
Supplementary Material for Provable Tensor Factorization with
Missing Data

A Proof of Theorem 2.1 for Initialization Analysis

We prove the following bound on the spectrum of random tensors:

max
x,y,z,‖x‖=‖y‖=‖z‖=1

(
PΩ(T )− p T

)
[x, y, z] ≤ C Tmax (log n)2

√
(n1 n2 n3)1/2 p .

Here we prove the theorem for general case where T is not symmetric and might even have
different dimensions n1, n2 and n3. Inspired by [24, 20], our strategy is as follows:

(1) Reduce to x,y, and z which belongs to discretized sets S̃n1
, S̃n2

, and S̃n3
;

(2) Bound the contribution of light triples using concentration of measure;

(3) Bound the contribution of heavy triples using the discrepancy property of a random tripar-
tite hypergraph.

Define a discretization of an n-dimensional ball as

S̃n ≡
{
x ∈

{ ∆√
n
Z
}n

: ‖x‖ ≤ 1
}
,

such that S̃n ⊆ Sn ≡ {x ∈ Rn : ‖x‖ ≤ 1}. Later we will set ∆ to be a small enough constant.
Lemma A.1 (Remark 4.1 in [20]). For any tensor A ∈ Rn1×n2×n3 ,

max
x∈Sn1

,y∈Sn2
,x∈Sn3

A[x, y, z] ≤ max
x∈S̃n1

,y∈S̃n2
,x∈S̃n3

1

(1−∆)2
A[x, y, z]

It is therefore enough show that the bound holds for discretized vectors all discretized vectors x, y,
and z. One caveat is that such a probabilistic bound must hold with probability sufficiently close to

one such that we can apply the union bound over all discretized choices of x, y, and z. The
following lemma bounds the number of such choices.

Lemma A.2 ([20]). The size of the discretized set is bounded by |S̃n| ≤
(
∆/10

)n
.

A naive approach to upper bound (PΩ(T )− p T )[x, y, z] would be to consider it as a random
variable and apply concentration inequalities directly. However, this naive approach fails since x, y

and z can contain entries that are much larger than their typical value of O(1/
√
n). We thus

separate the analysis into two contributions, and apply concentration inequalities to bound the
contribution of the light triples and use graph topology of the random sampling to bound the

contribution of the heavy triples. Define the light triples as

L ≡
{

(i, j, k) :
∣∣Tijkxiyjzk

∣∣ ≤ Tmax

√
ε

n1 n2 n3

}
. (7)

Heavy triples are defined as its complement L = {[n1]× [n2]× [n3]} \ L. Later we will set the
appropriate value for ε = Θ(p

√
n1n2n3). We can then write each contributions separately as

∣∣∣
(
PΩ(T )− p T

)
[x, y, z]

∣∣∣ ≤
∣∣∣
∑

(i,j,k)∈L

(
PΩ(T )ijkxiyjzk

)
− p T [x, y, z]

∣∣∣+
∣∣∣
∑

(i,j,k)∈L
PΩ(T )ijkxiyjzk

∣∣∣ .(8)

We will prove that both contributions are upper bounded by CTmax(log n)2
√

(n1n2n3)1/2p with
some positive constant C for all x ∈ S̃n1

, y ∈ S̃n2
, and z ∈ S̃n3

. The bound on the light triples
follows from Chernoff’s concentration inequalities. The bound on the heavy triples follows from
the discrepancy property of random hyper graphs, which implies that there cannot be too many
triples with large contributions. Theorem 2.1 then follows from Lemma A.1 with an appropriate

choice of ∆ = Θ(1).
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A.1 Bounding the contribution of light triples

Let Z ≡∑(i,j,k)∈L
(
PΩ(T )ijkxiyjzk

)
− p T [x, y, z] for some x ∈ Sn1

, y ∈ Sn2
, and z ∈ Sn3

.
We claim that

P
(
Z >

pTmax
√
n1n2n3√
ε

+ t (n1 + n2 + n3)
2Tmax

√
ε√

n1n2n3

)
≤ exp

{
− t(n2 + n2 + n3)

}
.(9)

We first show that the mean of Z is bounded as

∣∣E[Z]
∣∣ ≤ 2 p Tmax

√
n1n2n3

ε
. (10)

The mean can be written as
E[Z] = p

∑
L Tijkxiyjzk − p

∑
[n1]×[n2]×[n3] Tijkxiyjzk = p

∑
L Tijkxiyjzk. Using the fact that

for heavy triples |Tinkxiyjzk| ≥ Tmax

√
ε/(n1n2n3), the expected contribution is then bounded by

∣∣∣
∑

(i,j,k)∈L
Tijkxiyjzk

∣∣∣ ≤
∑

(i,j,k)∈L

T 2
ijkx

2
i y

2
j z

2
k

|Tijkxiyjzk|

≤
√
n1n2n3

Tmax
√
ε

∑

(i,j,k)∈L
T 2
ijkx

2
i y

2
j z

2
k

≤ Tmax
√
n1n2n3√
ε

.

