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A Latent Gaussian models

Below, we show a graphical model for LGMs and GPs. For GPs, N is the number of data examples,
z is the latent function therefore latent dimensionality L = N . µ and Σ are the mean function vector
and covariance function matrix respectively. In this case the covariance matrix of z will be of size
N2.

Similarly, for Bayesian logistic regression, N is the number of examples pairs with yn as labels
while xn as features. L is the feature dimensionality (length of features xn). The latent vector z
contains regression weights and µ and Σ are prior mean and covariance for z.

(a) LGM (b) GP

B Derivation of the lower bound of Eq. (4) and (5)

We can obtain the lower bound as shown below:

log p(y) ≥ Eq(z)
[
log

∏
n p(yn|ηn)p(z)

q(z)

]
= Eq(z)

[
log

p(z)

q(z)

]
+
∑
n

Eq(z)[log p(yn|ηn)] (1)

= −D[q(z) ‖ p(z)] +
∑
n

EN (ηn|m̄n,σ̄2
n)[log p(yn|ηn)] (2)

where the last step is obtained by using the fact that ηn = wT
nz and therefore the expectation can

be written in terms of the distribution of ηn which is Gaussian with mean m̄n = wT
nm and variance

σ̄2
n = wT

nVwn. Expanding the KL-divergence terms give us the desired lower bound.
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C Proof of theorem 4.1

We make use of the first-order necessary and second-order sufficient conditions of Lagrangian mul-
tiplier theory (see Chapter 3 of Bertsekas’s book on “Nonlinear Programming”). There are two
pre-requisites for these conditions to apply. The first requirement is that g(x) and the constraints
c1n(x) and c2n(x) are twice-differentiable, which clearlyholds in our case.

The second requirement is that a maximizer x∗ of g(x) is regular. A maximizer x∗ is regular when
the gradients of constraints are linearly independent. Since all of our constraints operate on different
subset of variables, they are linearly independent. Hence both conditions hold.

Proof of first two parts: The first two parts can be proved by simply taking the gradient of the
Lagrangian with respect to x, α and λ. We first take the gradient of the Lagrangian (of Eq. (7) in
the paper) with respect to m and V.

5mL = −Σ−1(m− µ)−
∑
n

αnwn (3)

5V L = 1
2V−1 − 1

2Σ−1 − 1
2

∑
n

λnwnwT
n (4)

Equating to zero, we get Eq. (8) in the paper.

Similarly, taking gradient wrt hn and σn, we get the following:

5hnL = −5hn fn(hn, σn) + αn (5)
5σn
L = −5σn

fn(hn, σn) + σnλn (6)

Equating to zero gives us the Eq. (9) in the paper.

Taking the gradient wrt αn and λn gives us the condition hn−wT
nmn = 0 and σn−wT

nVwn = 0.

This gives us all the conditions given in the first two parts of the theorem. Proposition 3.1.1 of
Bertsekas book ensures the uniqueness of α∗ and λ∗ and also that this will be a stationary point of
g(x).

What remains to prove is whether a pair (m∗,V∗) obtained from vector x∗ will satisfy the first-
order condition for f or not (i.e. Eq. 5 in the paper). This can be checked by taking the gradient of
f , and then simply substituting Eq. (8) of the paper in the resulting expression. We show this for V
below in Eq. 7. The first equality shows the gradient of f with respect to V. Here, g∗ is a vector
containing gradients of fn with respect to (σ̄∗n)2 := wT

nV∗wn. The second equality is obtained
after substituting Eq. (8) of the paper into the gradient and using Eq. (9) of the paper which states
that λ∗n = 25(σn)2 f

∗
n so that λ∗ = 2g∗.

5V f(m∗,V∗) = (V∗)−1 −Σ−1 − 2WT diag(g∗)W (7)

= Σ−1 + WTΛ∗W −Σ−1 −WT diag(λ∗)W (8)
= 0 (9)

Similarly, we can prove the condition for m too.

