analyzing
the zero-one classification error under high-dimensional sampling regimes. One could stitch these
recent results to obtain some error bounds: use bounds on the excess log-likelihood, and use trans-
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forms from [2], to convert excess log-likelihood bounds to get bounds on 0-1 classification error,
however, the resulting bounds are very loose, and in particular, do not yield the fast rates that we
seek.

In this paper, we leverage the closed form expression for the zero-one classification error for our
generative model, and directly analyse it to give faster rates for any linear discriminant method.
Our analyses show that, assuming a sparse linear discriminant in addition, the simple `1-regularized
logistic regression classifier achieves near optimal fast rates of O

(
s log p
n

)
, even without requiring

that the two classes be separable.

2 Problem Setup
We consider the problem of high dimensional binary classification under the following generative
model. Let Y ∈ {0, 1} denote a binary response variable, and let X = (X1, . . . , Xp) ∈ Rp denote
a set of p covariates. For technical simplicity, we assume Pr[Y = 1] = Pr[Y = 0] = 1

2 , however
our analysis easily extends to the more general case when Pr[Y = 1],Pr[Y = 0] ∈ [δ0, 1− δ0], for
some constant 0 < δ0 <

1
2 . We assume thatX|Y ∼ N (µY , ΣY ), i.e. conditioned on a response, the

covariate follows a multivariate Gaussian distribution. We assume we are given n training samples
{(X(1), Y (1)), (X(2), Y (2)), . . . , (X(n), Y (n))} drawn i.i.d. from the conditional Gaussian model
above.

For any classifier, C : Rp → {1, 0}, the 0-1 risk or simply the classification error is given by
R0−1(C) = EX,Y [`0−1(C(X), Y )], where `0−1(C(x), y) = 1(C(x) 6= y) is the 0-1 loss. It can
also be simply written as R(C) = Pr[C(X) 6= Y ]. The classifier attaining the lowest classification
error is known as the Bayes classifier, which we will denote by C∗. Under the generative model
assumption above, the Bayes classifier can be derived simply as C∗(X) = 1(log Pr[Y=1|X]

Pr[Y=0|X] > 0),

so that given sample X , it would be classified as 1 if Pr[Y=1|X]
Pr[Y=0|X] > 1, and as 0 otherwise. We denote

the error of the Bayes classifier R∗ = R(C∗).

When Σ1 = Σ0 = Σ,

log
Pr[Y = 1|X]

Pr[Y = 0|X]
= (µ1 − µ0)TΣ−1X +

1

2
(−µT1 Σ−1µ1 + µT0 Σ

−1µ0) (2)

and we denote this quantity as w∗TX + b∗ where

w∗ = Σ−1(µ1 − µ0), b∗ =
−µT1 Σ−1µ1 + µT0 Σ

−1µ0

2
,

so that the Bayes classifier can be written as: C∗(x) = 1(w∗Tx+ b∗ > 0).

For any trained classifier Ĉ we are interested in bounding the excess risk defined as R(Ĉ) − R∗.
The generative approach to training a classifier is to estimate estimate Σ−1and δ from data, and
then plug the estimates into Equation 2 to construct the classifier. This classifier is known as the
linear discriminant analysis (LDA) classifier, whose theoretical properties have been well-studied
in classical fixed p setting. The discriminative approach to training is to estimate Pr[Y=1|X]

Pr[Y=0|X] directly
from samples.

2.1 Assumptions.
We assume that mean is bounded i.e. µ1, µ0 ∈ {µ ∈ Rp : ‖µ‖2 ≤ Bµ}, where Bµ is a constant
which doesn’t scale with p. We assume that the covariance matrix Σ is non-degenerate i.e. all
eigenvalues of Σ are in [Bλmin

, Bλmax
]. Additionally we assume (µ1 − µ0)TΣ−1(µ1 − µ0) ≥ Bs,

which gives a lower bound on the Bayes classifier’s classification error R∗ ≥ 1 − Φ( 1
2Bs) > 0.

Note that this assumption is different from the definition of separable classes in [11] and the low
noise condition in [25], and the two classes are still not separable because R∗ > 0.