We next show concentration of Z around item mean. Let λ =
√
n1n2n3/(2Tmax

√
ε) such that

|λTijkxiyjzk| ≤ 1/2 for all (i, j, k) ∈ L. Then,
eλTijkxiyjzk − 1 ≤ λTijkxiyjzk + 2λ(Tijkxiyjzk)2.

E[eλZ ] = exp{−λ pT [x, y, z]}
∏

(i,j,k)∈L

(
1− p+ p eλTijkxiyjzk

)

≤ exp{−λ pT [x, y, z]}
∏

(i,j,k)∈L

(
1 + p (λTijkxiyjzk + 2λ2(Tijkxiyjzk)2)

)

≤ exp
{
p
∑

L
λTijkxiyjzk − λ pT [x, y, z] + p

∑

L
2λ2(Tijkxiyjzk)2

}

≤ exp
{
λE[Z] +

p n1n2n3

2ε

}
.

Applying Chernoff bound P(Z − E[Z] > t) ≤ E[eλZ ]e−λE[Z]−λt, this proves (9). Note that the
deviation of −Z can be bounded similarly. We can now finish the proof of upper bound on the

contribution of light triples by taking the union bound over all discretized vectors inside the ball.
Setting t = 2 log(20/∆) in (9), we get

P
(

max
x∈S̃n1

,y∈S̃n2
,z∈S̃n3

∑

(i,j,k)∈L
Tijkxiyjzk − p T [x, y, z] ≥ pTmax

√
n1n2n3√
ε

+ 2 log(20/∆) (n1 + n2 + n3)
2Tmax

√
ε√

n1n2n3

)

≤ 2 e(n1+n2+n3) log(20/∆) e−2 log(20/∆)(n1+n2+n3)

≤ 2e−(n1+n2+n3) log(20/∆) .

Since p = ε/
√
n1n2n3, this proves that the contribution of light triples is bounded by C Tmax

√
ε

with high probability.

Note that for the range of p = ε/n2, the contribution of light couples is bounded by C Tmax

√
ε/n.

However, even in this regime of p, the contribution of heavy triples is still Ω(1), which dominates
the light triples by a factor of

√
n. This is the reason for the choice of p = Θ(ε/n1.5).
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A.2 Bounding the contribution of heavy triples

The contribution of heavy triples is bounded by
∣∣∣
∑

(i,j,k)∈L
Tijkxiyjzk

∣∣∣ ≤ Tmax

∑

(i,j,k)∈L
|xiyjzk| .

In the following, we will show that the right-hand side of the above inequality is upper bounded by
∑

(i,j,k)∈L
|xiyjzk| ≤ C

√
ε(log n)2 ,

for some positive numerical constant C > 0 with probability larger than 1− n−5.

We consider a hypergraph G = ([n1]× [n2]× [n3], E) with undirected hyper edges, where each
edge connects three nodes, each one from each set [n1], [n2], and [n3]. Given a sampling of entries
in a tensor, we let the edges in G denote the positions of the entries that is sampled. The proof is a

generalization of similar proof for matrices in [24, 25, 20] and is based on two properties of the
hypergraph G. Define the degree of a node as the number of edges connected to that particular

node such that deg1(i) ≡ |{(i, j, k) ∈ E}|, and similarly define deg2(j) and deg3(k). Define the
degree of two nodes as the number of edges connected to both of the nodes such that

deg12(i, j) ≡ |{(i, j, k) ∈ E}|, and similarly define deg13(i, k) and deg23(j, k).

1. Bounded degree property. A hyper graph G satisfies the bounded degree property if the
degree are upper bounded as follows:

deg1(i) ≤ ξ0 p n2n3 for all i ∈ [n1] ,

deg2(j) ≤ ξ0 p n1n3 for all j ∈ [n2] ,

deg3(k) ≤ ξ0 p n1n2 for all k ∈ [n3] ,

deg12(i, j) ≤ ξ0 (p n3 + log n3) for all i ∈ [n1], j ∈ [n2] ,

deg13(i, k) ≤ ξ0 (p n2 + log n2) for all i ∈ [n1], k ∈ [n3] ,

deg23(j, k) ≤ ξ0 (p n1 + log n1) for all j ∈ [n2], k ∈ [n3] , (11)

for some positive numerical constant ξ0 > 0 (independent of n1, n2, n3 and p) where
p = |E|/(n1n2n3).

