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1 Derivation of the ADF filtering equations for linear dynamics

1.1 Setting and notation

In the main text, we have presented our model in an open-loop setting, where the process X is
passively observed. Here we consider a more general setting, incorporating a control process Ut, so
the dynamics are

dXt = (A (Xt) +B (Ut)) dt+D (Xt) dWt, (1)
where, in general, Ut is a function of Nt.
For the purposes of the derivation, it is convenient to work with precision matrices rather than
variance matrices. We write F = Σ−1

pop, R = Σ−1
tc and Qt = Σ−1

t . Thus the density of the process
N at (t, θ) given X[0,t],Nt is

λt (θ,Xt) = λ0

√
|F |

(2π)
m exp

(
−1

2
‖θ − c‖2F −

1

2
‖HXt − θ‖2R

)
, (2)

= λ0

√
|F |

(2π)
m exp

(
−1

2
‖HXt − c‖2M −

1

2

∥∥∥θ − (F +R)
−1

(Fc+RHXt)
∥∥∥2

F+R

)
,

(3)

where M ,
(
F−1 +R−1

)−1
.

We denote by P (·, t) the posterior density of Xt given Nt, and by EtP [·] the posterior expectation
based on observations up to time t. We will simply write EP [·] when the time t is obvious from
context.

1.2 Filtering equations between spikes

1.2.1 Exact filtering equations for the first two moments

As seen in [1], the PDE for the posterior density,

dtP (x, t) = L∗tP (x, t) dt+ P (x, t)

ˆ
Rn

λt (θ, x)− λ̂t (θ)

λ̂t (θ)

(
N (dt× dθ)− λ̂t (θ) dθ dt

)
, (4)

still holds in the closed-loop case. Here Lt is the posterior infinitesimal generator, defined with an
additional conditioning on Nt,

Ltf (x) = lim
∆t→0+

E [f (Xt+∆t) |Xt = x,Nt]− f (x)

∆t
,
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and L∗t is its adjoint. Note that in this closed-loop setting, the infinitesimal generator is itself a
random operator, due to its dependence on past observations through the control law, and that Nt is
no longer a doubly-stochastic Poisson process.

Between spikes, (4) simplifies to

∂

∂t
P (x, t) = L∗tP (x, t)− P (x, t)

ˆ
Rn

(
λt (θ, x)− λ̂t (θ)

)
dθ,

so for a sufficiently well-behaved function f ,

∂EP [f (Xt)]

∂t
=

ˆ
f (x)

(
L∗tP (x, t) + P (x, t)

ˆ (
λ̂t (θ)− λt (θ, x)

)
dθ

)
dx

=

ˆ
P (x, t)

(
Ltf (x) + f (x)

ˆ (
λ̂t (θ)− λt (θ, x)

)
dθ

)
dx

= EP

[
Ltf (Xt) + f (Xt)

ˆ (
λ̂t (θ)− λt (θ,Xt)

)
dθ

]
.

Assuming the state evolves as in (1), the (closed loop) infinitesimal generator is

Ltf (x) = (A (x) +B (Ut))
T ∇f (x) +

1

2
Tr
[
∇2f (x)D (x)D (x)

T
]
,

so, letting µt = EPXt, X̃t = Xt − µt,Σt = EP

[
X̃tX̃

T
t

]
,

dµt
dt

= EP [A (Xt)] +B (Ut) + EP

[
Xt

ˆ (
λ̂t (θ)− λt (θ,Xt)

)
dθ

]
,

dΣt
dt

= EP

[
A (Xt) X̃

T
t

]
+ EP

[
X̃tA (Xt)

T
]

+ EP

[
D (Xt)D (Xt)

T
]

+EP

[
X̃tX̃

T
t

ˆ (
λ̂t (θ)− λt (θ,Xt)

)
dθ

]
. (5)

1.2.2 ADF approximation

The computations that follow frequently require multiplying Gaussian functions, sometimes with a
possibly degenerate precision matrix. To this end, we use the following slightly generalized form of
a well-known result about the sum of quadratic forms.
Claim. Let x, a, b ∈ Rn and A,B ∈ Rn×n be symmetric matrices such that A+B is non-singular.
Then

‖x− a‖2A + ‖x− b‖2B = ‖a− b‖2A(A+B)−1B +
∥∥∥x− (A+B)

−1
(Aa+Bb)

∥∥∥2

A+B
.

