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Abstract

Class ambiguity is typical in image classification problems with a large number
of classes. When classes are difficult to discriminate, it makes sense to allow k
guesses and evaluate classifiers based on the top-k error instead of the standard
zero-one loss. We propose top-k multiclass SVM as a direct method to optimize
for top-k performance. Our generalization of the well-known multiclass SVM is
based on a tight convex upper bound of the top-k error. We propose a fast opti-
mization scheme based on an efficient projection onto the top-k simplex, which is
of its own interest. Experiments on five datasets show consistent improvements in
top-k accuracy compared to various baselines.

1 Introduction

Figure 1: Images from SUN 397 [29] illustrating
class ambiguity. Top: (left to right) Park, River,
Pond. Bottom: Park, Campus, Picnic area.

As the number of classes increases, two im-
portant issues emerge: class overlap and multi-
label nature of examples [9]. This phenomenon
asks for adjustments of both the evaluation met-
rics as well as the loss functions employed.
When a predictor is allowed k guesses and is
not penalized for k − 1 mistakes, such an eval-
uation measure is known as top-k error. We ar-
gue that this is an important metric that will in-
evitably receive more attention in the future as
the illustration in Figure 1 indicates.

How obvious is it that each row of Figure 1 shows examples of different classes? Can we imagine
a human to predict correctly on the first attempt? Does it even make sense to penalize a learning
system for such “mistakes”? While the problem of class ambiguity is apparent in computer vision,
similar problems arise in other domains when the number of classes becomes large.

We propose top-k multiclass SVM as a generalization of the well-known multiclass SVM [5]. It
is based on a tight convex upper bound of the top-k zero-one loss which we call top-k hinge loss.
While it turns out to be similar to a top-k version of the ranking based loss proposed by [27], we
show that the top-k hinge loss is a lower bound on their version and is thus a tighter bound on the
top-k zero-one loss. We propose an efficient implementation based on stochastic dual coordinate
ascent (SDCA) [24]. A key ingredient in the optimization is the (biased) projection onto the top-k
simplex. This projection turns out to be a tricky generalization of the continuous quadratic knapsack
problem, respectively the projection onto the standard simplex. The proposed algorithm for solving
it has complexity O(m logm) for x ∈ Rm. Our implementation of the top-k multiclass SVM scales
to large datasets like Places 205 with about 2.5 million examples and 205 classes [30]. Finally,
extensive experiments on several challenging computer vision problems show that top-k multiclass
SVM consistently improves in top-k error over the multiclass SVM (equivalent to our top-1 multi-
class SVM), one-vs-all SVM and other methods based on different ranking losses [11, 16].
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2 Top-k Loss in Multiclass Classification

In multiclass classification, one is given a set S = {(xi, yi) | i = 1, . . . , n} of n training examples
xi ∈ X along with the corresponding labels yi ∈ Y . Let X = Rd be the feature space and
Y = {1, . . . ,m} the set of labels. The task is to learn a set of m linear predictors wy ∈ Rd such that
the risk of the classifier arg maxy∈Y 〈wy, x〉 is minimized for a given loss function, which is usually
chosen to be a convex upper bound of the zero-one loss. The generalization to nonlinear predictors
using kernels is discussed below.

The classification problem becomes extremely challenging in the presence of a large number of
ambiguous classes. It is natural in that case to extend the evaluation protocol to allow k guesses,
which leads to the popular top-k error and top-k accuracy performance measures. Formally, we
consider a ranking of labels induced by the prediction scores 〈wy, x〉. Let the bracket [·] denote a
permutation of labels such that [j] is the index of the j-th largest score, i.e.〈

w[1], x
〉
≥
〈
w[2], x

〉
≥ . . . ≥

〈
w[m], x

〉
.