2. Discrepancy property. A hyper graph G satisfies the discrepancy property if for any subset
of nodes A1 ∈ [n1], A2 ∈ [n2], and A3 ∈ [n3], at least one of the following is true:

e(A1, A2, A3) ≤ ξ1 ē(A1, A2, A3) , (12)

e(A1, A2, A3) ln
(e(A1, A2, A3)

ē(A1, A2, A3)

)
≤ ξ2 max

{
|A1| ln

( e n1

|A1|
)
, |A2| ln

( e n2

|A2|
)
, |A3| ln

( e n3

|A3|
)}

,(13)

for some positive numerical constants ξ1, ξ2 > 0 (independent of n1, n2, n3 and p). Here,
e(A1, A2, A3) denotes the number of edges between the three subsets A1, A2 and A3, and
ē(A1, A2, A3) ≡ p |A1| |A2| |A3| denotes the average number of edges between the three
subsets.

We first prove that if the sampling pattern is defined by a graph G which satisfies both the bounded
degree and discrepancy properties, then the contribution of heavy triples is O(

√
ε). Notice that this

is a deterministic statement, that holds for all graphs with the above properties. We then finish the
proof by showing that the random sampling satisfies both the bounded degree and discrepancy

properties with probability at least 1− n−5.

We partition the indices according to the value of corresponding vectors:

A
(u)
1 ≡

{
i ∈ [n1] :

∆√
n1

2u−1 ≤ |xi| <
∆√
n1

2u
}

A
(v)
2 ≡

{
j ∈ [n2] :

∆√
n2

2v−1 ≤ |yj | <
∆√
n2

2v
}

A
(w)
3 ≡

{
k ∈ [n3] :

∆√
n3

2w−1 ≤ |zk| <
∆√
n3

2w
}
,
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for u ∈ {1, . . . , dlog2(
√
n1/∆)e+ 1}, v ∈ {1, . . . , dlog2(

√
n2/∆)e+ 1}, and

w ∈ {1, . . . , dlog2(
√
n3/∆)e+ 1}. We denote the size of each set by a(u)

i ≡ |A(u)
i |. We use euvw

to denote the number of edges between three subsets A(u)
1 , A(v)

2 , and A(w)
3 , and we use

ēuvw ≡ p a(u)
1 a

(v)
2 a

(w)
3 to denote the average number of edges. Notice that the above definition of

A
(u)
1 ’s cover all non-zero values of the entries of x, since, with discretization, the smallest possible

positive value is ∆/
√
n1. The same applies to the entries of y and z.

∑

(i,j,k)∈L

∣∣xiyjzk
∣∣ ≤

∑

(i,j,k):|xiyjzk|>
√
ε/(n1n2n3)

∣∣xiyjzk
∣∣

≤
∑

(u,v,w):2u+v+w>8
√
ε/∆3

euvw
∆2u√
n1

∆2v√
n2

∆2w√
n3︸ ︷︷ ︸

σuvw

.

Note that since
∑
u a

(u)
1 22(u−1)∆2/n1 ≤ ‖x‖2 ≤ 1, we get that

a
(u)
1 ≤ (n1/∆

2)2−2(u−1) ,

a
(v)
2 ≤ (n2/∆

2)2−2(v−1) ,

a
(w)
3 ≤ (n3/∆

2)2−2(w−1) . (14)

The contributions from various combinations of (u, v, w) utilize various subsets of our
assumptions. We prove that in each case the contribution is O(

√
ε(log n)2) as follows.

Case1. For (u, v, w) satisfying the first discrepancy property (12) : euvw ≤ ξ1ēuvw.

In this case, using (14) and the fact that p = ε/
√
n1n2n3,

∑
σuvw ≤ ξ1pa

(u)
1 a

(v)
2 a

(w)
3

∆32u+v+w

√
n1n2n3

≤ 64ξ1p
√
n1n2n3

∆32u+v+w

≤ 16ξ1
√
ε(log n)2 ,

where n ≡ max{n1, n2, n3} and in the last inequality we used the fact
that we are summing over heavy triples satisfying ∆32u+v+w > 8

√
ε, and∑

(u,v,w):2u+v+w≤8
√
ε/∆3 2−(u+v+w) ≤ 2 log2(

√
n1/∆) log2(

√
n2/∆) ∆3/(8

√
ε).

Case2. For (u, v, w) satisfying the second discrepancy property in (13).

Case 2-1. For (u, v, w) satisfying ln(euvw/ēuvw) ≤ (1/2) ln(en3/a
(w)
3 ) =

(1/4)(ln(en3/(a
(w)
3 22w)) + ln(22w)).

Case 2-1-1. When ln(22w) ≤ ln(en3/(a
(w)
3 22w)), we have ln(euvw/ēuvw) ≤

ln(en2/(a
(w)
3 22w)), which gives

euvw ≤ en3ēuvw/(a
(w)
3 22w)

≤ e a
(u)
1 a

(v)
2 n3p2

−2w

≤ 16e

∆4
n1n2n3p2

−2(u+v+w) .