Proof of the third part: Proof for this part is tedious. We fist give an outline the proof here
and then go into details. At a local maximizer of f , the Hessian should be negative-definite
by definition. We also know from the first two parts of the Theorem that the corresponding set
{m∗,V∗,h∗,σ∗,α∗,λ∗} satisfies the first-order condition. To prove that this set will also be a
strict maximizer, we use the Proposition 3.2.1 from Bertsekas book. According to the proposition,
we only need to show that the Hessian of Lagrangian is negative-definite in the tangent plane of the
constraints.

We first demonstrate this for a 1-D case, since it is easier to gain intuition why the theorem is true.
We also assume for this part that the function fn are convex. Consider the following 1-D function
(with µ = 0):

L(m, v, h, σ) := 1
2 [log v − (v +m2)/σ2]− f1(h, σ) + α(h−m) + 1

2λ(σ2 − v) (10)

The tangent plane at x∗ consists of all x such that its inner product with the gradient of constraints
is 0. The constraints are h − m = 0 and (σ2 − v)/2 = 0, and the gradients with respect to x is
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summarized below, in the left by 2×4 matrix. The two rows are gradients of the two constraints wrt
to [m, v, h, σ] at [m∗, v∗, h∗, σ∗]. Null space is defined by all vectors for which the inner product
with each row is 0. [

−1 0 1 0
0 −1/2 0 σ∗

] m
v
h
σ

 =

[
0
0

]
(11)

This gives us the tangent space {x : m = h, v = 2σ∗σ}.
The Hessian with respect to x∗ = {m∗, v∗, h∗, σ∗} is a diagonal matrix (here f∗1 is f1(h∗, σ∗), not
the conjugate as defined in the main paper).

H∗ =


− 1
σ2 0 0 0
0 − 1

2(v∗)2 0 0

0 0 −∂
2f∗1
∂h2 0

0 0 0 −∂
2f∗1
∂σ2 + λ∗

 (12)

We now show that xTH∗x < 0 for all x in the tangent space with H∗ being the Hessian at x∗.

xTH∗x = −m
2

σ2
− v2

2(v∗)2
− h2 ∂

2f∗1
∂h2

− σ2

(
∂2f∗1
∂σ2

− λ∗
)

(13)

The first and third terms are -ve for sure, so we focus on the second and fourth terms only. We
get Eq. 15 using the fact that in tangent space v = 2σ∗σ, i.e. σ = v/(2σ∗). Then we use that at
optimum (σ∗)2 = v∗ to get Eq. 16. Next Equation is obtained simply by taking v2/4v∗ out. After
this we substitute λ∗ = 1/v∗ − 1/σ2, which gives us the Eq. 18 and 19, which is strictly negative
due to convexity of f1.

− v2

2(v∗)2
− σ2

(
∂2f∗1
∂σ2

− λ∗
)

(14)

=− v2

2(v∗)2
− v2

4(σ∗)2

(
∂2f∗1
∂σ2

− λ∗
)

(15)

=− v2

2(v∗)2
− v2

4v∗

(
∂2f∗1
∂σ2

− λ∗
)

(16)

=− v2

4v∗

(
2

v∗
− λ∗ +

∂2f∗1
∂σ2

)
(17)

=− v2

4v∗

(
2

v∗
− 1

v∗
+

1

σ2
+
∂2f∗1
∂σ2

)
(18)

=− v2

4v∗

(
1

v∗
+

1

σ2
+
∂2f∗1
∂σ2

)
(19)

<0 (20)
This proves the required result.

Generalization of this proof to multivariate case is tedious, since we have to deal with second deriva-
tive with respect to the matrix V. However, similar to 1-D case, the Hessian will be a block-diagonal
matrix, so that xTH∗x will have four terms, each corresponding to m,V,h,σ. Positivity of first
and third term can be shown in a similar way, so we don’t consider them. We only show positivity
of second and fourth terms which depend on V and σ. So, in the following, we ignore m and h.

