
Appendix A Some basic properties regarding the distances

Proposition A.1. Let S1,S2,S3 ∈ Sdq be three q-dimensional subspaces. Then d(S1,S3) ≤
d(S1,S2) + d(S2, S3) and d2(S1,S3) ≤ 2(d2(S1,S2) + d2(S2,S3)).

Proof. Let U1,U2,U3 ∈ Rd×q be orthonormal basis associated with S1,S2 and S3. We then have
d(S1,S3) = ‖U1U

>
1 −U3U

>
3 ‖F ≤ ‖U1U

>
1 −U2U

>
2 ‖F + ‖U2U

>
2 −U3U

>
3 ‖F = d(S1,S2) +

d(S2,S3). The other inequality holds due to the fact that ‖U1U
>
1 − U3U

>
3 ‖2F ≤ 2(‖U1U

>
1 −

U2U
>
2 ‖2F + ‖U2U

>
2 −U3U

>
3 ‖2F ).

Proposition A.2. For any x ∈ Rd and S,S ′ ∈ Sdq , we have d(x,S ′) ≤ d(x,S) + d(S,S ′) and
d2(x,S ′) ≤ 2(d2(x,S) + d2(S,S ′)).

Proof. By definition, d(x,S ′) = ‖x − PS′(x)‖2 ≤ ‖x − PS′(PS(x))‖2 ≤ ‖x − PS(x)‖2 +
‖PS(x) − PS′(PS(x))‖2 ≤ d(x,S) + supy∈S,‖y‖2≤1 ‖y − PS′(y)‖2. Note also that
supy∈S,‖y‖2≤1 ‖y−PS′(y)‖2 ≤ supy∈S,‖y‖2≤1 ‖UU>y −U′U′>y‖2 ≤ ‖UU>−U′U′>‖2 ≤
d(S,S ′). Here U and U ′ are orthonormal basis associated with S and S ′. Therefore, d(x,S ′) ≤
d(x,S) + d(S,S ′). The other inequality follows by the same argument.

Proposition A.3. Fix S ∈ Sdq and let U ∈ Rd×q be an orthonormal basis associated with S.
Suppose U′ = U + E and S ′ = range(U′). Then d(S,S ′) ≤

√
2‖E‖F .

Proof. Apply Wedin’s Theorem (Theorem F.2 in Appendix F) and note that σq(U) = 1.

Appendix B Proofs of sample-aggregate private subspace clustering: the
agnostic case

The main objective of this section is to prove Theorem 3.4 for differentially private subspace clus-
tering under the fully agnostic setting. The theorem is a simple consequence of Lemma 3.3 in the
main text and the following lemma:

Lemma B.1. Fix γ > 0. Suppose XS contains m = Ω(kqd log(qd/γ)
γ2 ) data points subsampled

from X uniformly at random without replacement. Then with probability at least 3/4 over random
samples U , the following holds uniformly for all candidate subspace sets C:

cost(C;XS) ≤ 2cost(C;X ) + γ. (13)

B.1 Proof of Lemma B.1

Lemma B.2 ([39]). Fix X and f : X → [0,M ] for some positive constant M > 0. Let XS be
a subset of X with t elements, each drawn uniformly at random from X without replacement. Let
ε, δ > 0. Then Pr[|EX [f(x)]− EXS [f(x)]| ≥ ε] ≤ δ when t ≥ M2 ln(2/δ)

2ε2 .
Corollary B.3. Fix X and a finite set of functions F , where 0 ≤ f(x) ≤ M for every x ∈ X
and f ∈ F . Let XS be a subset of X with m elements, each drawn uniformly at random from X
without replacement. Let ε, δ > 0. Then Pr[∃f ∈ F , |EX [f(x)] − EXS [f(x)]| ≥ ε] ≤ δ when
m ≥ M2 ln(2|F|/δ)

2ε2 .

Proof. Apply Lemma B.2 and use union bound over all f ∈ F .

Lemma B.4. Fix ε > 0. There exists S ⊆ Sdq with |S| = O((qd)qd/2/εqd) such that for any S ∈ Sdq ,
minS′∈S d(S,S ′) ≤ ε.

Proof. By a standard convering number argument, there exists L ⊆ Rd with |L| = O((
√
d/ε)d)

such that for any x ∈ Rd, ‖x‖2 ≤ 1, we have minx′∈L ‖x − x′‖2 ≤ ε. Consequently, there exists
Lq ⊆ Rd×q with |Lq| = O((qd)qd/2/εqd) such that for any U ∈ Rd×q with unit column norms,
minU′∈Lq ‖U−U′‖F ≤ ε. Proposition A.3 then yields the lemma.
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We are now ready to prove Lemma B.1.

Proof of Lemma B.1. Suppose S is a finite subset of Sdq such that for every S ∈ Sdq ,
minS′∈S d

2(S,S ′) ≤ γ/4. By Lemma B.4, there exists such S with |S| = O((qd/γ)qd/2). Let
X be the set of data points and F = {f(·; C)|C = {S1, · · · ,Sk} ⊆ S}, where f(x; C) =

minkj=1 d
2(x,Sj). By definition, EX [f(x; C)] = cost(C;X ) and |F| = O((qd/γ)kqd/2). Sub-

sequently, applying Corollary B.3 we obtain

Pr
XS

[
∀C ⊆ S,

∣∣cost(C;XS)− cost(C;X )
∣∣ ≤ γ

2

]
≥ 3

4

whenever |XS | = Ω(kqd log(qd/γ)
γ2 ). Consequently, applying Proposition A.2 we have

Pr
XS

[
∀C ⊆ Sdq , cost(C;XS) ≤ 2cost(C;X ) + γ

]
≥ 3

4
.