It follows that
∑
σuvw ≤ (16/∆)p

√
n1n2n32−u−v−w ≤ 2∆2

√
ε(log n)2 using

the fact that we are summing over heavy triples.

Case 2-1-2. When ln(22w) > ln(en3/(a
(w)
3 22w)), we have ln(euvw/ēuvw) ≤

ln(2w).
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Case 2-1-2-1. For
√
εeuvw > 2u+v+wēuvw, it follows that 2u+v ≤ √ε.

Since we are in the case where the first discrepancy does not hold, i.e.
euvw > ξ1ēuvw, and the the second discrepancy property holds, we have
euvw ≤ euvw ln(euvw/ēuvw) ≤ ξ2a(w)

3 ln(en3/a
(w)
3 ) ≤ 2ξ2a

(w)
3 ln(22w) Then,

∑
σuvw ≤

∑
2ξ2a

(w)
3 ln(22w)

∆32u+v+w

√
n1n2n3

≤
∑ 8ξ2∆

√
n32u+v

√
n1n2

ln(2w)

2w

≤ 8∆ξ2

√
n3

n1n2

√
ε log2(

√
n1/∆) log2(

√
n3/∆) ,

which is O
(√
ε(log n)2

√
(n3/(n1n2))

)

Case 2-1-2-2. For
√
εeuvw ≤ 2u+v+wēuvw,

∑
σuvw ≤

∑ 2u+v+wp a
(u)
1 a

(v)
2 a

(w)
3√

ε

∆32u+v+w

√
n1n2n3

≤
√
ε

∆3

∑ a
(u)
1 a

(v)
2 a

(w)
3 ∆322(u+v+w)

n1n2n3

≤
√
ε

∆3
‖x‖2 ‖y‖2 ‖z‖2 ,

which is O(
√
ε).

Case 2-2. For (u, v, w) satisfying ln(euvw/ēuvw) > (1/2) ln(en3/a
(w)
3 ).

Case 2-2-1. For 2u+v ≤
√
n1n2ε/n32w, we know from the condition

ln(euvw/ēuvw) > (1/2) ln(en3/a
(w)
3 ), that euvw ≤ 2ξ2a

(w)
3 . Then,

∑
σuvw ≤

∑
2ξ2a

(w)
3

2u+v+w∆3

√
n1n2n3

≤
∑

8ξ2∆2u+v−w
√

n3

n1n2

≤ 8ξ2∆
√
ε log2(

√
n1/∆) log2(

√
n2/∆) ,

which is O(
√
ε(log n)2).

Case 2-2-2. For 2u+v >
√
n1n2ε/n32w

Case 2-2-2-1. For (u, v, w) satisfying bounded degree property with
deg12(i, j) ≤ ξ0pn3, we have euvw ≤ a1a2ξ0pn3. Then,

∑
σuvw ≤

∑ 16ξ0ε

∆
2w−u−v

≤
√

n3

n1n2

16ξ0
√
ε

∆
log2(

√
n2/∆) log2(

√
n2/∆) ,

which is O(
√
ε
√
n3/(n1n2)(log2 n)2).

Case 2-2-2-2. For (u, v, w) satisfying bounded degree property with
deg12(i, j) ≤ ξ0 log n3, we have euvw ≤ a1a2ξ0 log n.

∑
σuvw ≤

∑ 16ξ0 log n32w−u−v

∆

√
n1n2

n3

≤ 16ξ0 log n3

∆
√
ε

log2(
√
n1/∆) log2(

√
n2/∆) ,

which is O((1/
√
ε)(log n)3).
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For ε ≥ log n, this proves that the contribution of the heavy triples is O(
√
ε(log n)2).

We are left to prove that the bounded degree and the bounded discrepancy properties hold for a
random tripartite hypergraph G = (V1 ∪ V2 ∪ V3, E) where each edge is selected with probability
p. Precisely, let n = max{|V1|, |V2|, |V3|}, then the following lemma provides a bound on the

degree and discrepancy, with high probability.
Lemma A.3. For any δ ∈ [0, 1/e] and p ≥ (1/n2) log n, there exists numerical constantsC,C ′ > 0
such that a random tripartite hyper graph satisfies the bounded degree property: for all i ∈ V1,
j ∈ V2, and k ∈ V3,

deg1(i) ≤ 2pn2n3 +
8

3
log

3n1

δ

deg2(j) ≤ 2pn1n3 +
8

3
log

3n2

δ

deg3(k) ≤ 2pn1n2 +
8

3
log

3n3

δ

deg12(i, j) ≤ 2pn3 +
8

3
log

3n1n2

δ

deg13(i, k) ≤ 2pn2 +
8

3
log

3n1n3

δ

deg23(j, k) ≤ 2pn1 +
8

3
log

3n2n3

δ

and the bounded discrepancy property: for all subsets A1 ⊆ V1, A2 ⊆ V2, and A3 ⊆ V3, at least
one of the following is true.