Proof. This is proved by a straightforward completion of squares. If A,B are invertible,

‖x− a‖2A + ‖x− b‖2B = ‖x‖2A − x
TAa− aTAx+ ‖a‖2A + ‖x‖2B − x

TBb− bTBx+ ‖b‖2B
= ‖x‖2A+B − x

T (Aa+Bb)− (Aa+Bb)
T
x+ ‖a‖2A + ‖b‖2B

=
∥∥∥x− (A+B)

−1
(Aa+Bb)

∥∥∥2

A+B
−
∥∥∥(A+B)

−1
(Aa+Bb)

∥∥∥2

A+B

+ ‖a‖2A + ‖b‖2B

=
∥∥∥x− (A+B)

−1
(Aa+Bb)

∥∥∥2

A+B

+ ‖a‖2A + ‖b‖2B − ‖Aa+Bb‖2(A+B)−1︸ ︷︷ ︸
∗
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∗ = ‖a‖2A + ‖b‖2B − ‖Aa‖
2
(A+B)−1 − aTA (A+B)

−1
Bb− bTB (A+B)

−1
Aa− ‖Bb‖2(A+B)−1

= aTA
(
a− (A+B)

−1
Aa− (A+B)

−1
Bb
)

+ bTB
(
b− (A+B)

−1
Bb− (A+B)

−1
Aa
)

= aTA (A+B)
−1
B (a− b) + bTB (A+B)

−1
A (b− a)

= aT
(
B−1 +A−1

)−1
(a− b) + bT

(
A−1 +B−1

)−1
(b− a)

= ‖a− b‖2(A−1+B−1)−1

= ‖a− b‖2A(A+B)−1B

By continuity, the claim also holds when A,B are not both invertible, provided (A+B) is invert-
ible.

Computing the expectations in (5) involves computation of integrals containing P (x, t)λt (θ, x).
Taking the ADF approximation P (x, t) ≈ N (x;µt,Σt), and using the claim above, we have

P (x, t)λt (θ, x) ≈ λ0

√
|F |

(2π)
mN (x;µt,Σt)

× exp

(
−1

2

(
‖Hx− c‖2M +

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

))
= λ0

√
|F |

(2π)
m+n |Σt|

exp

(
−1

2
‖x− µt‖2Qt

)
× exp

(
−1

2

(
‖x− c̄‖2HTMH +

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

))
= λ0

√
|F |

(2π)
m+n |Σt|

exp

(
−1

2

(
‖µt − c̄‖2QM

t
+
∥∥x− µMt ∥∥2

Qt+HTMH

))
× exp

(
−1

2

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

)
where H−1

r is any right inverse of H , and

c̄ , H−1
r c

M , F (F +R)
−1
R =

(
F−1 +R−1

)−1

µMt ,
(
Qt +HTMH

)−1 (
Qtµt +HTMHc̄

)
QMt , Qt

(
Qt +HTMH

)−1
HTMH =

(
I +HTMHΣt

)−1
HTMH.

An alternate form for QMt may be derived from the Woodbury identity as follows,

QMt =
(
I +HTMHΣt

)−1
HTMH

=
(
I −HT

(
M−1 +HΣtH

T
)−1

HΣt

)
HTMH

= HT
(
I −

(
M−1 +HΣtH

T
)−1

HΣtH
T
)
MH

= HT
((
M−1 +HΣtH

T
)−1

M−1
)
MH

= HTSMt H, (6)
where

SMt ,
(
M−1 +HΣtH

T
)−1

,

so we can write

P (x, t)λt (θ, x) ≈ λ0

√
|F |

(2π)
m+n |Σt|

exp

(
−1

2

(
‖Hµt − c‖2SM

t
+
∥∥x− µMt ∥∥2

Qt+HTMH

))
× exp

(
−1

2

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

)
.
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Now we define
gt ,

ˆ
λ̂t (θ) dθ =

ˆ
EP [λt (θ,Xt)] dθ,

and compute its value as follows:

gt =

ˆ
λ̂t (θ) dθ

=

ˆ ˆ
P (x, t)λt (θ, x) dxdθ

≈ λ0

√
detF

(2π)
m+n

det Σt
exp

(
−1

2
‖Hµt − c‖2SM

t

)ˆ
dx exp

(
−1

2

∥∥x− µMt ∥∥2

Qt+HTMH

)
×
ˆ
dθ exp

(
−1

2

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

)
= λ0

√
detF

(2π)
n

det Σt det (F +R)
exp

(
−1

2
‖Hµt − c‖2SM

t

)
ˆ
dx exp

(
−1

2

∥∥x− µMt ∥∥2

Qt+HTMH

)
= λ0

√
detF

det Σt det (Qt +HTMH) det (F +R)
exp

(
−1

2
‖Hµt − c‖2SM

t

)
To simplify the expression under the square root, we note that

detF

det (F +R)
= det

(
F (F +R)