The top-k zero-one loss errk is defined as

errk(f(x), y) = 1〈w[k],x〉>〈wy,x〉,

where f(x) = (〈w1, x〉 , . . . , 〈wm, x〉)> and 1P = 1 if P is true and 0 otherwise. Note that
the standard zero-one loss is recovered when k = 1, and errk(f(x), y) is always 0 for k = m.
Therefore, we are interested in the regime 1 ≤ k < m.

2.1 Multiclass Support Vector Machine

In this section we review the multiclass SVM of Crammer and Singer [5] which will be extended to
the top-k multiclass SVM in the following. We mainly follow the notation of [24].

Given a training pair (xi, yi), the multiclass SVM loss on example xi is defined as

max
y∈Y
{1y 6=yi + 〈wy, xi〉 − 〈wyi , xi〉}. (1)

Since our optimization scheme is based on Fenchel duality, we also require a convex conjugate of
the primal loss function (1). Let c , 1−eyi , where 1 is the all ones vector and ej is the j-th standard
basis vector in Rm, let a ∈ Rm be defined componentwise as aj , 〈wj , xi〉 − 〈wyi , xi〉, and let

∆ , {x ∈ Rm | 〈1, x〉 ≤ 1, 0 ≤ xi, i = 1, . . . ,m}.

Proposition 1 ([24], § 5.1). A primal-conjugate pair for the multiclass SVM loss (1) is

φ(a) = max{0, (a+ c)[1]}, φ∗(b) =

{
−〈c, b〉 if b ∈ ∆,

+∞ otherwise.
(2)

Note that thresholding with 0 in φ(a) is actually redundant as (a+ c)[1] ≥ (a+ c)yi = 0 and is only
given to enhance similarity to the top-k version defined later.

2.2 Top-k Support Vector Machine

The main motivation for the top-k loss is to relax the penalty for making an error in the top-k
predictions. Looking at φ in (2), a direct extension to the top-k setting would be a function

ψk(a) = max{0, (a+ c)[k]},

which incurs a loss iff (a+ c)[k] > 0. Since the ground truth score (a+ c)[yi] = 0, we conclude that

ψk(a) > 0 ⇐⇒
〈
w[1], xi

〉
≥ . . . ≥

〈
w[k], xi

〉
> 〈wyi , xi〉 − 1,

which directly corresponds to the top-k zero-one loss errk with margin 1.

Note that the function ψk ignores the values of the first (k− 1) scores, which could be quite large if
there are highly similar classes. That would be fine in this model as long as the correct prediction is
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within the first k guesses. However, the function ψk is unfortunately nonconvex since the function
fk(x) = x[k] returning the k-th largest coordinate is nonconvex for k ≥ 2. Therefore, finding a
globally optimal solution is computationally intractable.

Instead, we propose the following convex upper bound on ψk, which we call the top-k hinge loss,

φk(a) = max
{

0,
1

k

k∑
j=1

(a+ c)[j]

}
, (3)

where the sum of the k largest components is known to be convex [3]. We have that

ψk(a) ≤ φk(a) ≤ φ1(a) = φ(a),

for any k ≥ 1 and a ∈ Rm. Moreover, φk(a) < φ(a) unless all k largest scores are the same. This
extra slack can be used to increase the margin between the current and the (m− k) remaining least
similar classes, which should then lead to an improvement in the top-k metric.

2.2.1 Top-k Simplex and Convex Conjugate of the Top-k Hinge Loss

In this section we derive the conjugate of the proposed loss (3). We begin with a well known result
that is used later in the proof. All proofs can be found in the supplement. Let [a]+ = max{0, a}.
Lemma 1 ([17], Lemma 1).

∑k
j=1 h[j] = mint

{
kt+

∑m
j=1[hj − t]+

}
.
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Figure 2: Top-k simplex ∆k(1)
for m = 3. Unlike the standard
simplex, it has

(
m
k

)
+ 1 vertices.