2.1.1 Sparsity Assumption.
Motivated by [7], we assume that Σ−1(µ1 − µ0) is sparse, and there at most s non-zero entries.
Cai and Liu [7] extensively discuss and show that such a sparsity assumption, is much weaker than
assuming either Σ−1 and (µ1 − µ0) to be individually sparse. We refer the reader to [7] for an
elaborate discussion.
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2.2 Generative Classifiers
Generative techniques work by estimating Σ−1 and (µ1 − µ0) from data and plugging them into
Equation 2. In high-dimensions, simple estimation techniques do not perform well when p � n,
the sample estimate for the covariance matrix Σ̂ is singular; using the generalized inverse of the
sample covariance matrix makes the estimator highly biased and unstable. Numerous alternative
approaches have been proposed by imposing structural conditions on Σ or Σ−1 and δ to ensure that
they can be estimated consistently. Some early work based on nearest shrunken centroids [29, 30],
feature annealed independence rules [14], and Naive Bayes [4] imposed independence assumptions
on Σ, which are often violated in real-world applications. [4, 13] impose more complex structural
assumptions on the covariance matrix and suggest more complicated thresholding techniques. Most
commonly, Σ−1 and δ are assumed to be sparse and then some thresholding techniques are used to
estimate them consistently [17, 28].

2.3 Discriminative Classifiers.
Recently, more direct techniques have been proposed to solve the sparse LDA problem. Let Σ̂
and µ̂d be consistent estimators of Σ and µ = µ1+µ0

2 . Fan et al. [15] proposed the Regularized
Optimal Affine Discriminant (ROAD) approach which minimizes wTΣw with wTµ restricted to be
a constant value and an `1-penalty of w.

wROAD = argmin
wT µ̂=1
||w||1≤c

wT Σ̂w (3)

Kolar and Liu [22] provided theoretical insights into the ROAD estimator by analysing its consis-
tency for variable selection. Cai and Liu [7] proposed another variant called linear programming
discriminant (LPD) which tries to make w close to the Bayes rules linear term Σ−1(µ1 − µ0) in the
`∞ norm. This can be cast as a linear programming problem related to the Dantzig selector.[8].

wLPD = argmin
w
||w||1 (4)

s.t.||Σ̂w − µ̂||∞ ≤ λn

Mai et al. [24]proposed another version of the sparse linear discriminant analysis based on an equiv-
alent least square formulation of the LDA, where they solve an `1-regularized least squares problem
to produce a consistent classifier.

All the techniques above either do not have finite sample convergence rates, or the 0-1 risk converged

at a slow rate of O
(√

s log p
n

)
.

In this paper, we first provide an analysis of classification error rates for any classifier with a linear
discriminant function, and then follow this analysis by investigating the performance of generative
and discriminative classifiers for conditional Gaussian model.

3 Classifiers with Sparse Linear Discriminants
We first analyze any classifier with a linear discriminant function, of the form: C(x) = 1(wTx+b >
0). We first note that the 0-1 classification error of any such classifier is available in closed-form as

R(w, b) = 1− 1

2
Φ

(
wTµ1 + b√
wTΣw

)
− 1

2
Φ

(
−w

Tµ0 + b√
wTΣw

)
, (5)

which can be shown by noting that wTX + b is a univariate normal random variable when condi-
tioned on the label Y .

Next, we relate the 0-1 classifiction error above to that of the Bayes classifier. Recall the earlier
notation of the Bayes classifier as C∗(x) = 1(xTw∗ + b∗ > 0). The following theorem is a key
result of the paper that shows that for any linear discriminant classifier whose linear discriminant
parameters are close to that of the Bayes classifier, the excess 0-1 risk is bounded only by second
order terms of the difference. Note that this theorem will enable fast classification rates if we obtain
fast rates for the parameter error.