B.2 Proof of Lemma 3.3

We first define some notations that will be used in the proof. Throughout the section we assume
the dataset X is (φ, η, ψ)-well separated. Let Xi = {x ∈ X : d(x,S∗i ) ≤ d(x,S∗j ),∀j} denote
the collection of all data points in X that are clustered to the cluster corresponding to S∗i . Define
ni = |Xi|. By definition,

∑k
i=1 ni = n. Define r2

i = ∆2
1(Xi), Di = minj 6=i d(S∗i ,S∗j ) and

d2
i = φ2n∆2

k−1(X )/ni. Let X cor
i = {x ∈ Xi : d(x,S∗i )2 ≤ r2i

ρ } for some parameter ρ ∈ (0, 1).

Proposition B.5. r2
i ≤ d2

i ≤
2φ2

1−2φ2D
2
i .

Proof. Since X is well-separated we have d2
i = φ2∆2

k−1(X ) · n/ni ≥ ∆2
k(X ) · n/ni ≥

1
ni

∑
x∈Xi d(x,S∗i )2 ≥ ∆2

1(Xi) = r2
i . Hence the first inequality.

For the second inequality, we only need to prove that (1 − 2φ2)n∆2
k−1(X ) ≤ 2niD

2
i . By well-

separatedness (1− 2φ2)n∆2
k−1(X ) = n(∆2

k−1(X )− 2∆2
k(X )). On the other hand, by diverting all

points in X ∗i into the cluster associated with S∗j with d(S∗i ,S∗j ) = Di, we have

n∆2
k−1(X ) ≤

∑
6̀=i

∑
x∈X`

d2(x,S∗` ) +
∑
x∈Xi

d2(x,S∗j )

≤
∑
6̀=i

∑
x∈X`

d2(x,S∗` ) + 2
∑
x∈Xi

d2(x,S∗j ) + 2nid
2(S∗i ,S∗j )

≤ 2n∆2
k(X ) + 2niD

2
i .

Rearranging the terms we get n(∆2
k−1(X )− 2∆2

k(X )) ≤ 2niD
2
i .

Proposition B.6. For any ρ ∈ (0, 1), |X cor
i | ≥ (1− ρ)|Xi| = (1− ρ)ni.

Proof. By definition r2
i = 1

ni

∑
x∈Xi d

2(x,S∗i ) = E[T ], where T is the random variable of
d2(x,S∗i ) for a vector chosen from Xi uniformly at random. By Markov’s inequality, Pr[T >
r2i
ρ ] ≤ ρ and hence |X cor

i | = ni Pr[T ≤ r2i
ρ ] ≥ (1− ρ)ni.

Lemma B.7. Suppose cost(Ĉ;X ) ≤ α∆2
k(X ) for some α < 1−802φ2

800 . Then there exists a permuta-
tion π : [k]→ [k] such that d(Ŝi,S∗π(i)) ≤ Di/10 for every i = 1, · · · , k.

Proof. Pick ρ = 800φ2

1−2φ2 . By conditions on α we have α ≤ ( 1
ρ − 1)φ2. In the remainder of the proof

we show that for every i ∈ [k], there exists some j ∈ [k] such that d(S∗i , Ŝj) ≤ 2di√
ρ ≤ Di/10, where

the last inequality is due to Proposition B.5 and the choice of ρ. This is sufficient for the conclusion
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in Lemma B.7 since no two subspaces S∗i and S∗i′ can be within the range of Di/10 to the same
subspace Ŝj due to the definition of Di and triangle inequality presented in Proposition A.1.

Assume by way of contradiction that there exists i ∈ [k] such that d(S∗i , Ŝj) > 2di√
ρ . This implies

that any point in X cor
i = {x ∈ Xi : d(x,S∗i ) ≤ ri√

ρ} is at least di√
ρ away from any subspace in Ĉ,

due to di ≥ ri and the triangle inequality. Therefore, cost(Ĉ;X ) ≥ |X
cor
i |
n

d2i
ρ ≥ ( 1

ρ − 1)nin d
2
i , where

the last inequality is due to Proposition B.6. Finally, ( 1
ρ − 1)nin d

2
i = ( 1

ρ − 1)nin · φ
2n∆2

k−1(X ) >

αni∆
2
k−1(X ) ≥ α∆2

k−1(X ), and hence the contradiction.

Lemma B.8. Fix a candidate subspace set Ĉ = {Ŝ1, · · · , Ŝ2}. Define R̂i = {x ∈ X : d(x, Ŝi) ≤
d(x, Ŝj) + D̂i/4,∀j}, where D̂i = minj 6=i d(Ŝi, Ŝj). Suppose there exists a permutation π : [k]→
[k] such that d(Ŝi,S∗π(i)) ≤ Dπ(i)/10 for every i, where Di = minj 6=i d(S∗i ,S∗j ). Then we have

Xπ(i) ⊆ R̂i and further more |Xπ(i)| ≥ β|R̂i| for β = 1−2φ2

1+48φ2 .

Proof. Without loss of generality we assume π(i) = i; that is, d(Ŝi,S∗i ) ≤ Di/10 for every i =

1, · · · , k. By triangle inequality in Proposition A.1, we have 4
5Di ≤ D̂i ≤ 6

5Di. Fix an arbitrary
x ∈ Xi. By definition, d(x,S∗i ) ≤ d(x,S∗j ). Therefore, d(x, Ŝi) ≤ d(x,S∗i ) + Di

10 ≤ d(x,S∗j ) +
Di
10 ≤ d(x, Ŝj) + Di

5 ≤ d(x, Ŝj) + D̂i
4 . Therefore, Xi ⊆ R̂i.