We also define a set ∆k which arises naturally as the effective
domain1 of the conjugate of (3). By analogy, we call it the top-k
simplex as for k = 1 it reduces to the standard simplex with the
inequality constraint (i.e. 0 ∈ ∆k). Let [m] , 1, . . . ,m.
Definition 1. The top-k simplex is a convex polytope defined as

∆k(r) ,

{
x

∣∣∣∣ 〈1, x〉 ≤ r, 0 ≤ xi ≤
1

k
〈1, x〉 , i ∈ [m]

}
,

where r ≥ 0 is the bound on the sum 〈1, x〉. We let ∆k , ∆k(1).

The crucial difference to the standard simplex is the upper bound
on xi’s, which limits their maximal contribution to the total sum
〈1, x〉. See Figure 2 for an illustration.

The first technical contribution of this work is as follows.
Proposition 2. A primal-conjugate pair for the top-k hinge loss
(3) is given as follows:

φk(a) = max
{

0,
1

k

k∑
j=1

(a+ c)[j]

}
, φ∗k(b) =

{
−〈c, b〉 if b ∈ ∆k,

+∞ otherwise.
(4)

Moreover, φk(a) = max{〈a+ c, λ〉 |λ ∈ ∆k}.

Therefore, we see that the proposed formulation (3) naturally extends the multiclass SVM of Cram-
mer and Singer [5], which is recovered when k = 1. We have also obtained an interesting extension
(or rather contraction, since ∆k ⊂ ∆) of the standard simplex.

2.3 Relation of the Top-k Hinge Loss to Ranking Based Losses

Usunier et al. [27] have recently formulated a very general family of convex losses for ranking and
multiclass classification. In their framework, the hinge loss on example xi can be written as

Lβ(a) =

m∑
y=1

βy max{0, (a+ c)[y]},

1 A convex function f : X → R ∪ {±∞} has an effective domain dom f = {x ∈ X | f(x) < +∞}.
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where β1 ≥ . . . ≥ βm ≥ 0 is a non-increasing sequence of non-negative numbers which act as
weights for the ordered losses.

The relation to the top-k hinge loss becomes apparent if we choose βj = 1
k if j ≤ k, and 0 otherwise.

In that case, we obtain another version of the top-k hinge loss

φ̃k
(
a
)

=
1

k

k∑
j=1

max{0, (a+ c)[j]}. (5)

It is straightforward to check that

ψk(a) ≤ φk(a) ≤ φ̃k(a) ≤ φ1(a) = φ̃1(a) = φ(a).

The bound φk(a) ≤ φ̃k(a) holds with equality if (a+ c)[1] ≤ 0 or (a+ c)[k] ≥ 0. Otherwise, there
is a gap and our top-k loss is a strictly better upper bound on the actual top-k zero-one loss. We
perform extensive evaluation and comparison of both versions of the top-k hinge loss in § 5.

While [27] employed LaRank [1] and [9], [28] optimized an approximation of Lβ(a), we show in
the supplement how the loss function (5) can be optimized exactly and efficiently within the Prox-
SDCA framework.

Multiclass to binary reduction. It is also possible to compare directly to ranking based methods
that solve a binary problem using the following reduction. We employ it in our experiments to
evaluate the ranking based methods SVMPerf [11] and TopPush [16]. The trick is to augment the
training set by embedding each xi ∈ Rd into Rmd using a feature map Φy for each y ∈ Y . The
mapping Φy places xi at the y-th position in Rmd and puts zeros everywhere else. The example
Φyi(xi) is labeled +1 and all Φy(xi) for y 6= yi are labeled −1. Therefore, we have a new training
set with mn examples and md dimensional (sparse) features. Moreover, 〈w,Φy(xi)〉 = 〈wy, xi〉
which establishes the relation to the original multiclass problem.

Another approach to general performance measures is given in [11]. It turns out that using the above
reduction, one can show that under certain constraints on the classifier, the recall@k is equivalent to
the top-k error. A convex upper bound on recall@k is then optimized in [11] via structured SVM.
As their convex upper bound on the recall@k is not decomposable in an instance based loss, it is not
directly comparable to our loss. While being theoretically very elegant, the approach of [11] does
not scale to very large datasets.