−1
)

= det
((
R−1 + F−1

)−1
R−1

)
=

detM

detR
,

and, using the matrix determinant lemma and (6)

det
(
Qt +HTMH

)
= detQt detM det

(
M−1 +HΣtH

T
)

=
detM

det Σt detSMt
so

gt = λ0

√
detSMt
detR

exp

(
−1

2
‖Hµt − c‖2SM

t

)
.

A similar computation yields additional terms from (5), expressed in terms of gt.

EP

[
Xt

ˆ
λt (θ,Xt) dθ

]
=

ˆ
dx

ˆ
dθxP (x, t)λt (θ, x)

≈ λ0

√
detF

(2π)
m+n

det Σt
exp

(
−1

2
‖Hµt − c‖2SM

t

)
×
ˆ
dxx exp

(
−1

2

∥∥x− µMt ∥∥2

Qt+HTMH

)
×
ˆ
dθ exp

(
−1

2

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

)
= λ0

√
detF

(2π)
n

det Σt det (F +R)
exp

(
−1

2
‖Hµt − c‖2SM

t

)
×
ˆ
dxx exp

(
−1

2

∥∥x− µMt ∥∥2

Qt+HTMH

)
= λ0

√
detF

det Σt det (Qt +HTMH) det (F +R)
exp

(
−1

2
‖Hµt − c‖2SM

t

)
µMt

= gtµ
M
t ,
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EP

[
X̃tX̃

T
t

ˆ
λt (θ,Xt) dθ

]
=

ˆ
dx

ˆ
dθP (x, t) (x− µt) (x− µt)T λt (θ, x) dθ

≈ λ0

√
detF

(2π)
m+n

det Σt
exp

(
−1

2
‖Hµt − c‖2SM

t

)
×
ˆ
dx (x− µt) (x− µt)T exp

(
−1

2

∥∥x− µMt ∥∥2

Qt+HTMH

)
×
ˆ
dθ exp

(
−1

2

∥∥∥θ − (F +R)
−1

(Fc+RHx)
∥∥∥2

F+R

)
= λ0

√
detF

(2π)
n

det Σt det (F +R)
exp

(
−1

2
‖Hµt − c‖2SM

t

)
×
ˆ
dx (x− µt) (x− µt)T exp

(
−1

2

∥∥x− µMt ∥∥2

Qt+HTMH

)
= λ0

√
detF

det Σt det (Qt +HTMH) det (F +R)

× exp

(
−1

2
‖Hµt − c‖2SM

t

)[(
Qt +HTMH

)−1
+
(
µt − µMt

) (
µt − µMt

)T ]
= gt

[(
Qt +HTMH

)−1
+
(
µt − µMt

) (
µt − µMt

)T ]
.

Assuming X has linear dynamics, substituting these results into (5) yields the following filtering
equations between spikes (we abuse notation and use µt,Σt to refer to the ADF-approximate quan-
tities from here on),

dµt
dt

= Aµt +B (Ut) + gt
(
µt − µMt

)
,

dΣt
dt

= AΣt + ΣtA
T +DDT

+gt

[
Σt −

(
Qt +HTMH

)−1 −
(
µt − µMt

) (
µt − µMt

)T ]
. (7)

We simplify this by computing

µt − µMt = µt −
(
Qt +HTMH

)−1 (
Qtµt +HTMHc̄

)
=

(
Qt +HTMH

)−1
HTMH (µt − c̄)

= ΣtQ
M
t (µt − c̄)

= ΣtH
TSMt (Hµt − c) ,

Σt −
(
Qt +HTMH

)−1
= Σt

(
I −

(
I +HTMHΣt

)−1
)