We next prove that |Xi| ≥ β|R̂i|. The approach we take is to assume |Xi| = β|R̂i| for some real

number β and show that β ≥ 1−2φ2

1+48φ2 . Let aj =
|R̂i∩Xj |
|R̂i|

and we arbitrarily assign ajni
1−ai points in Xi

to the cluster associated with subpace S∗j . This will clear the S∗i subspace since
∑
j 6=i

ajni
1−ai = ni.

As a result, we have

n∆2
k−1(X ) ≤ n∆2

k(X )− ni∆1(Xi) +
∑
x∈Xi

d2(x,S∗j )

≤ n∆2
k(X ) + ni∆1(Xi) + 2

∑
j 6=i

ajni
1− ai

· d2(S∗i ,S∗j )

≤ 2n∆2
k(X ) +

2β

1− β
∑
j 6=i

aj |R̂i|d2(S∗i ,S∗j ).

The last inequality is due to the fact that niai = |Xi|·|R̂i|
|Xi∩R̂i|

= |R̂i| and ai
1−ai = |Xi|

|R̂i|−|Xi|
≤ β

1−β .

On the other hand, for any y ∈ Xj∩R̂i, one has d(y,S∗i ) ≤ d(y, Ŝi)+ Di
10 ≤ d(y, Ŝj)+ Di

5 + Di
10 ≤

d(y,S∗j ) + 3
10 (Di+Dj). Consequently, d(S∗i ,S∗j ) ≤ d(y,S∗i ) +d(y,S∗j ) ≤ 2d(y,S∗j ) + 3

10 (Di+

Dj) ≤ 2d(y,S∗j ) + 3
5d(S∗i ,S∗j ) and hence d(S∗i ,S∗j ) ≤ 5d(y,S∗j ). Subsequently,

n∆2
k−1(X ) ≤ 2n∆2

k(X ) +
2β

1− β
∑
j 6=i

aj |R̂i|d2(S∗i ,S∗j )

= 2n∆2
k(X ) +

2β

1− β
∑
j 6=i

|R̂i ∩ Xj |d2(S∗i ,S∗j )

≤ 2n∆2
k(X ) +

50β

1− β
∑
j 6=i

∑
y∈R̂i∩Xj

d2(y,S∗j )

≤ 2n∆2
k(X ) +

50β

1− β
· n∆2

k(X ).

By the well-separatedness of X , we have

∆2
k(X ) ≤ φ2∆2

k−1(X ) ≤
(

2 +
50β

1− β

)
φ2∆2

k(X ).

Therefore, 2 + 50β
1−β ≥ 1/φ2, which implies β ≥ 1−2φ2

1+48φ2 .
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Lemma B.9. Assume φ ≤ 1/2. Fix a candidate subspace set Ĉ = {Ŝ1, · · · , Ŝn}. Let X̂i = {x ∈
X : d(x, Ŝi) ≤ d(x, Ŝj),∀j} denote the set of all data points that are clustered into Ŝi. Suppose
d(Ŝi,S∗i ) ≤ Di/10 for every i. Then |X̂i4Xi| ≤ 150φ2|Xi|, where 4 denotes the symmetric
difference operator between two sets.

Proof. We first derive a lower bound on |X̂i ∩ Xi|. We first claim that for any x ∈ X , d(x,S∗i ) ≤
2
5Di yields x ∈ X̂i. To see this, note that d(x, Ŝi) ≤ d(x,S∗i ) + d(S∗i , Ŝi) ≤ 2

5Di + 1
10Di = 1

2Di

and for every j 6= i, d(x, Ŝj) ≥ d(S∗i , Ŝj) − d(x,S∗i ) ≥ 9
10Di − 2

5Di = 1
2Di. Therefore,

d(x, Ŝi) ≤ d(x, Ŝj) for every j 6= i.

On the other hand, by Proposition B.5 d(x,S∗i ) ≤ ri√
ρ′

with ρ′ = 25φ2

2(1−2φ2) implies d(x,S∗i ) ≤ 2
5Di.

Consequently, by Proposition B.6 we have |X̂i ∩Xi| ≥ |{x ∈ Xi : d(x,S∗i ) ≤ ri√
ρ′
| ≥ (1− ρ′)|Xi|.

In addition, Lemma B.8 asserts that |Xi| ≥ β|R̂i| ≥ β|Xi|. Therefore, |X̂i4Xi| ≤ (2ρ′ + 1
β −

1)|Xi| ≤ 75φ2

1−2φ2 |Xi| ≤ 150φ2Xi, assuming φ ≤ 1
2 .

Proposition B.10. Let σq(Xi) denote the qth largest singular value of Xi. We then have σ2
q (Xi) ≥

nψ and σ2
q+1(Xi) ≤ nη.

Proof. By principal component analysis, n∆2
k(X ) =

∑k
i=1

∑
p≥q+1 σ

2
p(Xi). Therefore,

n∆2
k,−1(X ) ≤ n∆2

k(X ) + σ2
q (Xi) for any i. Since X is (φ, η, ψ)-well separated, we have

n∆2
k,−1 ≥ n∆2

k + nψ. Consequently, σ2
q (Xi) ≥ nψ. On the other hand, we have n∆2

k,+1(X ) ≤
n∆2

k(X )− σ2
q+1(Xi) for any i and n∆2

k,+1(X ) ≥ n∆2
k − nη. Hence σ2

q+1(Xi) ≤ nη.

Lemma B.11. Following the same notations in Lemma B.11. Suppose φ2 < 1/150. If |X̂i4Xi| ≤
150φ2|Xi| holds for every i, then d(S∗i , Ŝi) ≤

600
√

2φ2

(1−150φ2)(ψ−η) .