3 Optimization Framework

We begin with a general `2-regularized multiclass classification problem, where for notational con-
venience we keep the loss function unspecified. The multiclass SVM or the top-k multiclass SVM
are obtained by plugging in the corresponding loss function from § 2.

3.1 Fenchel Duality for `2-Regularized Multiclass Classification Problems

Let X ∈ Rd×n be the matrix of training examples xi ∈ Rd, let W ∈ Rd×m be the matrix of primal
variables obtained by stacking the vectors wy ∈ Rd, and A ∈ Rm×n the matrix of dual variables.

Before we prove our main result of this section (Theorem 1), we first impose a technical constraint
on a loss function to be compatible with the choice of the ground truth coordinate. The top-k hinge
loss from Section 2 satisfies this requirement as we show in Proposition 3. We also prove an auxiliary
Lemma 2, which is then used in Theorem 1.
Definition 2. A convex function φ is j-compatible if for any y ∈ Rm with yj = 0 we have that

sup{〈y, x〉 − φ(x) |xj = 0} = φ∗(y).

This constraint is needed to prove equality in the following Lemma.
Lemma 2. Let φ be j-compatible, let Hj = I− 1e>j , and let Φ(x) = φ(Hjx), then

Φ∗(y) =

{
φ∗(y − yjej) if 〈1, y〉 = 0,

+∞ otherwise.

4



We can now use Lemma 2 to compute convex conjugates of the loss functions.
Theorem 1. Let φi be yi-compatible for each i ∈ [n], let λ > 0 be a regularization parameter, and
let K = X>X be the Gram matrix. The primal and Fenchel dual objective functions are given as:

P (W ) = +
1

n

n∑
i=1

φi
(
W>xi − 〈wyi , xi〉1

)
+
λ

2
tr
(
W>W

)
,

D(A) = − 1

n

n∑
i=1

φ∗i (−λn(ai − ayi,ieyi))−
λ

2
tr
(
AKA>

)
, if 〈1, ai〉 = 0 ∀i, +∞ otherwise.

Moreover, we have that W = XA> and W>xi = AKi, where Ki is the i-th column of K.

Finally, we show that Theorem 1 applies to the loss functions that we consider.
Proposition 3. The top-k hinge loss function from Section 2 is yi-compatible.

We have repeated the derivation from Section 5.7 in [24] as there is a typo in the optimization
problem (20) leading to the conclusion that ayi,i must be 0 at the optimum. Lemma 2 fixes this
by making the requirement ayi,i = −

∑
j 6=yi aj,i explicit. Note that this modification is already

mentioned in their pseudo-code for Prox-SDCA.

3.2 Optimization of Top-k Multiclass SVM via Prox-SDCA

Algorithm 1 Top-k Multiclass SVM
1: Input: training data {(xi, yi)ni=1}, parameters
k (loss), λ (regularization), ε (stopping cond.)

2: Output: W ∈ Rd×m, A ∈ Rm×n

3: Initialize: W ← 0, A← 0
4: repeat
5: randomly permute training data
6: for i = 1 to n do
7: si ←W>xi {prediction scores}
8: aoldi ← ai {cache previous values}
9: ai ← update(k, λ, ‖xi‖2 , yi, si, ai)

{see § 3.2.1 for details}
10: W ←W + xi(ai − aoldi )>

{rank-1 update}
11: end for
12: until relative duality gap is below ε

As an optimization scheme, we employ the
proximal stochastic dual coordinate ascent
(Prox-SDCA) framework of Shalev-Shwartz
and Zhang [24], which has strong convergence
guarantees and is easy to adapt to our prob-
lem. In particular, we iteratively update a batch
ai ∈ Rm of dual variables corresponding to
the training pair (xi, yi), so as to maximize the
dual objective D(A) from Theorem 1. We also
maintain the primal variables W = XA> and
stop when the relative duality gap is below ε.
This procedure is summarized in Algorithm 1.