We can avoid explicitly writing the second derivative wrt to the matrix, by using the fact that if
(m∗,V∗) are maximizers of f , they will satisfy the second-order condition for function f(x), i.e.
the Hessian of f will be negative-definiteness at the maximizer. We will now formally express this
relationship and then use it to show a similar expression for the Lagrangian.

Consider the objective function f after omitting the terms depending on m and h.

1
2 [log |V| − Tr(VΣ−1)]−

N∑
n=1

fn(σ̄n) (21)
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Since (m∗,V∗) is a maximizer, it will satisfy the second-order condition. Taking the derivative of
f twice (Eq. (5) in the paper) and denoting v = vec(V) and the second-derivative of log |V| +
Tr(VΣ−1) wrt v by Hd, the condition can be written as follows,

vTH∗dv −
N∑
n=1

∑
k,l,r,s

VklVrs
∂

∂Vkl

∂

∂Vrs
fn(σ̄∗n) < 0 (22)

where σ̄∗n =
√

wT
nV∗wn. We will now express the second term in terms of σ̄∗n and the derivative

wrt σ̄n. Using ∂σ̄n/∂Vkl = WnkWnl/(2σ̄n), we can write the following:
∂

∂Vrs

∂

∂Vkl
fn(σ̄∗n) (23)

=
∂

∂Vrs

[
WnkWnl

1

2σ̄∗n

∂fn(σ̄∗n)

∂σ̄n

]
(24)

= 1
2WnkWnl

[
1

σ̄∗n

∂2fn(σ̄∗n)

∂Vrs∂σ̄n
+
∂fn(σ̄∗n)

∂σ̄n

∂(σ̄∗n)−1

∂Vkl

]
(25)

= 1
2WnkWnl

[
WnrWns

1

2(σ̄∗n)2

∂2fn(σ̄∗n)

∂σ̄2
n

−WnlWns
1

2(σ̄∗n)3

∂fn(σ̄∗n)

∂σ̄n

]
(26)

=WnkWnlWnrWns
1

(2σ̄∗n)2

[
∂2fn(σ̄∗n)

∂σ̄2
n

− 1

σ̄∗n

∂fn(σ̄∗n)

∂σ̄n

]
(27)

Hence, we can rewrite the second term of Eq. 22 as follows,

vTH∗dv <

N∑
n=1

∑
k,l,r,s

VklVrs
∂

∂Vkl

∂

∂Vrs
fn(σ̄∗n) (28)

=

N∑
n=1

∑
k,l,r,s

VklVrsWnkWnlWnrWns
1

(2σ̄∗n)2

[
∂2fn(σ̄∗n)

∂σ̄2
n

− 1

σ̄∗n

∂fn(σ̄∗n)

∂σ̄n

]
(29)

=

N∑
n=1

(wT
nVwn)2

(2σ̄∗n)2

[
∂2fn(σ̄∗n)

∂σ̄2
n

− 1

σ̄∗n

∂fn(σ̄∗n)

∂σ̄n

]
(30)

We will now use this relation to show that the Hessian of the Lagrangian is negative-definite in the
tangent plane.

Taking second derivative of the Lagrangian of Eq. (6) in the paper wrt V and σ, we get the first
equation. For the second equation, we substitute Eq. 30. For the third equation, we use the relation
that σ∗nλ

∗
n = ∂fn(σ∗n)/∂σn and σn = σ̄∗n, and also that in the tangent plane, the following holds:

{x : 2σ∗nσn = xTnVxn,∀n}. Using these the third equation simplifies to 0.

xTH∗x = vTH∗dv −
N∑
n=1

σ2
n

[
∂2fn(σ∗n)

∂σ2
n

− λ∗n
]

(31)

<

N∑
n=1

(xTnVxn)2

(2σ̄∗n)2

[
∂2fn(σ̄∗n)

∂σ̄2
n

− 1

σ̄∗n

∂fn(σ̄∗n)

∂σ̄n

]
−

N∑
n=1

σ2
n

[
∂2fn(σ∗n)

∂σ2
n

− λ∗n
]

(32)

=

N∑
n=1

(2σ∗nσn)2

(2σ∗n)2

[
∂2fn(σ̄∗n)

∂σ̄2
n

− 1

σ̄∗n

∂fn(σ̄∗n)

∂σ̄n

]
−

N∑
n=1

σ2
n

[
∂2fn(σ∗n)

∂σ2
n

− 1

σ∗n

∂fn(σ∗n)

∂σn

]
(33)

= 0 (34)
which proves the required result.