Proof. Let Bi = Xi ∩ X̂i, Yi = Xi\Bi and Zi = X̂i\Bi. Since |X̂i4Xi| ≤ 150φ2|Xi|, we have
|Bi| ≥ (1 − 150φ2)|Xi| and |Yi|, |Zi| ≤ 150φ2|Xi|. Let Bi,Yi,Zi be the matrices associated

with Bi,Yi and Zi. Define Ai =
BiB

>
i +YiY

>
i

|Bi|+|Yi| and Ãi =
BiB

>
i +ZiZ

>
i

|Bi|+|Zi| . By principal component

analysis, S∗i and Ŝi are the span of top-q eigenvectors associated with Ai and Ãi. By Wedin’s
Theorem (Theorem F.2 in Appendix F), the distance d(S∗i , Ŝi) can be bounded by upper bounding
the perturbation between Ai and Ãi, for example, ‖Ai − Ãi‖F .

Define Āi =
BiB

>
i

|Bi| and consider separately ‖Ai − Āi‖F and ‖Ãi − Āi‖F . By definition, we have

‖Ai − Āi‖F =

∥∥∥∥BiB
>
i

|Bi|
− BiB

>
i + YiY

>
i

|Bi|+ |Yi|

∥∥∥∥
F

≤
∥∥∥∥( 1

|Bi|
− 1

|Bi|+ |Yi|

)
BiB

>
i

∥∥∥∥
F

+

∥∥∥∥ YiY
>
i

|Bi|+ |Yi|

∥∥∥∥
F

≤ |Yi| · ‖Bi‖2F
|Bi|(|Bi|+ |Yi|)

+
‖Yi‖2F
|Bi|+ |Yi|

≤ |Yi| · |Bi|
|Bi|(|Bi|+ |Yi|)

+
|Yi|

|Bi|+ |Yi|

=
2|Yi|

|Bi|+ |Yi|
≤ 300φ2

1− 150φ2
.

Using essentially the same line of argument one can show ‖Ãi − Āi‖F ≤ 300φ2

1−150φ2 as well. There-

fore, ‖Ai − Ãi‖F ≤ 600φ2

1−150φ2 . Applying Wedin’s Theorem and Proposition B.10 we get

d(S∗i , Ŝi) ≤
√

2‖Ai − Ãi‖F
σq(Ai)− σq+1(Ai)

≤
√

2|Xi|‖Ai − Ãi‖F
σ2
q (Xi)− σ2

q+1(Xi)
≤
√

2|Xi|‖Ai − Ãi‖F
n(ψ − η)

≤ 600
√

2φ2

(1− 150φ2)(ψ − η)
.
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Combining Lemma B.7 to B.11 we arrive at a proof of the key lemma.

Proof of Lemma 3.3. Given a < 1−802φ2

800φ2 and X being (φ, η, ψ)-well separated, we have

cost(Ĉ;X ) ≤ α∆2
k−1(X ) for some α < 1−802φ2

800 . By Lemma B.7, d(S∗i , Ŝi) ≤ Di/10 hold
for every i = 1, · · · , k, after possible rearrangement of {Ŝi}ki=1. Applying Lemma B.8, B.9
and B.11 we obtain d(S∗i , Ŝi) ≤

600
√

2φ2

(1−150φ2)(ψ−η) . Finally, dW (Ĉ, C∗) ≤
√
kmaxi d(S∗i , Ŝi) ≤

600
√

2φ2
√
k

(1−150φ2)(ψ−η) .

Appendix C Proofs of sample-aggregate private subspace clustering: the
stochastic case

In this section we prove Theorem 3.6 that details a stability result for threshold-based subspace
clustering under the stochastic datasetting. We first cite the following lemma from [14] which states
that (under certain separation conditions) with high probability the similarity graph G recovered by
the robust TSC algorithm has no false connections; that is, two data points i and j are connected in
G only if they belong to the same cluster (subspace).

Lemma C.1 ([14], Theorem 3; no false connection of TSC). Suppose s ≤ minn`/6 and√
1−min

6̀=`′
d2(S∗` ,S∗`′)

q
+
σ(1 + σ)√

log n

√
q
√
d
≤ 1

15 log n
(14)

with d ≥ 6 log n; then the similarity graph G constructed by Algorithm 2 has no false connections
with probability at least 1− 10

n −
∑
` n`e

−c(n`−1) for some absolute constant c > 0.

Based on Lemma C.1, to prove Lemma 3.5 it remains to show that data points within the same
cluster are indeed connected in the similarity graph G. The proof is presented in Appendix C.1.
With Lemma C.1 and 3.5, Theorem 3.6 can be easily proved as follows:

Proof of Theorem 3.6. By Lemma C.1 and 3.5, we know that under the stated conditions the simi-
larity graph G output by the TSC algorithm has no false connections and is connected per cluster.
Fix a cluster ` and consider the observed data points X(`) = Y(`) +E(`). Since both the signal Y(`)

and the noise E(`) are stochastic, by standard analysis of PCA one can show that the top-q subspace
of X(`) converges to the underlying subspace S∗` in probability as the number of data points n` goes
to infinity [43]. The theorem then holds because m = o(n) and hence n′ = n/m→∞.

C.1 Proof of Lemma 3.5

Proposition C.2. Suppose yi = xi + εi with εi ∼ N (0, σ
2

d Id) and σ > 0. Then with probability
at least 1− n2e−

√
d − 2/n the following holds:

∣∣〈yi,yj〉 − 〈xi,xj〉∣∣ ≤ (2
√

5σ + 5σ2)

√
6 log n

d
; ∀i, j ∈ {1, · · · , n}, i 6= j. (15)

Proof. Applying Theorem F.3 (in Appendix F) and set t = 4 and ρ =
√

6 log n/d in Theorem F.3.
Applying also the union bound over all (i, j) ∈ {1, · · · , n} pairs with i 6= j. Then the following
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holds uniformly for all i 6= j with probability at least 1− n2e−d − 2/n:

‖εi‖2 ≤
√

5σ;∣∣〈εi,xj〉∣∣ ≤ √
5σ ·

√
6 log n

d
, ∀i, j;

∣∣〈εi, εj〉∣∣ ≤ 5σ2 ·
√

6 log n

d
, ∀i 6= j.

