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Abstract

We propose the Ω-return as an alternative to the λ-return currently used by the
TD(λ) family of algorithms. The benefit of the Ω-return is that it accounts for
the correlation of different length returns. Because it is difficult to compute ex-
actly, we suggest one way of approximating the Ω-return. We provide empirical
studies that suggest that it is superior to the λ-return and γ-return for a variety of
problems.

1 Introduction

Most reinforcement learning (RL) algorithms learn a value function—a function that estimates the
expected return obtained by following a given policy from a given state. Efficient algorithms for esti-
mating the value function have therefore been a primary focus of RL research. The most widely used
family of RL algorithms, the TD(λ) family [1], forms an estimate of return (called the λ-return) that
blends low-variance but biased temporal difference return estimates with high-variance but unbiased
Monte Carlo return estimates, using a parameter λ ∈ [0, 1]. While several different algorithms exist
within the TD(λ) family—the original linear-time algorithm [1], least-squares formulations [2], and
methods for adapting λ [3], among others—the λ-return formulation has remained unchanged since
its introduction in 1988 [1].

Recently Konidaris et al. [4] proposed the γ-return as an alternative to the λ-return, which uses a
more accurate model of how the variance of a return increases with its length. However, both the γ
and λ-returns fail to account for the correlation of returns of different lengths, instead treating them
as statistically independent. We propose the Ω-return, which uses well-studied statistical techniques
to directly account for the correlation of returns of different lengths. However, unlike the λ and
γ-returns, the Ω-return is not simple to compute, and often can only be approximated. We propose a
method for approximating the Ω-return, and show that it outperforms the λ and γ-returns on a range
of off-policy evaluation problems.

2 Complex Backups

Estimates of return lie at the heart of value-function based RL algorithms: an estimate, V̂ π , of the
value function, V π , estimates return from each state, and the learning process aims to reduce the
error between estimated and observed returns. For brevity we suppress the dependencies of V π and
V̂ π on π and write V and V̂ . Temporal difference (TD) algorithms use an estimate of the return
obtained by taking a single transition in the Markov decision process (MDP) [5] and then estimating
the remaining return using the estimate of the value function:

RTD
st = rt + γV̂ (st+1),
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where RTD
st is the return estimate from state st, rt is the reward for going from st to st+1 via action

at, and γ ∈ [0, 1] is a discount parameter. Monte Carlo algorithms (for episodic tasks) do not use
intermediate estimates but instead use the full return,

RMC
st =

L−1∑
i=0

γirt+i,

for an episode L transitions in length after time t (we assume that L is finite). These two types of
return estimates can be considered instances of the more general notion of an n-step return,

R(n)
st =

(
n−1∑
i=0

γirt+i

)
+ γnV̂ (st+n),

for n ≥ 1. Here, n transitions are observed from the MDP and the remaining portion of return is
estimated using the estimate of the value function. Since st+L is a state that occurs after the end of
an episode, we assume that V̂ (st+L) = 0, always.

A complex return is a weighted average of the 1, . . . , L step returns:

R†st =

L∑
n=1

w†(n,L)R(n)
st , (1)

where w†(n,L) are weights and † ∈ {λ, γ,Ω} will be used to specify the weighting schemes of
different approaches. The question that this paper proposes an answer to is: what weighting scheme
will produce the best estimates of the true expected return?

The λ-return, Rλst , is the weighting scheme that is used by the entire family of TD(λ) algorithms
[5]. It uses a parameter λ ∈ [0, 1] that determines how the weight given to a return decreases as the
length of the return increases:

wλ(n,L) =

{
(1− λ)λn−1 if n < L

1−
∑n−1
i=1 wλ(i) if n = L.

When λ = 0, Rλst = RTD
st , which has low variance but high bias. When λ = 1, Rλst = RMC

st , which
has high variance but is unbiased. Intermediate values of λ blend the high-bias but low-variance
estimates from short returns with the low-bias but high-variance estimates from the longer returns.