Proof of the last part: For the last part, we make use of the result of Challis and Barber (2011)
which establishes the strong-concavity of f with respect to the Cholesky L of V for log-concave
likelihoods. Since the mapping from L to V is one-to-one, it follows that there will be a unique
maximum at V∗ = L∗(L∗)T when L∗ is the global maximizer of f . Since L is a positive-definite
matrix, we can conclude that the gradient with respect to L is zero if and only if the gradient with
respect to V is zero. Therefore, any maximizer of L will be a global maximizer of f .
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D Derivation of the dual

The new k’th subproblem is defined as follows:

max
x

gk(x) := g(x)− 1
2

N∑
n=1

λkn(σn − σkn)2 (35)

s.t. hn −wT
nmn = 0, − 1

2 [(σkn)2 − 2σknσn + wT
nVwn] = 0, ∀n

We can expand g(x) using the definition of Eq. (6) of the paper and write the Lagrangian as shown
below,

1
2

[
log |V| − Tr(VΣ−1)− (m− µ)TΣ−1(m− µ) + L

]
−

N∑
n=1

fn(hn, σn)− 1
2

N∑
n=1

λkn(σn − σkn)2

+

N∑
n=1

αn(hn −wT
nmn)− 1

2λn[(σkn)2 − 2σknσn + wT
nVwn] (36)

Next, we rearrange the terms. We move all terms containing m and V in the first line, while the
ones containing h and σ to the second line.

1
2

[
log |V| − Tr(VΣ−1)− (m− µ)TΣ−1(m− µ) + L

]
−

N∑
n=1

αnwT
nmn + 1

2λnwT
nVwn

+

N∑
n=1

−fn(hn, σn) + αnhn − 1
2λn[(σkn)2 − 2σknσn]− 1

2λ
k
n(σn − σkn)2 (37)

We can now differentiate w.r.t m and V and get the following closed-form solution.

V∗ = [Σ−1 + WT diag(λ)W]−1, m∗ = µ−ΣWTα (38)

Similarly, h∗n and σ∗n can be obtained by optimizing the second line which gives us the fk∗n (αn, λn).

fk∗n (αn, λn) := max
hn,σn>0

−fn(hn, σn) + αnhn + 1
2λnσ

k
n(2σn − σkn)− 1

2λ
k
n(σn − σkn)2 (39)

The second line of Eq. (37), therefore, simplifies to the function fk∗n (αn, λn). Note that even though
this maximization involves a concave function, existence of the global maximum depends on values
of α and λ. Denoting all the values of α and λ such that a global minimum of Eq. (47) exist by set
S. We will optimize the dual over this set S.

Substituting this back in the first line of Eq. (37), we can simplify the first line as shown below. The
first two lines are simply a rearrangement of terms. In third line, we substitute the value of V∗ and
m∗. In fourth line, we simplify since some terms cancel out.

1
2

[
log |V∗| − Tr(V∗Σ−1)− (m∗ − µ)TΣ−1(m∗ − µ) + L

]
−

N∑
n=1

αnwT
nm∗n + 1

2λnwT
nV∗wn

= 1
2

[
log |V∗| − Tr[V∗(Σ−1 + WT diag(λ∗)W)]− (m∗ − µ)TΣ−1(m∗ − µ) + L

]
−αTWm∗

= 1
2

[
− log |Σ−1 + WT diag(λ∗)W| − L−αTWΣWTα + L

]
−αTW(µ−ΣWTα) (40)

= − 1
2 log |Σ−1 + WT diag(λ∗)W|+ 1

2α
TWΣWTα−αTWµ (41)