The proof is then completed by noting that∣∣〈yi,yj〉 − 〈xi,xj〉∣∣ ≤ ∣∣〈εi,xj〉∣∣+
∣∣〈εj ,xi〉∣∣+

∣∣〈εi, εj〉∣∣
≤ (2

√
5σ + 5σ2)

√
6 log n

d
.

Lemma C.3 ([14], Lemma 3; extracted from the proof of Lemma 6.2. in [42]). Let Sd−1 = {x ∈
Rd : ‖x‖2 = 1} denote the d-dimensional unit sphere. For an arbitrary p ∈ Sd−1, defineC(p, θ) =
{q ∈ Sd−1 : ϑ(p, q) ≤ θ} where ϑ(p, q) = arccos(〈p, q〉) is the angle between p and q. Let L(·)
denote the Lebesgue area of a region and Θ(·) be the inverse function of L(C(p, θ)) with respect to
θ. Then for each d ≥ 1 and M ≥ 1, there exists a partition R1, · · · , RM of the unit sphere Sd−1

such that 5 supx,y∈Rm ϑ(x,y) ≤ θ∗ for every m = 1, · · · ,M . Here θ∗ = 8Θ(L(Sd−1)/M).

We are now ready to prove Lemma 3.5.

Proof of Lemma 3.5. By Lemma C.1 we already know that the similarity graph G has no false
connections. Fix a cluster ` ∈ {1, · · · , k}. Let x(`)

i = U(`)a
(`)
i where a(`)

i ∈ Sq−1. Set
M = n`/(γ log n`) and let R1, · · · , RM be a partition of the unit sphere Sq−1 as characterized
in Lemma C.3. Here q is the intrinsic rank of an underlying subspace. We need to prove the fol-
lowing two properties hold with high probability: (A) every region Rm contains at least one point
in A(`) = {a(`)

i }
n`
i=1; (B) for every a(`)

i , all data points a(`)
j belonging to the neighboring region of

the region containing a(`)
i are connected with a(`)

i .

Property (A) is easy to prove. By union bound, the probability that some region is empty can be
upper bounded by

M

(
1− 1

M

)n`
≤Me−n`/M =

n1−γ
`

γ log n`
.

We next turn to prove Property (B). Unlike the noiseless case, the s-nearest-neighbor graph is com-
puted based on the noise-perturbed data points {yi}ni=1. It is no longer true that data points belong-
ing to neighboring regions have larger inner products compared to data points that do not belong
to the same or neighboring regions. Hence, we adopt a different argument from the one presented
in [14]. Instead of showing that |C(x

(`)
i , 3θ∗)| ≤ s̃ = s/2, we show that |C(a

(`)
i , rθ∗)| ≤ s̃

for some r � 3 and in addition |〈y(`)
j ,y

(`)
i 〉| > |〈y

(`)
j′ ,y

(`)
i 〉| for every a(`)

j /∈ C(a
(`)
i , rθ∗) and

a
(`)
j′ ∈ C(x

(`)
i , 3θ∗). 6 This guarantees that all points in C(a

(`)
i , 3θ∗) are connected to y(`)

i in the
s-nearest-neighbor graph.

Fix a(`)
i ∈ A(`) and set r such that

rθ∗ =

(
0.01(q/2− 1)(q − 1)√

π

) 1
q−1

. (16)

5By definition R1 ∪ · · · ∪RM = Sd−1 and Ri ∩Rj = ∅ for i 6= j.
6Note that |〈y,y(`)

i 〉| = |〈−y,y
(`)
i 〉| by symmetry. So a point far from y

(`)
i could have large inner product

and be connected with y
(`)
i . We take s̃ = s/2 to avoid this issue.
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Define p = L(C(a
(`)
i , rθ∗))/L(Sq−1), where θ∗ is given in Lemma C.3. By definition,

E[|C(a
(`)
i , rθ∗)|] = pn`. Note that by symmetry p does not depend on a(`)

i . Set s̄ = (0.01 + p)n`.
We then have

s̄

n`
= 0.01+

L(C(a
(`)
i , rθ∗))

L(Sq−1)
≤ 0.01+

L(Sq−2)(rθ∗)q−1

L(Sq−1)(q − 1)
≤ 0.01+

√
πΓ( q−1

2 )(rθ∗)q−1

Γ( q2 )(q − 1)
≤ 0.02.

(17)
The second inequality is an application of Eq. (5.2) in [42] and the last inequality is due to Eq. (16).
On the other hand, by tail bounds of binomial distribution (Theorem 1 in [41]) we have

Pr
[∣∣C(a

(`)
i , rθ∗)

∣∣ > n`(p+ 0.01)
]
≤ e−

0.012n2
`

2(pn`+0.01n`/3) ≤ e−
n`
400 , (18)

where in the last inequality we used the fact that pn` ≤ 0.01n`. Since s̄ ≤ 0.02n` ≤ s̃, we
proved that with probability at least 1− e−

n`
400 there will be no more than s̃ data points contained in

C(a
(`)
i , rθ∗).