= ΣtH
T
(
M−1 +HΣtH

T
)−1

HΣt

= ΣtH
TSMt HΣt ,

where we have used the Woodbury identity and (6). Substituting into (7) we obtain the form

dµt
dt

= Aµt +B (Ut) + gtΣtH
TSMt (Hµt − c)

dΣt
dt

= AΣt + ΣtA
T +DDT

+gtΣtH
T
[
SMt − SMt (Hµt − c) (Hµt − c)T SMt

]
HΣt. (8)
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1.3 Effect of spikes

When a spike occurs at time t in preferred location θ, the update according to (4) is

P
(
x, t+

)
= P

(
x, t−

)
+ P

(
x, t−

) λt− (θ, x)− λ̂t− (θ)

λ̂t− (θ)

= P
(
x, t−

) λt− (θ, x)

λ̂t− (θ)

=
P (x, t−)λt− (θ, x)´
P (x, t−)λt− (θ, x) dx

.

To compute this ratio we note that P (x, t)λt (θ, x), under the ADF approximation, may be written
as a single Gaussian in x,

P (x, t)λt (θ, x) dx ≈ λ0

√
detF

(2π)
m+n

det Σt
exp

(
−1

2
‖x− µt‖2Qt

− 1

2
‖θ − c‖2F −

1

2
‖Hx− θ‖2R

)

= λ0

√
detF

(2π)
m+n

det Σt
exp

(
−1

2
‖θ − c‖2F −

1

2
‖x− µt‖2Qt

− 1

2

∥∥x−H−1
r θ

∥∥2

HTRH

)
= Ct (θ) · exp

(
−1

2

∥∥∥x− (Qt +HTRH
)−1 (

Qtµt +HTRθ
)∥∥∥2

Qt+HTRH

)
,

where

Ct (θ) = λ0

√
detF

(2π)
m+n

det Σt
exp

(
−1

2
‖θ − c‖2F −

1

2

∥∥H−1
r θ − µt

∥∥2

QR
t

)
QRt , Qt

(
Qt +HTRH

)−1
HTRH =

(
I +HTRHΣt

)−1
HTRH.

Analogously to the computation for QMt above, we have QRt = HTSRt H, where

SRt ,
(
R−1 +HΣtH

T
)−1

,

Now P (x, t+) is given by the normalized Gaussian,

P
(
x, t+

)
=

P (x, t−)λt− (θ, x)´
P (x, t−)λt− (θ, x) dx

=

√
det
(
Σ−1
t− +HTRH

)
(2π)

n exp

(
−1

2

∥∥∥x− (Σt− +HTRH
)−1 (

Σ−1
t− µt− +HTRθ

)∥∥∥2

Σ−1

t−
+HTRH

)
= N

(
x,
(
Σ−1
t− +HTRH

)−1 (
Σ−1
t− µt− +HTRθ

)
,
(
Σ−1
t− +HTRH

)−1
)
,

and the update is

µt+ =
(
Σ−1
t− +HTRH

)−1 (
Σ−1
t− µt− +HTRθ

)
Σt+ =

(
Σ−1
t− +HTRH

)−1
.

To incorporate these updates into the inter-spike SDE (8) they can be cast in the form

µt+ = µt− +
(
Σ−1
t− +HTRH

)−1
HTRH

(
H−1
r θ − µt−

)
= µt− + Σt−Q

R
t−

(
H−1
r θ − µt−

)
= µt− + Σt−H

TSRt− (θ −Hµt−) ,

Σt+ = Σt− −
(
Σ−1
t− +HTRH

)−1
HTRHΣt−

= Σt− − Σt−Q
R
t−Σt−

= Σt− − Σt−H
TSRt−HΣt− ,
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giving the full filtering SDE

dµt = Aµtdt+B (Ut) dt+ gtΣtH
TSMt (Hµt − c) dt+ Σt−H

TSRt−

ˆ
θ∈Rm

(θ −Hµt−)N (dt× dθ) ,

dΣt =
(
AΣt + ΣtA

T +DDT + gtΣtH
T
[
SMt − SMt (Hµt − c) (Hµt − c)T SMt

]
HΣt

)
dt

−Σt−H
TSRt−HΣt−dNt. (9)

2 Non-linear dynamics

In case of non-linear dynamics
dXt = (A (Xt) +B (Ut)) dt+DtdWt

the ADF approximation may also be applied to the terms involving A (Xt) in (5). Assume A(i), the
i-th element of A, is given by a power series around µt, written in multi-index notation,