e(A1, A2, A3) ≤ C α2 ē(A1, A2, A3)
(

1 +
ln(1/δ)

pn2

)
, or

e(A1, A2, A3) ln
(e(A1, A2, A3)

ē(A1, A2, A3)

)
≤ C ′

(
ln
α

δ
+ max

{
|A1| ln

e n1

|A1|
, |A2| ln

e n2

|A2|
, |A3| ln

e n3

|A3|
})

,

where n1 = |V1|, n2 = |V2|, n3 = |V3|, n = max{n1, n2, n2} and α ≡ maxni/nj .

Now, for the choice of δ = n−5, the bounded degree and discrepancy properties in (11), (12), and
(13) hold for random tripartite hypergraphs. This finishes the proof of Theorem 2.1.

A.3 Proof of the bounded degree and discrepancy properties in Lemma A.3

We first prove the bounded degree properties of (11) hold with probability at least 1− δ. Applying
standard concentration inequality, e.g. Bernstein inequality, we get that for some positive constant

δ > 0,

P
(

deg1(i) ≤ 2pn2n3 +
8

3
log

3n1

δ

)
≤ exp

(
− (1/2)(pn2n3 + (8/3) log(3n1/δ))

2

(1/3)(pn2n3 + (8/3) log(3n1/δ)) + n2n3p(1− p)
)

≤ e− log(3n1/δ) ,

for n sufficiently large, and taking union bound over all choices of i, j and k, deg1(i), deg2(j), and
deg3(k)’s are uniformly bounded with probability at least 1− δ/2.

Similarly, we can apply concentration inequality to bound for some positive constant δ > 0

P
(

deg12(i, j) ≤ 2pn3 +
8

3
log

3n1n2

δ

)
≤ exp

(
− (1/2)(pn3 + (8/3) log(3n1n2/δ))

2

(1/3)(pn3 + (8/3) log(3n1n2/δ)) + n3p(1− p)
)

≤ e− log(3n1n2/δ) .

Applying the union bound over all choices of (i, j), (i, k) and (j, k), we get that the bound holds
uniformly with probability at least 1− δ/2.

Next, we prove that the random hyper graphs satisfy the discrepancy properties of (12) and (13).
For any given subsets A1 ⊆ [n1], A2 ⊆ [n2], and A2 ⊆ [n3], let a1, a2, and a3 denote the

cardinality of the subsets, and ē(A1, A2, A3) = pa1a2a3.
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Let’s assume, without loss of generality, that a1 ≤ a2 ≤ a3. We divide the analysis into two cases
depending on the size of the smallest subset. When at least two of the subsets are large, i.e.
a2 = Ω(n) and a3 = Ω(n), then by bounded degree property, we can prove that (12) holds.

However, when a1 and a2 are small, e.g. O(1), then the first discrepancy no longer holds, and we
need a different technique to show concentration.

Case 1. When a1 ≥ n1/e.

From the bounded degree property, we know that deg1(i) ≤ 2pn2n3 + (8/3) ln(3n1/δ). Then,

e(A1, A2, A3) ≤ a1(2pn2n3 + (8/3) ln(3n1/δ))

≤ a1(5pn2n3 + (8/3) ln(1/δ))

≤ 5a1pn2n3

(
1 +

ln(1/δ)

pn2n3

)

≤ 5 e2 α2ē(A1, A2, A3)
(

1 +
ln(1/δ)

pn2n3

)
.

Case 2. When a1 < n1/e.

We use the following bound on sum of indicator variables deviating from the mean :

P
(
e(A1, A2, A3) ≥ tē(A1, A2, A3)

)
≤ e−(1/3) ē t ln t , (15)

where we denote ē(A1, A2, A3) by ē, which holds for t ≥ 4. For the bound holds with probability
at least 1− δ, we require

e−(1/3)ēt ln t

(
n1

a1

)(
n2

a2

)(
n3

a3

)
≤ δ

n1n2n3
,

where the term 1/(n1n2n3) is chosen to compensate for the union bound over all choices of a1, a2

and a3. Simplifying the combinatorial terms, we get

e−(1/3)ēt ln t
(en1

a1

)a1(en2

a2

)a2(en3

a3

)a3
eln(n1n2n3/δ) ≤ 1 .

Equivalently,

a1 ln
(en1

a1

)
+ a2 ln

(en2

a2

)
+ a3 ln

(en3

a3

)
+ ln

(n1n2n3

δ

)
≤ ēt ln t

3
.