The final step of the proof is to show that |〈y(`)
j ,y

(`)
i 〉| > |〈y

(`)
j′ ,y

(`)
j 〉| for every a(`)

j /∈ C(a
(`)
i , rθ∗)

and a(`)
j′ ∈ C(x

(`)
i , 3θ∗). By Proposition C.2, we have with probability at least 1− ne−

√
d

∣∣〈y(`)
j ,y

(`)
i 〉
∣∣ ≤ ∣∣〈a(`)

j ,a
(`)
i 〉
∣∣+ (2

√
5σ + 5σ2)

√
6 log n

d
≤ cos(rθ∗) + (2

√
5σ + 5σ2)

√
6 log n

d
(19)

and∣∣〈y(`)
j′ ,y

(`)
i 〉
∣∣ ≥ ∣∣〈a(`)

j′ ,a
(`)
i 〉
∣∣− (2

√
5σ + 5σ2)

√
6 log n

d
≥ cos(3θ∗)− (2

√
5σ + 5σ2)

√
6 log n

d
.

(20)
Since rθ∗ is dictated in Eq. (16), we only need to obtain an upper bound on θ∗. Following the same
argument on page 25 in [14] we have

θ∗ ≤ 4π

(√
2πq

M

) 1
q−1

= 4π

(
γ
√

2πq log n`
n`

) 1
q−1

. (21)

Consequently, |〈y(`)
j ,y

(`)
i 〉| > |〈y

(`)
j′ ,y

(`)
j 〉| when σ̄ = 2

√
5σ + 5σ2 satisfies

σ̄ <

√
d

24 log n

[
cos

(
12π

(
γ
√

2πq log n`
n`

) 1
q−1

)
− cos

((
0.01(q/2− 1)(q − 1)√

π

) 1
q−1

)]
.

(22)
The right-hand side of the above condition is strictly positive if n` satisfies

n` >
γπ
√

2q log n`
0.01(q/2− 1)(q − 1)

· (12π)q−1.

Appendix D Supplementary materials for private subspace clustering via
the exponential mechanism

D.1 Proof of Proposition 4.1

Proof. Define the score function h(·;θ) as h(X ;θ) =
∑n
i=1 d

2(xi,Szi). Since ‖xi‖2 ≤
1, it is straightforward that h(·;θ) has global sensitivity upper bounded by 1; that is,
supd(X ,X ′)=1 |h(X ;θ) − h(X ′;θ)| ≤ 1 for all θ. Eq. (10) is then a direct application of the
exponential mechanism.
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Algorithm 3 Gibbs sampling for matrix Bingham distribution (Eq. (23))
1: Input: symmetric matrix A, diagonal matrix B, current sample U, dimensions d and q.
2: for each r ∈ {1, · · · , q} in random order do
3: Let U(r) ∈ Rd be the rth column of U and U(−r) be the matrix excluding U(r).
4: Let N be an orthonormal basis of the null space of U(−r).
5: Compute z = N>U(r) and Ã = BrrN

>AN.
6: Update z by Gibbs sampling from the vector Bingham distributrion with parameter Ã.
7: Set U(r) = Nz.
8: end for
9: Output: the updated sample U.

Algorithm 4 Gibbs sampling for vector Bingham distribution (Eq. (24))
1: Input: symmetric matrix A, current sample x, dimension d.
2: Let A = EΛE>, Λ = diag(λ) be the eigen-decomposition of A. Compute y = E>x.
3: for each j ∈ {1, · · · , d} in random order do
4: Compute q1, · · · , qd as y2

1/(1− y2
i ), · · · , y2

d/(1− y2
i ).

5: Sample θ ∈ (0, 1) from the density p(θ) ∝ e(λi−q>−iλ−i)θ × θ−1/2(1− θ)(d−3)/2.
6: Set s = +1 or −1 with equal probability.
7: Set yi = siθ

1/2 and for each j 6= i set y2
j = (1− θ)qj , leaving the sign unchanged.

8: end for
9: Output: the updated sample x = Ey.

D.2 Gibbs sampling for matrix Bingham distribution

In this section we give details of a Gibbs sampler proposed in [16] for sampling from a matrix
Bingham distribution. One component in the Gibbs sampler (the rejection sampling step) is slightly
modified to make the sampling more efficient.

The objective is to sample from the following matrix-Bingham distribution:

p(U; A,B) ∝ exp(tr(BU>AU)), (23)

where U is a d×q matrix lying on a Stiefel manifold; that is, U>U = Iq×q . In our problem A is an
unnormalized sample covariance matrix and B = εIq×q , with ε the privacy budget. As a simplified
case, when q = 1 we arrive at a vector version of the Bingham distribution:

p(x; A) ∝ exp(x>Ax), (24)

with x constrained on the d-dimensional sphere {x ∈ Rd : ‖x‖2 = 1}. Gibbs samplers for both
Eq. (23) and (24) were proposed in [16] and presented in Algorithm 3 and 4.

In Algorithm 4, step 4 requires sampling from a non-standard 1-dimensional distribution

p(x; k, a) ∝ x−1/2(1− x)keax · 10<x<1 =: f(x). (25)

In [16] a rejection sampling algorithm was proposed to sample x from Eq. (25), with a Beta(1/2, 1+
min(k,max(k−a,−1/2))) envelope distribution. However, such a distribution is highly inefficient
when |a| � 0 for which no Beta distribution serves as a good envelope distribution. To address this
problem, we propose two separate rejection sampling schemes for Eq. (25) when |a| � 0.

Case 1: a � 0 In this case, the mass of the distribution will concentrate on x → 0. We use
Gamma distribution Γ(1/2, 1/|a|) truncated on (0, 1) as an envelope distribution. That is, x ∼ g(·)
and g(·) is defined as

g(x) =
1

Z
· x−1/2eax · 10<x<1,

with Z a normalization constant. The constant M = supx f(x)/g(x) can be computed as

M = Z · sup
0<x<1

x−1/2(1− x)keax

x−1/2eax
≤ Z.