Theorem 1. Let w = w∗ +∆, b = b∗ +Ω, and ∆→ 0, Ω → 0, then we have
R(w = w∗ +∆, b = b∗ +Ω)−R(w∗, b∗) = O(‖∆‖22 +Ω2). (6)
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Proof. Denote the quantity S∗ =
√

(µ1 − µ0)TΣ−1(µ1 − µ0), then we have µT1 w
∗+b∗√

w∗TΣw∗
=

−µT1 w
∗−b∗√

w∗TΣw∗
= 1

2S
∗. Using (5) and the Taylor series expansion of Φ(·) around 1

2S
∗, we have

|R(w, b)−R(w∗, b∗)| = 1

2
|(Φ(

µT1 w + b√
wTΣw

)− Φ(
1

2
S∗)) + (Φ(

−µT0 w − b√
wTΣw

)− Φ(
1

2
S∗))| (7)

≤K1|
(µ1 − µ0)Tw√

wTΣw
− S∗|+K2(

µT1 w + b√
wTΣw

− 1

2
S∗)2 +K3(

−µT0 w − b√
wTΣw

− 1

2
S∗)2

where K1,K2,K3 > 0 are constants because the first and second order derivatives of Φ(·) are
bounded.

First note that |
√
wTΣw −

√
w∗TΣw∗| = O(‖∆‖2), because ‖w∗‖2 is bounded.

Denote w′′ = Σ
1
2w, ∆′′ = Σ

1
2∆, w′′∗ = Σ

1
2w∗ a′′ = Σ−

1
2 (µ1 − µ0), we have (by the binomial

Taylor series expansion)

(µ1 − µ0)Tw√
wTΣw

− S∗ =
a′′
T
w′′√

w′′Tw′′
−
√
a′′Ta′′ (8)

=
1 + a′′T∆′′

a′′T a′′
−
√

1 + 2a
′′T∆′′

a′′T a′′
+ ∆′′T∆′′

a′′T a′′
√
w′′Tw′′

a′′T a′′

= O(
‖∆′′‖22√
a′′Ta′′

)

Note that w′′ → a′′, ∆′′ → 0, ‖∆‖2 = Θ(‖∆′′‖2), and S∗ is lower bouned, we have | (µ1−µ0)Tw√
wTΣw

−
S∗| = O(‖∆‖22).

Next we bound | µ
T
1 w+b√
wTΣw

− 1
2S
∗|:

| µ
T
1 w + b√
wTΣw

− 1

2
S∗| = | (µ

T
1 w
∗ + b∗)(

√
w∗TΣw∗ −

√
wTΣw) +

√
w∗TΣw∗(µT1 ∆+Ω)

√
wTΣw

√
w∗TΣw∗

| (9)

= O(
√
‖∆‖22 +Ω2)

where we use the fact that |µT1 w∗ + b∗| and S∗ are bounded.

Similarly |−µ
T
0 w−b√
wTΣw

− 1
2S
∗| = O(

√
‖∆‖22 +Ω2).

Combing the above bounds we get the desired result.

4 Logistic Regression Classifier
In this section, we show that the simple `1 regularized logistic regression classifier attains fast clas-
sification error rates.

Specifically, we are interested in the M -estimator [21] below:

(ŵ, b̂) = arg min
w,b

{
1

n

∑
(Y (i)(wTX(i) + b) + log(1 + exp(wTX(i) + b))) + λ(‖w‖1 + |b|)

}
,

(10)

which maximizes the penalized log-likelihood of the logistic regression model, which also corre-
sponds to the conditional probability of the response given the covariates P(Y |X) for the conditional
Gaussian model.

Note that here we penalize the intercept term b as well. Although the intercept term usually is not
penalized (e.g. [19]), some packages (e.g. [16]) penalize the intercept term. Our analysis show that
penalizing the intercept term does not degrade the performance of the classifier.

In [2, 31] it is shown that minimizing the expected risk of the logistic loss also minimizes the
classification error for the corresponding linear classifier. `1 regularized logistic regression is a
popular classification method in many settings [18, 5]. Several commonly used packages ([19, 16])
have been developed for `1 regularized logistic regression. And recent works ([20, 10]) have been
on scaling regularized logistic regression to ultra-high dimensions and large number of samples.
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4.1 Analysis

We first show that `1 regularized logistic regression estimator above converges to the Bayes classifier
parameters using techniques. Next we use the theorem from the previous section to argue that since
estimated parameter ŵ, b̂ is close to the Bayes classifier’s parameter w∗, b∗, the excess risk of the
classifier using estimated parameter is tightly bounded as well.

For the first step, we first show a restricted eigenvalue condition for X ′ = (X, 1) where X are our
covariates, that comes from a mixture of two Gaussian distributions 1

2N (µ1, Σ)+ 1
2N (µ0, Σ). Note

that X ′ is not zero centered, which is different from existing scenarios ([26], [6], etc.) that assume
covariates are zero centered. And we denotew′ = (w, b), S′ = {i : w′

∗
i 6= 0}, and s′ = |S′| ≤ s+1.