The success of the λ-return is largely due to its simplicity—TD(λ) using linear function approxi-
mation has per-time-step time complexity linear in the number of features. However, this efficiency
comes at a cost: the λ-return is not founded on a principled statistical derivation.1 Konidaris et al. [4]
remedied this recently by showing that the λ-return is the maximum likelihood estimator of V (st)

given three assumptions. Specifically, Rλst ∈ arg maxx∈R Pr(R
(1)
st , R

(2)
st , . . . , R

(L)
st |V (st) = x) if

Assumption 1 (Independence). R(1)
st , . . . , R

(L)
st are independent random variables,

Assumption 2 (Unbiased Normal Estimators). R(n)
st is normally distributed with mean E[R

(n)
st ] =

V (st) for all n.

Assumption 3 (Geometric Variance). Var(R
(n)
st ) ∝ 1/λn.

Although this result provides a theoretical foundation for the λ-return, it is based on three typically
false assumptions: the returns are highly correlated, only the Monte Carlo return is unbiased, and the
variance of the n-step returns from each state do not usually increase geometrically. This suggests
three areas where the λ-return might be improved—it could be modified to better account for the
correlation of returns, the bias of the different returns, and the true form of Var(R

(n)
st ).

The γ-return uses an approximate formula for the variance of an n-step return in place of Assumption
3. This allows the γ-return to better account for how the variance of returns increases with their

1To be clear: there is a wealth of theoretical and empirical analyses of algorithms that use the λ-return.
Until recently there was not a derivation of the λ-return as the estimator of V (st) that optimizes some objective
(e.g., maximizes log likelihood or minimizes expected squared error).
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length, while simultaneously removing the need for the λ parameter. The γ-return is given by the
weighting scheme:

wγ(n,L) =
(
∑n
i=1 γ

2(i−1))−1∑L
n̂=1(

∑n̂
i=1 γ

2(i−1))−1
.

3 The Ω-Return

We propose a new complex return, the Ω-return, that improves upon the λ and γ returns by account-
ing for the correlations of the returns. To emphasize this problem, notice that R(20)

st and R(21)
st will

be almost identical (perfectly correlated) for many MDPs (particularly when γ is small). This means
that Assumption 1 is particularly egregious, and suggests that a new complex return might improve
upon the λ and γ-returns by properly accounting for the correlation of returns.

We formulate the problem of how best to combine different length returns to estimate the true ex-
pected return as a linear regression problem. This reformulation allows us to leverage the well-
understood properties of linear regression algorithms. Consider a regression problem with L points,
{(xi, yi)}Li=1, where the value of yi depends on the value of xi. The goal is to predict yi given
xi. We set xi = 1 and yi = R

(i)
st . We can then construct the design matrix (a vector in this case),

x = 1 = [1, . . . , 1]ᵀ ∈ RL and the response vector, y = [R
(1)
st , R

(2)
st , . . . , R

(L)
st ]ᵀ. We seek a re-

gression coefficient, β̂ ∈ R, such that y ≈ xβ̂. This β̂ will be our estimate of the true expected
return.

Generalized least squares (GLS) is a method for selecting β̂ when the yi are not necessarily in-
dependent and may have different variances. Specifically, if we use a linear model with (possibly
correlated) mean-zero noise to model the data, i.e., y = xβ + ε, where β ∈ R is unknown, ε is a
random vector, E[ε] = 0, and Var(ε|x) = Ω, then the GLS estimator

β̂ = (xᵀΩ−1x)−1xᵀΩ−1y, (2)

is the best linear unbiased estimator (BLUE) for β [6]—the linear unbiased estimator with the
lowest possible variance.

In our setting the assumptions about the true model that produced the data become that
[R

(1)
st , R

(2)
st , . . . , R

(L)
st ]ᵀ = [V (st), V (st), . . . , V (st)]

ᵀ + ε, where E[ε] = 0 (i.e., the returns are
all unbiased estimates of the true expected return) and Var(ε|x) = Ω. Since x = 1 in our case,
Var(ε|x)(i, j) = Cov(R

(i)
st − V (st), R

(j)
st − V (st)) = Cov(R

(i)
st , R

(j)
st ), where Var(ε|x)(i, j) de-

notes the element of Var(ε|x) in the ith row and jth column.