The step-by-step algorithm is as follows:
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1. Sample x ∼ Γ(1/2, 1/|a|). If x ≥ 1, throw away x and re-draw the sample.
2. Sample u ∈ (0, 1) from the uniform distribution over (0, 1).
3. If u ≤ (1− x)k, accept the sample; otherwise reject the sample and try again.

The proposed rejection sampling algorithm is efficient because when a � 0, the envelope distribu-
tion g has very high density over the region near zero; consequently, (1 − x)k is close to one and
hence the acceptance rate is high.

Case 2: a� 0 In this case, the mass of the distribution will concentrate on x→ 1. However, we
have a singularity at x = 0 (i.e., limx→0 f(x) =∞). This makes the sampling particularly difficult
as a distribution proportional to eax will be infinitely off at the region near zero. To circumvent
the problem, we propose a mixture distribution as the envelope, which have good approximation
property at both regions near 0 and 1.

First define density h as

h(x) =
1

Z
· (1− x)keax · 10<x<1,

where Z =
∫ 1

0
(1− x)keaxdx is the normalization constant. Note that samples from h(·) can be

obtained by first sampling z from a Gamma distribution Γ(k + 1, 1/a) truncated on (0, 1) and then
apply transform of variable x = 1− z. The density of the envelope distribution g(·) is then defined
as a mixture distribution:

g(x) =
1

Z
· Beta(x; 1/2, k + 1) +

(
1− 1

Z

)
· h(x).

The constant M = sup f(x)/g(x) can be computed by

M = max

(
sup

0<x≤1/a

f(x)

g(x)
, sup
1/a<x<1

f(x)

g(x)

)

≤ max

(
Z · sup

0<x≤1/a

x−1/2(1− x)keax ·B(1/2, k + 1)

x−1/2(1− x)k
, 2 · sup

1/a<x<1

x−1/2(1− x)keax

(1− x)keax

)
≤ Z ·max(2

√
a, eB(1/2, k + 1)).

Here for the second inequality we applyZ ≥ 2 for reasonably large a andB(·, ·) is the Beta function.
The normalization constant Z can be approximately computed using numerical integration. How-
ever, empirical evidence suggests that Z is huge for large a values (e.g., Z > 10100 if a > k+ 500).
Therefore, we could simply take Z → ∞, which simplifies the rejection sampling algorithm as
follows:

1. Sample z ∼ Γ(k + 1, 1/a). If z ≥ 1 then throw away z and re-draw the sample.
2. Compute x = 1− z, M = max(2

√
a, exp(1) ·B(1/2, k + 1)).

3. Sampe u from the uniform distribution over (0, 1).

4. If u < x−1/2/(M(1 + e−axBeta(x; 1/2, k + 1))), accept the sample; otherwise reject the
sample and try again.

The proposed rejection sampling scheme is efficient because when a � 0 the density h(·) is very
skewed to one. Therefore, x−1/2 will be close to 1 and e−ax will be very samll, which means the
acceptance rate is high.

D.3 Justification of generative model in Section 4.2

Recall the generative model presented in Section 4.2:

1. For each ` ∈ [k], sample U` (orthonormal basis of S`) uniformly at random from Sdq .

2. For each i ∈ [n], sample zi ∈ [k] such that Pr[zi = j] = 1/k, yi uniformly at random
from the q-dimensional unit ball, and wi ∼ N (0, Id/ε). Set xi = U`yi + PU⊥`

wi.
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Algorithm 5 Differentially private query answering via the SuLQ framework
1: Input: query parameters S1, · · · ,Sk ∈ Rqd, ` ∈ [k]; privacy parameters ε, δ > 0.
2: Let A` = {xi : argmin`′d(xi,S`′) = `} and form B = A`A

>
` .

3: Noise calibration: Set B̃ = B + σW, where W is a standard Normal random matrix and
σ = 2

√
2 ln(1.25/δ)/ε.

4: Singular value decomposition: Let B̃ = UVD> be the top-q singular value decomposition
of B̃. U ∈ Rd×q denotes the top q left singular vectors of B̃.

5: Output: new subspace S ′` spanned by columns of U.

In this section we derive a Gibbs sampler for the considered model and show that the derived Gibbs
sampler is identical to the one presented in Section 4.1. This result establishes formal connection
between our proposed Gibbs sampling algorithm for private subspace clustering and a probabilistic
graphical model that resembles the mixtures of probabilistic PCA (MPPCA, [27]) model.

First we note that the prior distribution specified in the generative model is completely non-
informative; that is, p0(θ) = p0(θ′) for any θ = (C,x,y, z) and θ′ = (C′,x′,y′, z′). On the
other hand, the likelihood model is as follows:

p(xi|zi = `,yi, C) =

{
N (xi; U`yi, Id/ε), if PS`xi = U`yi;
0, otherwise. (26)

Here U` ∈ Rd×q is an orthonormal basis associated with S` and PS` stands for the projection
operator onto subspace S`. Integrating yi out we obtain

p(xi|zi = `, C) ∝ exp
(
−ε

2
· d2(xi,S`)

)
. (27)

A Gibbs sampler can then be derived as follows:

Update of zi By Eq. (27), the conditional distribution of zi is

p(zi = `|xi, C) ∝ p0(zi = `)p(xi|zi = `, C) ∝ exp
(
−ε

2
· d2(xi,S`)

)
.

Therefore, we can sample zi from a normalized categorical distribution as specified above.

Update of S` By Eq. (27), the conditional distribution of S` is

p(S`|x, z) ∝ p0(S`)
∏
zi=`

p(xi|zi = `,S`) ∝ exp

(
−ε

2
·
∑
zi=`

d2(xi,S`)

)
.