Lemma 1. With probability 1 − δ, ∀v′ ∈ A′ ⊆ {v′ ∈ Rp+1 : ‖v′‖2 = 1}, for some constants
κ1, κ2, κ3 > 0 we have

1

n
‖X ′v′‖2 ≥ κ1

√
n− κ2w(A′)− κ3

√
log

1

δ
(11)

where w(A′) = Eg′∼N (0,Ip+1)[supa′∈A′ g
′Ta′] is the Gaussian width of A′.

In the special case whenA′ = {v′ : ‖v′
S̄′
‖1 ≤ 3‖v′S′‖1, ‖v′‖2 = 1}, we havew(A′) = O(

√
s log p).

Proof. First note that X ′ is sub-Gaussian with bounded parameter and

Σ′ = E[
1

n
X ′

T
X ′] =

[
Σ + 1

2 (µ1µ
T
1 + µ0µ

T
0 ) 1

2 (µ1 + µ0)
1
2 (µT1 + µT0 ) 1

]
(12)

Note that AΣ′AT =

[
Σ + 1

4 (µ1 − µ0)T (µ1 − µ0) 0
0 1

]
where A =

[
Ip − 1

2 (µ1 + µ0)
0 1

]
, and

A−1 =

[
Ip

1
2 (µ1 + µ0)

0 1

]
. Notice that AAT =

[
Ip 0
0 0

]
+

[
− 1

2 (µ1 + µ0)
1

] [
− 1

2 (µ1 + µ0)T 1
]

and A−1A−T =

[
Ip 0
0 0

]
+

[
1
2 (µ1 + µ0)

1

] [
1
2 (µ1 + µ0)T 1

]
, and we can see that the singular

values of A and A−1 are lower bounded by 1√
2+B2

µ

and upper bounded by
√

2 +B2
µ. Let λ1

be the minimum eigenvalue of Σ′, and u′1 (‖u′1‖2 = 1) the corresponding eigenvector. From the
expression AΣATA−Tu′1 = λ1Au

′
1, so we know that the minimum eigenvalue of Σ′ is lower

bounded. Similarly the largest eigenvalue of Σ′ is upper bounded. Then the desired result follows
the proof of Theorem 10 in [1]. Although the proof of Theorem 10 in [1] is for zero-centered random
variables, the proof remains valid for non zero-centered random variables.

When A′ = {v′ : ‖v′
S̄′
‖1 ≤ 3‖v′S′‖1, ‖v′‖2 = 1}, [9] gives w(A′) = O(

√
s log p).

Having established a restricted eigenvalue result in Lemma 1, next we use the result in [26] for pa-
rameter recovery in generalized linear models (GLMs) to show that `1 regularized logistic regression
can recover the Bayes classifier parameters.

Lemma 2. When the number of samples n� s′ log p, and choose λ = c0

√
log p
n for some constant

c0, then we have

‖w∗ − ŵ‖22 + (b∗ − b̂)2 = O(
s′ log p

n
) (13)

with probability at least 1−O( 1
pc1 + 1

nc2 ), where c1, c2 > 0 are constants.

Proof. Following the proof of Lemma 1, we see that the conditions (GLM1) and (GLM2) in [26]
are satisfied. Following the proof of Proposition 2 and Corollary 5 in [26], we have the desired
result. Although the proof of Proposition 2 and Corollary 5 in [26] is for zero-centered random
variables, the proof remains valid for non zero-centered random variables.

Combining Lemma 2 and Theorem 1 we have the following theorem which gives a fast rate for the
excess 0-1 risk of a classifier trained using `1 regularized logistic regression.
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Theorem 2. With probability at least 1 − O( 1
pc1 + 1

nc2 ) where c1, c2 > 0 are constants, when we

set λ = c0

√
log p
n for some constant c0 the Lasso estimate ŵ, b̂ in (10) satisfies

R(ŵ, b̂)−R(w∗, b∗) = O(
s log p

n
) (14)

Proof. This follows from Lemma 2 and Theorem 1.