We assumed that a1 ≤ n1/e, and since x ln(n1/x) is monotone in x ∈ [1, n1/e], we know that
a1 ln(en1/a1) ≥ lnn1.

4a1 ln
(en1

a1

)
+ a2 ln

(en2

a2

)
+ a3 ln

(en3

a3

)
+ ln

(α2

δ

)
≤ ēt ln t

3
.

To lighten the notations, let’s suppose a1 ln(e n1/a1) ≤ a2 ln(e n2/a2) ≤ a3 ln(e n3/a3). Let t′ be
the smallest number such that (3/ē)

(
6a3 ln(e n3/a3) + ln(α2/δ)

)
= t′ ln t′.

For the regime of parameters such that t′ ≤ 4, then e(A1, A2, A3) ≤ 4ē(A1, A2, A3) with
probability at least 1− δ the bounded discrepancy condition, in particular the first one, holds.

For the regime of parameters such that t′ > 4, we can apply (15) to get that with probability at least
1− δ, the following holds uniformly for all choices of A1, A2, and A3:

e(A1, A2, A3) ≤ t′ē(A1, A2, A3) .

Since we defined t′ to satisfy ēt′ ln t′ = 18a3 ln(e n3/a3) + 3 ln(α2/δ), we have

e(A1, A2, A3) ln t′ ≤ 18a3 ln(e n3/a3) + 3 ln(α2/δ) .

As t′ upper bounds e(A1, A2, A3)/ē, we have

e(A1, A2, A3) ln
(e(A1, A2, A3)

ē(A1, A2, A3)

)
≤ 18a3 ln(e n3/a3) + 3 ln(α2/δ) .
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A.4 Proof of Thresholding

Lemma A.4. Let u`, 1 ≤ ` ≤ r be such that ‖u` − u∗`‖2 ≤ α where α < 1/4. Also, let u∗` , 1 ≤
` ≤ r be µ-incoherent unit vectors. Now define ũ` as:

ũ`(i) =

{
u`(i) if |u`(i)| ≤ µ√

n
,

sign(u`(i))
µ√
n

if |u`(i)| > µ√
n
.

Also, let û` = ũ`/‖ũ`‖2. Then, ‖û` − u∗`‖2 ≤ 3α ∀1 ≤ ` ≤ r and each û` is 2µ-incoherent.

Proof. As ‖u∗`‖∞ ≤ µ√
n

, hence ‖ũ` − u∗`‖2 ≤ ‖u` − u∗`‖2 ≤ α, ∀`. This also implies that
1− α ≤ ‖ũ`‖2 ≤ 1. Hence,

‖û` − u∗`‖2 ≤ ‖ũ` − u∗`‖2 +

(
1

‖ũ`‖2
− 1

)
≤ 3α.

Moreover, ‖û`‖∞ ≤ µ√
n·(1−α)

≤ 2µ√
n

. Hence proved. �

B Alternating Minimization Analysis

B.1 Main theorem for rank-two analysis

In this section, we provide convergence analysis for Algorithm 1 for the special case of a rank-2
orthonormal tensor T with equal singular values, i.e. T = u∗1 ⊗ u∗1 ⊗ u∗1 + u∗2 ⊗ u∗2 ⊗ u∗2, where
u∗1,u

∗
2 ∈ Rn are orthonormal vectors satisfying µ-incoherence, i.e., ‖u∗i ‖∞ ≤ µ/

√
n. The purpose

of this example is to highlight the proof ideas and we fix σ1, σ2 to be both one at each step of
Algorithm 1 for simplicity. The following theorem proves the desired linear convergence. Let

[ut1,u
t
2] denote the current estimate at the t-th iteration of Algorithm 1. For brevity, we drop the

superscript indexing time and let [u1,u2] denote [ut1,u
t
2] whenever it is clear from the context.

Theorem B.1. If u1 and u2 are 2µ-incoherent, then there exists a positive constant C such that for
p ≥ C µ3 log2 n

n1.5 the following holds (w.p. ≥ 1− log(1/ε)/n8):

d∞
(
[ut+1

1 ,ut+1
2 ], [u∗1,u

∗
2]
)
≤ 1

4
d∞ ([u1,u2], [u∗1,u

∗
2]) ,

where d∞([u1,u2], [u∗1,u
∗
2]) = maxi,1≤i≤2 ‖ui − u∗i ‖2. Moreover, ut+1

1 , ut+1
2 are both 2µ-

incoherent.