Denote A` = {xi : zi = `} as all data points in cluster ` and let U` be the orthonormal basis of S`.
We then have

p(U`|x, z) ∝ exp
(ε

2
· tr(U>` A`U`)

)
,

which corresponds to a matrix Bingham distribution.

The above presented Gibbs sampler is identical to the one proposed in Section 4.1 in the main text,
thus justifying our use of the above-mentioned generative model as an equivalent characterization of
the proposed private subspace clustering algorithm. This is perhaps not surprising, as the marginal
likelihood model Eq. (27) is exactly the same with the sampling distribution dictated by the expo-
nential mechanism, as shown in Eq. (10) in the main text.

Appendix E Private subspace clustering via the SuLQ framework

In this section we introduce a simple iterative subspace clustering algorithm based on the SuLQ
framework [2]. Before presenting the algorithm, we first review k-plane [3], a straightforward iter-
ative method for subspace clustering:

1. For each data point xi, compute zi = argmin1≤`≤kd(xi,Sk).
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2. For each cluster `, let A` = {xi : zi = `} ∈ Rd×n` denote all data points assigned to
cluster `. Update S` as the linear subspace spanned by the top-q eigenvectors of A`A

>
` .

3. Repeat step 1 and 2 until convergence.

Suppose the k-plane algorithm is run for T iterations. From the pseudocode of k-plane, the algorithm
needs to query the database X for kT times, each time asking the following question:

- Given S1, · · · ,Sk and ` ∈ [k] as inputs, output the orthonormal basis U` ∈ Rd×q
of a q-dimensional subspace S ′` such that S ′` best captures A>` A`; i.e., ‖A`A

>
` −

(PS′`A`)(PS′`A`)
>‖2 is minimized. Here A` is defined in terms of (S1, · · · ,Sk).

Algorithm 5 is a simple procedure that approximately answers the above question while preserving
(ε, δ)-differential privacy. It is in fact a special case of the SuLQ framework proposed in [2]. The
following proposition is immediate.

Proposition E.1. Algorithm 5 is an (ε, δ)-differentially private algorithm.

Proof. Define b(X ) = vec(A>` A`) ∈ Rd2 . LetX ′ be an arbitrary database such that d(X ,X ′) = 1.
That is, exactly one column x in X is replaced by a new column x′ in X ′. We then have

‖b(X )− b(X ′)‖22 ≤
d∑

i,j=1

(x′ix
′
j − xixj)2 ≤ 2

d∑
i,j=1

(x′2i x
′2
j + x2

ix
2
j ) ≤ 4,

where the last inequality is due to the constraint ‖x‖2, ‖x′‖2 ≤ 1. Consequently,

∆2b = sup
d(X ,X ′)=1

‖b(X )− b(X ′)‖2 ≤ 2.

The Gaussian mechanism (Theorem A.1, [9]) then suggests that one can release b while preserving
(ε, δ)-differential privacy by calibrating i.i.d. Gaussian noise to b:

Release b(X ) +
2
√

2 ln(1.25/δ)

ε
·w,

where w is a d2-dimensional standard Normal. The final singular value decomposition step does
not affect privacy because differential privacy is close to post-processing.

The following proposition is then a direct application of advanced composition [9].

Proposition E.2. Suppose the k-plane algorithm is run for T iterations, each iteration query-
ing Algorithm 5 k times with privacy parameters ε and δ. Then the overall algorithm is (ε′, δ′)-
differentially private with

ε′ =
√

2kT ln(1/δ)ε+ kTε(eε − 1),

δ′ = (kT + 1)δ.

Appendix F Concentration theorems

Theorem F.1 ([44], Theorem 1.2). Let A be an n × n matrices with entries i.i.d. sampled from
standard Gaussian distribution. Then there exist absolute constants c1 > 0, 0 < c2 < 1 such that
for every t > 0,

Pr
[
σn(A) ≤ t

√
n
]
≤ c1t+ cn2 ,

where σn(A) is the least singular value of A.

Theorem F.2 (Wedin’s theorem; Theorem 4.1, pp. 260 in [45]). Let A,E ∈ Rm×n be given
matrices with m ≥ n. Let A have the following singular value decomposition U>1

U>2
U>3

A [ V1 V2 ] =

[
Σ1 0
0 Σ2

0 0

]
,
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where U1,U2,U3,V1,V2 have orthonormal columns and Σ1 and Σ2 are diagonal matrices. Let
Ã = A + E be a perturbed version of A and (Ũ1, Ũ2, Ũ3, Ṽ1, Ṽ2, Σ̃1, Σ̃2) be analogous sin-
gular value decomposition of Ã. Let Φ be the matrix of canonical angles between range(U1) and
range(Ũ1) and Θ be the matrix of canonical angles between range(V1) and range(Ṽ1). If there
exists δ > 0 such that

min
i,j

∣∣[Σ1]i,i − [Σ2]j,j
∣∣ > δ and min

i

∣∣[Σ1]i,i
∣∣ > δ,

then

‖ sin Φ‖2F + ‖ sin Θ‖2F ≤
2‖E‖2F
δ2

.

Theorem F.3 ([32], Lemma 18, Properties of Gaussian random vectors). Let ε ∼ N (0, σ
2

d I) be a
d-dimensional random Gaussian vector with coordinate-wise variance σ2. Then the following holds
for some fixed z ∈ Rd and t, ρ > 0:

Pr
[
‖εi‖22 > (1 + t)σ2

]
≤ e

n
2 (log(t+1)−t);

Pr
[∣∣〈εi, z〉∣∣ > ρ‖εi‖2‖z‖2

]
≤ 2e−

nρ2

2 .
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