So, using only Assumption 2, GLS ((2), solved for β̂) gives us the complex return:

β̂ =

[ 1 1 . . . 1 ] Ω−1


1
1
...
1



−1

︸ ︷︷ ︸
= 1∑L

n,m=1 Ω−1(n,m)

[ 1 1 . . . 1 ] Ω−1


R

(1)
st

R
(2)
st
...

R
(L)
st


︸ ︷︷ ︸

=
∑L
n,m=1 Ω−1(n,m)R

(n)
st

,

which can be written in the form of (1) with weights:

wΩ(n,L) =

∑L
m=1 Ω−1(n,m)∑L
n̂,m=1 Ω−1(n̂,m)

, (3)

where Ω is an L× L matrix with Ω(i, j) = Cov(R
(i)
st , R

(j)
st ).

Notice that the Ω-return is a generalization of the λ and γ returns. The λ-return can be obtained
by reintroducing the false assumption that the returns are independent and that their variance grows
geometrically, i.e., by making Ω a diagonal matrix with Ωn,n = λ−n. Similarly, the γ-return can be
obtained by making Ω a diagonal matrix with Ωn,n =

∑n
i=1 γ

2(i−1).
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Notice that RΩ
st is a BLUE of V (st) if Assumption 2 holds. Since Assumption 2 does not hold, the

Ω-return is not an unbiased estimator of V (s). Still, we expect it to outperform the λ and γ-returns
because it accounts for the correlation of n-step returns and they do not. However, in some cases
it may perform worse because it is still based on the false assumption that all of the returns are
unbiased estimators of V (st). Furthermore, given Assumption 2, there may be biased estimators of
V (st) that have lower expected mean squared error than a BLUE (which must be unbiased).

4 Approximating the Ω-Return

In practice the covariance matrix, Ω, is unknown and must be approximated from data. This ap-
proach, known as feasible generalized least squares (FGLS), can perform worse than ordinary least
squares given insufficient data to accurately estimate Ω. We must therefore accurately approximate
Ω from small amounts of data.

To study the accuracy of covariance matrix estimates, we estimated Ω using a large number of
trajectories for four different domains: a 5 × 5 gridworld, a variant of the canonical mountain car
domain, a real-world digital marketing problem, and a continuous control problem (DAS1), all of
which are described in more detail in subsequent experiments. The covariance matrix estimates are
depicted in Figures 1(a), 2(a), 3(a), and 4(a). We do not specify rows and columns in the figures
because all covariance matrices and estimates thereof are symmetric. Because they were computed
from a very large number of trajectories, we will treat them as ground truth.

We must estimate the Ω-return when only a few trajectories are available. Figures 1(b), 2(b), 3(b),
and 4(b) show direct empirical estimates of the covariance matrices using only a few trajectories.
These empirical approximations are poor due to the very limited amount of data, except for the
digital marketing domain, where a “few” trajectories means 10,000. The solid black entries in
Figures 1(f), 2(f), 3(f), and 4(f) show the weights, wΩ(n,L), on different length returns when using
different estimates of Ω. The noise in the direct empirical estimate of the covariance matrix using
only a few trajectories leads to poor estimates of the return weights.

When approximating Ω from a small number of trajectories, we must be careful to avoid this over-
fitting of the available data. One way to do this is to assume a compact parametric model for Ω.
Below we describe a parametric model of Ω that has only four parameters, regardless of L (which
determines the size of Ω). We use this parametric model in our experiments as a proof of concept—
we show that the Ω-return using even this simple estimate of Ω can produce improved results over
the other existing complex returns. We do not claim that this scheme for estimating Ω is particularly
principled or noteworthy.