Let us make a few comments on the advantages
of the proposed method. First, apart from the
update step which we discuss below, all main
operations can be computed using a BLAS li-
brary, which makes the overall implementation efficient. Second, the update step in Line 9 is optimal
in the sense that it yields maximal dual objective increase jointly over m variables. This is opposed
to SGD updates with data-independent step sizes, as well as to maximal but scalar updates in other
SDCA variants. Finally, we have a well-defined stopping criterion as we can compute the duality
gap (see discussion in [2]). The latter is especially attractive if there is a time budget for learning.
The algorithm can also be easily kernelized since W>xi = AKi (cf. Theorem 1).

3.2.1 Dual Variables Update

For the proposed top-k hinge loss from Section 2, optimization of the dual objective D(A) over
ai ∈ Rm given other variables fixed is an instance of a regularized (biased) projection problem onto
the top-k simplex ∆k( 1

λn ). Let a\j be obtained by removing the j-th coordinate from vector a.

Proposition 4. The following two problems are equivalent with a\yii = −x and ayi,i = 〈1, x〉

max
ai
{D(A) | 〈1, ai〉 = 0} ≡ min

x
{‖b− x‖2 + ρ 〈1, x〉2 |x ∈ ∆k( 1

λn )},

where b = 1
〈xi,xi〉

(
q\yi + (1− qyi)1

)
, q = W>xi − 〈xi, xi〉 ai and ρ = 1.

We discuss in the following section how to project onto the set ∆k( 1
λn ) efficiently.
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4 Efficient Projection onto the Top-k Simplex

One of our main technical results is an algorithm for efficiently computing projections onto ∆k(r),
respectively the biased projection introduced in Proposition 4. The optimization problem in Proposi-
tion 4 reduces to the Euclidean projection onto ∆k(r) for ρ = 0, and for ρ > 0 it biases the solution
to be orthogonal to 1. Let us highlight that ∆k(r) is substantially different from the standard simplex
and none of the existing methods can be used as we discuss below.

4.1 Continuous Quadratic Knapsack Problem

Finding the Euclidean projection onto the simplex is an instance of the general optimization problem
minx{‖a− x‖22 | 〈b, x〉 ≤ r, l ≤ xi ≤ u} known as the continuous quadratic knapsack problem
(CQKP). For example, to project onto the simplex we set b = 1, l = 0 and r = u = 1. This is a well
examined problem and several highly efficient algorithms are available (see the surveys [18, 19]).
The first main difference to our set is the upper bound on the xi’s. All existing algorithms expect
that u is fixed, which allows them to consider decompositions minxi{(ai−xi)2 | l ≤ xi ≤ u} which
can be solved in closed-form. In our case, the upper bound 1

k 〈1, x〉 introduces coupling across all
variables, which makes the existing algorithms not applicable. A second main difference is the bias
term ρ 〈1, x〉2 added to the objective. The additional difficulty introduced by this term is relatively
minor. Thus we solve the problem for general ρ (including ρ = 0 for the Euclidean projection onto
∆k(r)) even though we need only ρ = 1 in Proposition 4. The only case when our problem reduces
to CQKP is when the constraint 〈1, x〉 ≤ r is satisfied with equality. In that case we can let u = r/k
and use any algorithm for the knapsack problem. We choose [13] since it is easy to implement, does
not require sorting, and scales linearly in practice. The bias in the projection problem reduces to a
constant ρr2 in this case and has, therefore, no effect.

4.2 Projection onto the Top-k Cone

When the constraint 〈1, x〉 ≤ r is not satisfied with equality at the optimum, it has essentially no
influence on the projection problem and can be removed. In that case we are left with the problem
of the (biased) projection onto the top-k cone which we address with the following lemma.
Lemma 3. Let x∗ ∈ Rd be the solution to the following optimization problem

min
x
{‖a− x‖2 + ρ 〈1, x〉2 | 0 ≤ xi ≤ 1

k 〈1, x〉 , i ∈ [d]},

and let U , {i |x∗i = 1
k 〈1, x

∗〉}, M , {i | 0 < x∗i <
1
k 〈1, x

∗〉}, L , {i |x∗i = 0}.