Adding the second term obtained by maximizing over h and σ, we get the final dual:

min
α,λ∈S

− 1
2 log |Σ−1 + WT diag(λ∗)W|+ 1

2α
T Σ̃α−αT µ̃ +

N∑
n=1

fk∗n (αn, λn) (42)
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D.1 Gradient of the dual

Derivative of fk∗n wrt αn is simply the value of hn at which the maximum of Eq. (47) is attained.
We denote this by h∗n. Similarly, derivative wrt λn is equal to 1

2σ
k
n(2σ∗n − σkn) where σ∗n is the

maximizer of Eq. (47).

Derivative of rest of the terms wrt α is straightforward. The derivative with respect to λn can be
obtained as shown below using the chain rule. Denoting A := V−1 = Σ−1 + WT diag(λ∗)W, we
get the first line by using the chain rule.

5λn log |A| = Tr [(5A log |A|)5λn A] = Tr [V5λn A] = Tr
[
VwnwT

n

]
= wT

nVwn = v̂∗n
(43)

Therefore,

gαn := h∗n − m̂∗n (44)

gλn := 1
2 [−(σkn)2 + 2σknσ

∗
n − v̂∗n] (45)

E Derivation of the function fk∗
n

For some likelihoods, we can compute the function in closed form. We demonstrate it for Poisson
and Laplace likelihoods.

Poisson likelihood: The likelihood is given as log p(yn|ηn) = ynηn− exp(ηn) + cnst, where y is a
positive integer. The fn term can be computed in closed form using the identity that expectation of
exp(ηn) wrt a Gaussian N (ηn|hn, σ2

n) is exp(hn + σ2
n/2). The expression is given below:

fn(hn, σn) := −ynhn + exp
(
hn + 1

2σ
2
n

)
(46)

Plugging this into the definition of fk∗n , we get the following optimization problem:

fk∗n (αn, λn) := max
hn,σn>0

fkn((αn, λn, hn, σn) (47)

fkn(αn, λn, hn, σn) := ynhn − ehn+
1
2σ

2
n + αnhn + 1

2λnσ
k
n(2σn − σkn)− 1

2λ
k
n(σn − σkn)2 (48)

Taking derivative wrt to hn and σn, we get the following:

5hn
fkn = yn − ehn+

1
2σ

2
n + αn (49)

5σn
fkn = −σnehn+

1
2σ

2
n + λnσ

k
n − λkn(σn − σkn) (50)

Setting the first gradient to zero, and simplifying, we get the expression for h∗:

eh
∗
n+

1
2σ
∗2
n = yn + αn (51)

Plugging this in the second gradient and equating it to zero, we simplify as below to get an expression
for σk∗n :

− σ∗ne
h∗n+

1
2σ
∗2
n + λnσ

k
n − λkn(σ∗n − σkn) = 0 (52)

⇒ − σ∗n(yn + αn) + λnσ
k
n − λkn(σ∗n − σkn) = 0 (53)

⇒ − σ∗n(yn + αn + λkn) + σkn(λn + λkn) = 0 (54)

⇒ σ∗n =
λn + λkn

yn + αn + λkn
σkn (55)

Plugging this in Eq. 51, we can also get the value of h∗n. Below are the expressions for h∗n and σ∗n.

σ∗n =
λn + λkn

yn + αn + λkn
σkn (56)

h∗n = − 1
2σ
∗2
n + log(yn + αn) (57)
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We can compute fk∗n by simply plugging these values in the definition of Eq. 48.

For a solution to exist, we need αn > −yn and λn > 0. This defines the range S.