4.1 Estimating Off-Diagonal Entries of Ω

Notice in Figures 1(a), 2(a), 3(a), and 4(a) that for j > i, Cov(Rist , R
j
st) ≈ Cov(Rist , R

i
st) =

Var(Rist). This structure would mean that we can fill in Ω given its diagonal values, leaving only L
parameters. We now explain why this relationship is reasonable in general, and not just an artifact
of our domains. We can write each entry in Ω as a recurrence relation:

Cov[R(i)
st , R

(j)
st ] =Cov[R(i)

st , R
(j−1)
st + γj−1(rt+j + γV̂ (st+j)− V̂ (st+j−1)]

=Cov[R(i)
st , R

(j−1)
st ] + γj−1Cov[R(i)

st , rt+j + γV̂ (st+j)− V̂ (st+j−1)],

when i < j. The term rt+j + γV̂ (st+j) − V̂ (st+j−1) is the temporal difference error j steps
in the future. The proposed assumption that Cov(Rist , R

j
st) = Var(Rist) is equivalent to as-

suming that the covariance of this temporal difference error and the i-step return is negligible:
γj−1Cov[R

(i)
st , rt+j + γV̂ (st+j) − V̂ (st+j−1)] ≈ 0. The approximate independence of these two

terms is reasonable in general due to the Markov property, which ensures that at least the conditional
covariance, Cov[R

(i)
st , rt+j + γV̂ (st+j)− V̂ (st+j−1)|st], is zero.

Because this relationship is not exact, the off-diagonal entries tend to grow as they get farther from
the diagonal. However, especially when some trajectories are padded with absorbing states, this
relationship is quite accurate when j = L, since the temporal difference errors at the absorbing state
are all zero, and Cov[R

(i)
st , 0] = 0. This results in a significant difference between Cov[R

(i)
st , R

(L−1)
st ]
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Figure 1: Gridworld Results.
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Figure 3: Digital Marketing Results.
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and Cov[R
(i)
st , R

(L)
st ]. Rather than try to model this drop, which can influence the weights signifi-

cantly, we reintroduce the assumption that the Monte Carlo return is independent of the other returns,
making the off-diagonal elements of the last row and column zero.

4.2 Estimating Diagonal Entries of Ω

The remaining question is how best to approximate the diagonal of Ω from a very small number
of trajectories. Consider the solid and dotted black curves in Figures 1(e), 2(e), 3(e), and 4(e),
which depict the diagonals of Ω when estimated from either a large number or small number of
trajectories. When using only a few trajectories, the diagonal includes fluctuations that can have
significant impacts on the resulting weights. However, when using many trajectories (which we
treat as giving ground truth), the diagonal tends to be relatively smooth and monotonically increasing
until it plateaus (ignoring the final entry).

This suggests using a smooth parametric form to approximate the diagonal, which we do as follows.
Let vi denote the sample variance of R(i)

st for i = 1 . . . L. Let v+ be the largest sample variance:
v+ = maxi∈{1,...,L} vi. We parameterize the diagonal using four parameters, k1, k2, v+, and vL:

Ω̂k1,k2,v+,vL(i, i) =


k1 if i = 1

vL if i = L

min{v+, k1k
(1−t)
2 } otherwise.

Ω(1, 1) = k1 sets the initial variance, and vL is the variance of the Monte Carlo return. The pa-
rameter v+ enforces a ceiling on the variance of the i-step return, and k2 captures the growth rate of
the variance, much like λ. We select the k1 and k2 that minimize the mean squared error between
Ω̂(i, i) and vi, and set v+ and vL directly from the data.2

This reduces the problem of estimating Ω, an L×L matrix, to estimating four numbers from return
data. Consider Figures 1(c), 2(c), 3(c), and 4(c), which depict Ω̂ as computed from many trajectories.
The differences between these estimates and the ground truth show that this parameterization is not
perfect, as we cannot represent the true Ω exactly. However, the estimate is reasonable and the
resulting weights (solid red) are visually similar to the ground truth weights (solid black) in Figures
1(f), 2(f), 3(f), and 4(f). We can now get accurate estimates of Ω from very few trajectories. Figures
1(d), 2(d), 3(d), and 4(d) show Ω̂ when computed from only a few trajectories. Note their similarity
to Ω̂ when using a large number of trajectories, and that the resulting weights (unfilled red in Figures
1(f), 2(f), 3(f), and 4(f)) are similar to the those obtained using many more trajectories (the filled red
bars).