1. If U = ∅ and M = ∅, then x∗ = 0.

2. If U 6= ∅ and M = ∅, then U = {[1], . . . , [k]}, x∗i = 1
k+ρk2

∑k
i=1 a[i] for i ∈ U , where

[i] is the index of the i-th largest component in a.

3. Otherwise (M 6= ∅), the following system of linear equations holds
u =

(
|M |

∑
i∈U ai + (k − |U |)

∑
i∈M ai

)
/D,

t′ =
(
|U | (1 + ρk)

∑
i∈M ai − (k − |U |+ ρk |M |)

∑
i∈U ai

)
/D,

D = (k − |U |)2 + (|U |+ ρk2) |M | ,
(6)

together with the feasibility constraints on t , t′ + ρuk

max
i∈L

ai ≤ t ≤ min
i∈M

ai, max
i∈M

ai ≤ t+ u ≤ min
i∈U

ai, (7)

and we have x∗ = min{max{0, a− t}, u}.

We now show how to check if the (biased) projection is 0. For the standard simplex, where the cone
is the positive orthant Rd+, the projection is 0 when all ai ≤ 0. It is slightly more involved for ∆k.

Lemma 4. The biased projection x∗ onto the top-k cone is zero if
∑k
i=1 a[i] ≤ 0 (sufficient condi-

tion). If ρ = 0 this is also necessary.
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Projection. Lemmas 3 and 4 suggest a simple algorithm for the (biased) projection onto the top-
k cone. First, we check if the projection is constant (cases 1 and 2 in Lemma 3). In case 2, we
compute x and check if it is compatible with the corresponding sets U , M , L. In the general case 3,
we suggest a simple exhaustive search strategy. We sort a and loop over the feasible partitions
U , M , L until we find a solution to (6) that satisfies (7). Since we know that 0 ≤ |U | < k and
k ≤ |U |+ |M | ≤ d, we can limit the search to (k−1)(d−k+ 1) iterations in the worst case, where
each iteration requires a constant number of operations. For the biased projection, we leave x = 0
as the fallback case as Lemma 4 gives only a sufficient condition. This yields a runtime complexity
of O(d log(d) + kd), which is comparable to simplex projection algorithms based on sorting.

4.3 Projection onto the Top-k Simplex

As we argued in § 4.1, the (biased) projection onto the top-k simplex becomes either the knapsack
problem or the (biased) projection onto the top-k cone depending on the constraint 〈1, x〉 ≤ r at the
optimum. The following Lemma provides a way to check which of the two cases apply.
Lemma 5. Let x∗ ∈ Rd be the solution to the following optimization problem

min
x
{‖a− x‖2 + ρ 〈1, x〉2 | 〈1, x〉 ≤ r, 0 ≤ xi ≤ 1

k 〈1, x〉 , i ∈ [d]},

let (t, u) be the optimal thresholds such that x∗ = min{max{0, a− t}, u}, and let U be defined as
in Lemma 3. Then it must hold that λ = t+ p

k − ρr ≥ 0, where p =
∑
i∈U ai − |U | (t+ u).

Projection. We can now use Lemma 5 to compute the (biased) projection onto ∆k(r) as follows.
First, we check the special cases of zero and constant projections, as we did before. If that fails, we
proceed with the knapsack problem since it is faster to solve. Having the thresholds (t, u) and the
partitioning into the sets U , M , L, we compute the value of λ as given in Lemma 5. If λ ≥ 0, we
are done. Otherwise, we know that 〈1, x〉 < r and go directly to the general case 3 in Lemma 3.