5 Other Linear Discriminant Classifiers

In this section, we provide convergence results for the 0-1 risk for other linear discriminant classifiers
discussed in Section 2.3.

Naive Bayes We compare the discriminative approach using `1 logistic regression to the genera-
tive approach using naive Bayes. For illustration purposes we conside the case where Σ = Ip, µ1 =

M1√
s

[
1s

0p−s

]
and µ0 = −M0√

s

[
1s

0p−s

]
. where 0 < B1 ≤ M1,M0 ≤ B2 are unknown but bounded

constants. In this case w∗ = M1+M0√
s

[
1s

0p−s

]
and b∗ = 1

2 (−M2
1 + M2

0 ). Using naive Bayes we es-

timate ŵ = µ̄1 − µ̄0, where µ̄1 = 1∑
1(Y (i)=1

)
∑
Y (i)=1X

(i) and µ̄0 = 1∑
1(Y (i)=0

)
∑
Y (i)=0X

(i).
Thus with high probability, we have ‖ŵ − w∗‖22 = O( pn ), using Theorem 1 we get a slower rate
than the bound given in Theorem 2 for discriminative classification using `1 regularized logistic
regression.

LPD [7] LPD uses a linear programming similar to the Dantzig selector.

Lemma 3 (Cai and Liu [7], Theorem 4). Let λn = C
√

s log p
n with C being a sufficiently large

constant. Let n > log p, let ∆ = (µ1 − µ0)TΣ−1(µ1 − µ0) > c1 for some constant c1 > 0, and
let wLPD be obtained as in Equation 4, then with probability greater than 1 − O(p−1), we have
R(wLPD)

R∗ − 1 = O(
√

s log p
n ).

SLDA [28] SLDA uses thresholded estimate for Σ and µ1 − µ0. We state a simpler version.

Lemma 4 ([28], Theorem 3). Assume that Σ and µ1−µ0 are sparse, then we have R(wSLDA)

R∗ −1 =

O(max(( s log p
n )α1 , (S log p

n )α2) with high probability, where s = ‖µ1 − µ0‖0, S is the number of
non-zero entries in Σ, and α1, α2 ∈ (0, 1

2 ) are constants.

ROAD [15] ROAD minimizeswTΣw withwTµ restricted to be a constant value and an `1-penalty
of w.

Lemma 5 (Fan et al. [15], Theorem 1). Assume that with high probability, ||Σ̂−Σ||∞ = O(
√

log p
n )

and ||µ̂−µ||∞ = O(
√

log p
n ), and letwROAD be obtained as in Equation 3, then with high probability,

we have R(wROAD)−R∗ = O(
√

s log p
n ).

6 Experiments

In this section we describe experiments which illustrate the rates for excess 0-1 risk given in Theorem
2. In our experiments we use Glmnet [19] where we set the option to penalize the intercept term
along with all other parameters. Glmnet is popular package for `1 regularized logistic regression
using coordinate descent methods.

For illustration purposes in all simulations we use Σ = Ip, µ1 = 1p + 1√
s

[
1s

0p−s

]
, µ0 = 1p −

1√
s

[
1s

0p−s

]
To illustrate our bound in Theorem 2, we consider three different scenarios. In Figure 1a
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on n.

Figure 1: Simulations for different Gaussian classification problems showing the dependence of
classification error on different quantities. All experiments plotted the average of 20 trials. In all

experiments we set the regularization parameter λ =
√

log p
n .

we vary p while keeping s, (µ1−µ0)TΣ−1(µ1−µ0) constant. Figure 1a shows for different p how
the classification error changes with increasing n. In Figure 1a we show the relationship between
the classification error and the quantity n

log p . This figure agrees with our result on excess 0-1 risk’s
dependence on p. In Figure 1b we vary s while keeping p, (µ1 − µ0)TΣ−1(µ1 − µ0) constant.
Figure 1b shows for different s how the classification error changes with increasing n. In Figure 1a
we show the relationship between the classification error and the quantity n

s . This figure agrees with
our result on excess 0-1 risk’s dependence on s. In Figure 1c we show how R(ŵ, b̂) − R(w∗, b∗)
changes with respect to 1

n in one instance Gaussian classification. We can see that the excess 0-1
risk achieves the fast rate and agrees with our bound.
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