A(i) (x) =
∑
α

A(i)
α (µt) (x− µt)α ,

where the sum is over all multi-indices α. Then, assuming the ADF approximation Xt ∼
N (µt,Σt),

EP

[
A(i) (Xt)

]
=
∑
α

A(i)
α (µt) Eα (Σt) ,

where Eα (Σ) is defined as E (Zα) = E
∏
k Z

αk

k for Z ∼ N (0,Σ), and may be computed from
Isserlis’ theorem. Similarly,

EP

[
A (Xt) X̃

T
t

]
ij

= EP

[
A(i) (Xt)

(
X

(j)
t − µ

(j)
t

)]
=

∑
α

A(i)
α (µt) Eα+ej (Σt) ,

where ej is j-th standard basis vector (the multi-index corresponding to the single index j).

WritingAα =
(
A

(1)
α , . . . A

(n)
α

)T
and Eα,t = (Eα+e1 (Σt) , . . . ,Eα+en (Σt)) the filtering equations

become
dµt =

∑
α

Aα (µt) Eα (Σt) +B (Ut) dt

+gtΣtH
TSMt (Hµt − c) dt+ Σt−H

TSRt−

ˆ
θ∈Rm

(θ −Hµt−)N (dt× dθ)

dΣt =

(∑
α

(
Aα (µt)E

T
α,t + Eα,tAα (µt)

T
)

+DDT

+gtΣtH
T
[
SMt − SMt (Hµt − c) (Hµt − c)T SMt

]
HΣt

))
dt

−Σt−H
TSRt−HΣt−dNt.

Analogous comments apply when the noise gain Dt is a non-linear function D (Xt), provided each
element

[
D (x)D (x)

T
]
ij

may be expanded as a power series.

3 Comparison of estimated posterior variance and MSE

In the main text, we studied optimal encoding using the posterior variance as a proxy for the MSE.
Letting µt,Σt denote the approximate posterior moments given by the filter, the MSE and posterior
variance are related as follows,

MSEt , E
[
tr (Xt − µt) (Xt − µt)T

]
= EEtP tr (Xt − µt) (Xt − µt)T

= E
[
tr
(
VartPXt

)]
+ E

[
tr
(
µt − EtPXt

) (
µt − EtPXt

)T ]
,
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Figure 1: Posterior variance vs. MSE when filtering a one-dimensional process dXt = −0.1Xtdt+
0.5dWt (the steady-state variance of this process is σ2

0 = 1.25). The top plot shows the MSE
and mean posterior variance. The bottom plot shows the ratio of means MSE/ 〈Σt〉 and the mean
ratio 〈SE/Σt〉 where SE is the squared error (µt −Xt)

2. Sensory parameters are c = 0, σ2
pop =

0.1, σ2
tc = 0.01, λ0 = 10. The means were taken across 1000 trials. Shaded areas indicate error

estimates obtained as sample standard deviation divided by square root of number of trials.
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Figure 2: Mean Square Error as a function of model parameters. This figure is based on the same
data as Figure 3 in the main text, with Root Mean Square Error (RMSE) plotted instead of estimated
posterior variance. See Figure 3 of main text for more details.

where EtP [·] ,VartP [·] are resp. the mean and covariance conditioned on Nt, and tr is the trace
operator. Thus for an exact filter, having µt = EtPXt,Σt = VartPXt, we would have MSEt =
trace[E(Σt)]. Conversely, if we find that MSEt ≈ trace[EΣt], it suggests that the errors are small
(though this is not guaranteed, since the errors in µt and Σt may effect the MSE in opposite direc-
tions, if the variance is underestimated).

Figure 1 shows the variance and MSE in estimating a linear one-dimensional process, after averaging
across 1000 trials. Although the posterior variance is, on average, overestimated at the start of trials,
in the steady state it approximates the square error reasonably well.

We also show here variants of the Figures 3 and 4 from the main text (Figures 2 and 3, respectively),
showing the MSE rather than the variance. The results look similar but noisier, except in Figure 3b
for small population variance, where the ADF estimation is poor due to very few spikes occurring.
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Figure 3: Optimal population distribution depends on prior variance relative to tuning curve width.
This figure is based on the same data as Figure 4 in the main text, with MSE plotted instead of
estimated posterior variance. See Figure 4 of main text for more details.
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