Laplace likelihood: The likelihood is shown in the first equation below, where b > 0. The log-
likelihood is shown in the second line. We are going to ignore the constant term throughout.

p(yn|ηn) =
1

2b
exp(−|yn − ηn|/b) (58)

− log p(yn|ηn) = |yn − ηn|/b+ cnst (59)

We use the following identities to compute expectation wrt a Gaussian N (x|h, σ2) and its gradient:

E|x| = 2σφ(h/σ) + h[2Φ(h/σ)− 1] (60)
5xΦ(x) = φ(x) , 5xφ(x) = −xφ(x) (61)

where Φ are pdf and cdf function for a standard normal distribution. The last two identities can
be obtained easily by simply differentiating the function. The first identity can be proved using the
truncated Gaussian moments (see Wikipedia for the expression).∫ ∞

0

xN (x|h, σ2)dx = σφ(−h/σ) + h[1− Φ(h/σ)] (62)

We can express E|x| as following and then use the above expression to get the first identity. For the
last equality, we use the fact that φ(x) = φ(−x) and Φ(−x) = 1− Φ(x).

E|x| =
∫ ∞

0

xN (x|h, σ2)dx+

∫ 0

−∞
xN (x|h, σ2)dx (63)

=

∫ ∞
0

xN (x|h, σ2)dx+

∫ ∞
0

xN (x| − h, σ2)dx (64)

= σφ(−h/σ) + h[1− Φ(h/σ)] + σφ(h/σ)− h[1− Φ(−h/σ)] (65)
= 2σφ(h/σ) + h[2Φ(h/σ)− 1] (66)

Define η
′

n = (yn − hn)/b, we can do a change of variable and use the first identity to the following
expression for fn.

fn(hn, σn) :=
σn
b

[2φ(h′n) + h′n{2Φ(h′n)− 1}] (67)

where h′n = (hn − yn)/σn.

To compute the gradients wrt hn and σn, we use Eq. 61.

5hn
fn(hn, σn) =

1

σn
5h′n fn(hn, σn) =

1

b
[2Φ(h

′

n)− 1] (68)

5σnfn(hn, σn) =
σn
b
5σn h

′

n 5h′n fn(hn, σn) +
1

b
[2φ(h′n) + h′n{2Φ(h′n)− 1}] (69)

= −1

b
h
′

n[2Φ(h
′

n)− 1] +
1

b
[2φ(h′n) + h′n{2Φ(h′n)− 1}] (70)

=
2

b
φ(h

′

n) (71)

Now, we are ready to evaluate the function fk∗n . Plugging the into the definition of fk∗n , we get the
following optimization problem:

fk∗n (αn, λn) := max
hn,σn>0

fkn((αn, λn, hn, σn) (72)

fkn(αn, λn, hn, σn) := −fn(hn, σn) + αnhn + 1
2λnσ

k
n(2σn − σkn)− 1

2λ
k
n(σn − σkn)2 (73)

Taking derivative wrt to hn and σn, we get the following:

5hn f
k
n = −1

b
[2Φ(h

′

n)− 1] + αn (74)

5σn
fkn = −2

b
φ(h

′

n) + λnσ
k
n − λkn(σn − σkn) (75)
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Setting the gradient wrt hn to zero, we get the following:

h
′∗
n = Φ−1[ 1

2 (1 + αnb)] (76)

h∗n = yn + σ∗nh
′∗
n (77)

Plugging the first equation in the gradient wrt σ∗n, setting it to zero, and simplifying as shown below,
we get the expression for σ∗n.

− 2

b
φ(h

′∗
n ) + λnσ

k
n − λkn(σ∗n − σkn) = 0 (78)

⇒ − 2

b
φ(h

′∗
n )− λknσ∗n + σkn(λn + λkn) = 0 (79)

⇒ σ∗n =
1

λkn

[
−2

b
φ(h

′∗
n ) + σkn(λn + λkn)

]
(80)

These results are summarized in the following expressions:

h∗n = yn + σ∗nh
′∗
n (81)

σ∗n =
1

λkn

[
σkn(λn + λkn)− 2

b
φ(h

′∗
n )

]
(82)

h
′∗
n = Φ−1[ 1

2 (1 + αnb)] (83)

A solution will exist only when−1 < αnb < 1 and λn > 0. Also, it appears that σ∗n can be negative.
We can set it to a small positive whenever it is the case.
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