5 Experimental Results

We have two main goals in the experiments. First, we show that the (biased) projection onto the
top-k simplex is scalable and comparable to an efficient algorithm [13] for the simplex projection
(see the supplement). Second, we show that the top-k multiclass SVM using both versions of the
top-k hinge loss (3) and (5), denoted top-k SVMα and top-k SVMβ respectively, leads to im-
provements in top-k accuracy consistently over all datasets and choices of k. In particular, we note
improvements compared to the multiclass SVM of Crammer and Singer [5], which corresponds to
top-1 SVMα/top-1 SVMβ . We release our implementation of the projection procedures and both
SDCA solvers as a C++ library2 with a Matlab interface.

5.1 Image Classification Experiments

We evaluate our method on five image classification datasets of different scale and complexity:
Caltech 101 Silhouettes [26] (m = 101, n = 4100), MIT Indoor 67 [20] (m = 67, n = 5354), SUN
397 [29] (m = 397, n = 19850), Places 205 [30] (m = 205, n = 2448873), and ImageNet 2012
[22] (m = 1000, n = 1281167). For Caltech, d = 784, and for the others d = 4096. The results on
the two large scale datasets are in the supplement.

We cross-validate hyper-parameters in the range 10−5 to 103, extending it when the optimal value
is at the boundary. We use LibLinear [7] for SVMOVA, SVMPerf [11] with the corresponding loss
function for Recall@k, and the code provided by [16] for TopPush. When a ranking method like
Recall@k and TopPush does not scale to a particular dataset using the reduction of the multiclass
to a binary problem discussed in § 2.3, we use the one-vs-all version of the corresponding method.
We implemented Wsabie++ (denoted W++,Q/m) based on the pseudo-code from Table 3 in [9].

On Caltech 101, we use features provided by [26]. For the other datasets, we extract CNN features
of a pre-trained CNN (fc7 layer after ReLU). For the scene recognition datasets, we use the Places
205 CNN [30] and for ILSVRC 2012 we use the Caffe reference model [10].

2https://github.com/mlapin/libsdca
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Caltech 101 Silhouettes MIT Indoor 67
Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10 Method Top-1 Method Top-1 Method Top-1

Top-1 [26] 62.1 - 79.6 - 83.1 - BLH [4] 48.3 DGE [6] 66.87 RAS [21] 69.0
Top-2 [26] 61.4 - 79.2 - 83.4 - SP [25] 51.4 ZLX [30] 68.24 KL [14] 70.1
Top-5 [26] 60.2 - 78.7 - 83.4 - JVJ [12] 63.10 GWG [8] 68.88

Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10 Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

SVMOVA 61.81 73.13 76.25 77.76 78.89 83.57 71.72 81.49 84.93 86.49 87.39 90.45
TopPush 63.11 75.16 78.46 80.19 81.97 86.95 70.52 83.13 86.94 90.00 91.64 95.90

Recall@1 61.55 73.13 77.03 79.41 80.97 85.18 71.57 83.06 87.69 90.45 92.24 96.19
Recall@5 61.60 72.87 76.51 78.76 80.54 84.74 71.49 81.49 85.45 87.24 88.21 92.01
Recall@10 61.51 72.95 76.46 78.72 80.54 84.92 71.42 81.49 85.52 87.24 88.28 92.16

W++, 0/256 62.68 76.33 79.41 81.71 83.18 88.95 70.07 84.10 89.48 92.46 94.48 97.91
W++, 1/256 59.25 65.63 69.22 71.09 72.95 79.71 68.13 81.49 86.64 89.63 91.42 95.45
W++, 2/256 55.09 61.81 66.02 68.88 70.61 76.59 64.63 78.43 84.18 88.13 89.93 94.55

top-1 SVMα 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94
top-10 SVMα 62.98 77.33 80.49 82.66 84.57 89.55 70.00 85.45 90.00 93.13 94.63 97.76
top-20 SVMα 59.21 75.64 80.88 83.49 85.39 90.33 65.90 84.10 89.93 92.69 94.25 97.54

top-1 SVMβ 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94
top-10 SVMβ 64.02 77.11 80.49 83.01 84.87 89.42 71.87 85.30 90.45 93.36 94.40 97.76
top-20 SVMβ 63.37 77.24 81.06 83.31 85.18 90.03 71.94 85.30 90.07 92.46 94.33 97.39