Pseudocode for approximating the Ω-return is provided in Algorithm 1. Unlike the λ-return, which
can be computed from a single trajectory, the Ω-return requires a set of trajectories in order to
estimate Ω. The pseudocode assumes that every trajectory is of length L, which can be achieved by
padding shorter trajectories with absorbing states.

2We include the constraints that k2 ∈ [0, 1] and 0 ≤ k1 ≤ v+.
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Algorithm 1: Computing the Ω-return.
Require: n trajectories beginning at s and of length L.

1. Compute R(i)
s for i = 1, . . . , L and for each trajectory.

2. Compute the sample variances, vi = Var(R(i)
s ), for i = 1, . . . , L.

3. Set v+ = maxi∈{1,...,L} vi.
4. Search for the k1 and k2 that minimize the mean squared error between vi and

Ω̂k1,k2,v+,vL(i, i) for i = 1, . . . , L.

5. Fill the diagonal of the L× L matrix, Ω, with Ω(i, i) = Ω̂k1,k2,v+,vL(i, i), using the
optimized k1 and k2.

6. Fill all of the other entries with Ω(i, j) = Ω(i, i) where j > i. If (i = L or j = L) and
i 6= j then set Ω(i, j) = 0 instead.

7. Compute the weights for the returns according to (3).
8. Compute the Ω-return for each trajectory according to (1).

5 Experiments

Approximations of the Ω-return could, in principle, replace the λ-return in the whole family of
TD(λ) algorithms. However, using the Ω-return for TD(λ) raises several interesting questions that
are beyond the scope of this initial work (e.g., is there a linear-time way to estimate the Ω-return?
Since a different Ω is needed for every state, how can the Ω-return be used with function approxi-
mation where most states will never be revisited?). We therefore focus on the specific problem of
off-policy policy evaluation—estimating the performance of a policy using trajectories generated by
a possibly different policy. This problem is of interest for applications that require the evaluation of
a proposed policy using historical data.

Due to space constraints, we relegate the details of our experiments to the appendix in the supple-
mental documents. However, the results of the experiments are clear—Figures 1(g), 2(g), 3(g), and
4(g) show the mean squared error (MSE) of value estimates when using various methods.3 Notice
that, for all domains, using the Ω-return (the EMP Ω and APP Ω labels) results in lower MSE than
the γ-return and the λ-return with any setting of λ.

6 Conclusions

Recent work has begun to explore the statistical basis of complex estimates of return, and how we
might reformulate them to be more statistically efficient [4]. We have proposed a return estimator
that improves upon the λ and γ-returns by accounting for the covariance of return estimates. Our
results show that understanding and exploiting the fact that in control settings—unlike in standard
supervised learning—observed samples are typically neither independent nor identically distributed,
can substantially improve data efficiency in an algorithm of significant practical importance.

Many (largely positive) theoretical properties of the λ-return and TD(λ) have been discovered over
the past few decades. This line of research into other complex returns is still in its infancy, and
so there are many open questions. For example, can the Ω-return be improved upon by removing
Assumption 2 or by keeping Assumption 2 but using a biased estimator (not a BLUE)? Is there
a method for approximating the Ω-return that allows for value function approximation with the
same time complexity as TD(λ), or which better leverages our knowledge that the environment is
Markovian? Would TD(λ) using the Ω-return be convergent in the same settings as TD(λ)? While
we hope to answer these questions in future work, it is also our hope that this work will inspire other
researchers to revisit the problem of constructing a statistically principled complex return.

3To compute the MSE we used a large number of Monte Carlo rollouts to estimate the true value of each
policy.
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