Proof. We claim that with probability at least 1− 1/n8,

‖ut+1
i − u∗i ‖2 ≤

1

4
· d∞ ([u1,u2], [u∗1,u

∗
2]) ,

for both i ∈ {1, 2}. This proves the desired bound. Incoherence of [ut+1
1 ,ut+1

2 ] follows from
Lemma B.2. Without loss of generality, we only prove the claim for i = 1. Recall that ût+1

1 is the
solution of the least squares problem in Step 11 of Algorithm 1, and can be written as

ût+1
1 (i) =

∑
jk δijku1(j)u1(k)u∗1(j)u∗1(k)∑

jk δijk(u1(j))2(u1(k))2
u∗1(i)+

∑
jk δijku1(j)u1(k)(u∗2(i)u∗2(j)u∗2(k)− u2(i)u2(j)u2(k))∑

jk δijk(u1(j))2(u1(k))2
.

(16)
Note that the update that can be written in a vector form:

ût+1 = 〈u1,u
∗
1〉2u∗1 + 〈u1,u

∗
2〉2u∗2 − 〈u1,u2〉2u2 +B−1(〈u1,u

∗
1〉2B − C)u∗1

+B−1(〈u1,u
∗
2〉2B − F )u∗2 −B−1(〈u1,u2〉2B −G)u2, (17)

where B, C, F,G are all diagonal matrices, s.t.,

Bii =
∑

jk

δijk(u1(j))2(u1(k))2, Cii =
∑

jk

δijku1(j)u1(k)u∗1(j)u∗1(k),

Fii =
∑

jk

δijku1(j)u1(k)u∗2(j)u∗2(k), Gii =
∑

jk

δijku1(j)u1(k)u2(j)u2(k) . (18)
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Let ût+1
1 − 〈u1,u

∗
1〉2u∗1 = err0 + err1 + err2, such that

err0 = 〈u1,u
∗
2〉2u∗2 − 〈u1,u2〉2u2,

err1 = B−1(〈u1,u
∗
1〉2B − C)u∗,

err2 = B−1(〈u1,u
∗
2〉2B − F )u∗2 −B−1(〈u1,u2〉2B −G)u2 . (19)

We separate the analysis for each of the error terms. Using Lemma B.3, we have:

‖err0‖2 ≤ 4d∞ ([u1,u2], [u∗1,u
∗
2]) ‖u2 − u∗2‖2. (20)

Setting p ≥ C µ3 log2 n
γ2n3/2 for a γ to be chosen appropriately later and using Lemma B.7 and

Lemma B.5, we have (w.p. ≥ 1− 2/n9):

‖err1‖2 ≤
γ

1− γ ‖u1 − u∗1‖2. (21)

Similarly, using Lemma B.4 and p ≥ C µ3 log2 n
γ2n3/2 , we have (w.p. ≥ 1− 1/n9):

‖err2‖ ≤ 8
γ

1− γ · ‖u2 − u∗2‖2. (22)

We want to upper bound the error:

‖ût+1
1 − u∗1‖2 ≤ ‖ût+1

1 − 〈u1,u
∗
1〉2u∗1‖2 + ‖(〈u1,u

∗
1〉2 − 1)u∗1‖2 .

Since 1−〈u1,u
∗
1〉2 = (1/2)‖u1−u∗1‖22, we have from (20), (21), and (22) that (w.p. ≥ 1−10/n9):

‖ût+1
1 − u∗1‖2 ≤

( γ

1− γ +
‖u1 − u∗1‖2

2

)
‖u1 − u∗1‖2 +

(
8

γ

1− γ + 4d∞ ([u1,u2], [u∗1,u
∗
2])

)
‖u2 − u∗2‖2 .

Setting γ ≤ 1/200 and for d∞ ([u1,u2], [u∗1,u
∗
2]) ≤ 1/200 as per our assumption, this proves the

desired bound. �

B.2 Technical lemmas for rank-two analysis

The next lemma shows that all our estimates are 2µ-incoherent, which in turn allows us to bound
the error in the above proof effectively. Note that the incoherence of the updates do not increase

beyond a global constant (2µ). Let ût+1
1 be obtained by update (16) and let ut+1

1 = ût+1
1 /‖ût+1

1 ‖2.
Lemma B.2. Under the hypotheses of Theorem B.1, ut+1

1 is 2µ-incoherent with probability at least
1− 1/n9.

Proof. Using (16) and the definitions of B, C, F , G given in (18), we have:

|ût+1
1 (i)| ≤ |Cii||Bii|

µ√
n

+
|Fii|
|Bii|

µ√
n

+
|Gii|
|Bii|

2µ√
n
≤ 2µ√

n
, (23)

where the second inequality follows by bounds on Bii, Cii, Fii, Gii obtained using Lemma B.5 and
the distance bound d∞ ([u1,u2], [u∗1,u

∗
2]). �

Next, we bound the first error term in (17).
Lemma B.3. Let u = u∗ + du and v = v∗ + dv , where u,u∗,v,v∗ are all unit vectors and
u∗ ⊥ v∗. Also, let ‖du‖2 ≤ 1 and ‖dv‖2 ≤ 1. Then, the following holds:

‖〈u,v∗〉2v∗ − 〈u,v〉2v‖ ≤ 4(‖du‖2 + ‖dv‖2)‖dv‖2.