SUN 397 (10 splits)

Top-1 accuracy XHE [29] 38.0 LSH [15] 49.48± 0.3 ZLX [30] 54.32± 0.1
SPM [23] 47.2± 0.2 GWG [8] 51.98 KL [14] 54.65± 0.2

Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

SVMOVA 55.23± 0.6 66.23± 0.6 70.81± 0.4 73.30± 0.2 74.93± 0.2 79.00± 0.3

TopPushOVA 53.53± 0.3 65.39± 0.3 71.46± 0.2 75.25± 0.1 77.95± 0.2 85.15± 0.3

Recall@1OVA 52.95± 0.2 65.49± 0.2 71.86± 0.2 75.88± 0.2 78.72± 0.2 86.03± 0.2

Recall@5OVA 50.72± 0.2 64.74± 0.3 70.75± 0.3 74.02± 0.3 76.06± 0.3 80.66± 0.2

Recall@10OVA 50.92± 0.2 64.94± 0.2 70.95± 0.2 74.14± 0.2 76.21± 0.2 80.68± 0.2

top-1 SVMα 58.16± 0.2 71.66± 0.2 78.22± 0.1 82.29± 0.2 84.98± 0.2 91.48± 0.2
top-10 SVMα 58.00± 0.2 73.65± 0.1 80.80± 0.1 84.81± 0.2 87.45± 0.2 93.40± 0.2
top-20 SVMα 55.98± 0.3 72.51± 0.2 80.22± 0.2 84.54± 0.2 87.37± 0.2 93.62± 0.2

top-1 SVMβ 58.16± 0.2 71.66± 0.2 78.22± 0.1 82.29± 0.2 84.98± 0.2 91.48± 0.2
top-10 SVMβ 59.32± 0.1 74.13± 0.2 80.91± 0.2 84.92± 0.2 87.49± 0.2 93.36± 0.2
top-20 SVMβ 58.65± 0.2 73.96± 0.2 80.95± 0.2 85.05± 0.2 87.70± 0.2 93.64± 0.2

Table 1: Top-k accuracy (%). Top section: State of the art. Middle section: Baseline methods.
Bottom section: Top-k SVMs: top-k SVMα – with the loss (3); top-k SVMβ – with the loss (5).

Experimental results are given in Table 1. First, we note that our method is scalable to large datasets
with millions of training examples, such as Places 205 and ILSVRC 2012 (results in the supplement).
Second, we observe that optimizing the top-k hinge loss (both versions) yields consistently better
top-k performance. This might come at the cost of a decreased top-1 accuracy (e.g. on MIT Indoor
67), but, interestingly, may also result in a noticeable increase in the top-1 accuracy on larger datasets
like Caltech 101 Silhouettes and SUN 397. This resonates with our argumentation that optimizing
for top-k is often more appropriate for datasets with a large number of classes.

Overall, we get systematic increase in top-k accuracy over all datasets that we examined. For ex-
ample, we get the following improvements in top-5 accuracy with our top-10 SVMα compared to
top-1 SVMα: +2.6% on Caltech 101, +1.2% on MIT Indoor 67, and +2.5% on SUN 397.

6 Conclusion

We demonstrated scalability and effectiveness of the proposed top-k multiclass SVM on five image
recognition datasets leading to consistent improvements in top-k performance. In the future, one
could study if the top-k hinge loss (3) can be generalized to the family of ranking losses [27]. Similar
to the top-k loss, this could lead to tighter convex upper bounds on the corresponding discrete losses.
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