Proof. Note that,

〈u,v〉2 = (〈u,v∗〉+ 〈u,dv〉)2 = 〈u,v∗〉2 + 〈u,dv〉2 + 2〈u,v∗〉〈u,dv〉. (24)

Hence,

‖〈u,v∗〉2v∗ − 〈u,v〉2v‖2 = ‖〈u,v〉2dv − 〈u,dv〉2v∗ − 2〈u,v∗〉〈u,dv〉v∗‖2,
≤ 〈u,v〉2‖dv‖2 + ‖dv‖2 + 2|〈u,v∗〉|‖dv‖2. (25)
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Now, 〈u,v∗〉 = 〈du,v∗〉 ≤ ‖du‖2. Also,
〈u,v〉2 ≤ 〈u,v〉 = (〈du,v∗〉+ 〈u∗,dv〉+ 〈du,dv〉) ≤ 2(‖du‖+ ‖dv‖). Lemma now follows by
combining the above observations with (25). �

Now, we bound the third error term in (17). Note that although the two individual terms
((〈u1,u

∗
2〉2B − F )u∗2 and (〈u1,u2〉2B −G)v) are both small, still it is critical to bound the

difference as the individual terms can be as large as a constant, even when u1 = u∗1 and u2 = u∗2.
However, the difference goes down linearly with ‖u2 − u∗2‖2.

Lemma B.4. Let B,C, F,G be defined as in (18). Also, let the assumptions of Theorem B.1 hold.
Also, let p ≥ C µ3 log2 n

γ2n3/2 , where C > 0 is a global constant. Then, the following holds with proba-
bility ≥ 1− 4/n9:

‖(〈u1,u
∗
2〉2B − F )u∗2 − (〈u1,u2〉2B −G)u2‖2 ≤ 8γ‖u2 − u∗2‖2.

Proof. Let u2 = u∗2 + du2 and u1 = u∗1 + du1 . Then,

(〈u1,u2〉2B −G)u2 = (〈u1,u2〉2B −G)u∗2 + (〈u1,u2〉2B −G)du2 . (26)

Now,

Gii =
∑

jk

δijku1(j)u1(k)u2(j)u2(k) =
∑

jk

δijku1(j)u1(k)(u∗2(j) + du2 (j))(u∗2(k) + du2 (k))

=
∑

jk

δijku1(j)u1(k) (u∗2(j)u∗2(k) + du2 (j)u∗2(k) + u∗2(j)du2 (k) + du2 (j)du2 (k)) = Fii +D1
ii +D2

ii +D3
ii.

(27)

Hence, using (24), and (27), we have:

(〈u1,u2〉2B −G) = (〈u1,u
∗
2〉2B − F ) + (〈u1,u

∗
2〉〈u1,d

u
2 〉B −D1)

+ (〈u1,u
∗
2〉〈u1,d

u
2 〉B −D2) + (〈u1,d

u
2 〉2B −D3) (28)

Combining the above equation with (26), we get:

(〈u1,u2〉2B−G)u2−(〈u1,u
∗
2〉2B−F )u∗2 = (〈u1,u

∗
2〉〈u1,d

u
2 〉B−D1)u∗2+(〈u1,u

∗
2〉〈u1,d

u
2 〉B−D2)u∗2

+ (〈u1,d
u
2 〉2B −D3)u∗2 − (〈u1,u2〉2B −G)du2 . (29)

Lemma now follows using Lemma B.7, B.8, and the above equation. �

We now present a few technical lemmas that are critical to our proofs of the above given lemmas.
Lemma B.5. Let u,u∗ ∈ Rn be µ-incoherent unit vectors. Also, let δjk, 1 ≤ j ≤ n, 1 ≤ k ≤ n be
i.i.d. Bernoulli random variables with δjk = 1 w.p. p ≥ Cµ4 log3 n/(γ2 · n2).

Then, the following holds with probability ≥ 1− 1/n10:

|1
p

∑

jk

δjku(j)u∗(j)u(k)u∗(k)− 〈u,u∗〉2| ≤ γ.

where γ ≤ C/ log n, where C > 0 is a global constant.
Lemma B.6. Let u ∈ Rn be µ-incoherent unit vectors. Also, let a, b ∈ Rn be s.t. |ai| ≤ µ√

n
and

‖a‖2 ≤ 1. Also, let δjk, 1 ≤ j ≤ n, 1 ≤ k ≤ n be i.i.d. Bernoulli random variables with δjk = 1

w.p. p ≥ Cµ3

γ2n1.5 .

Then, the following holds with probability ≥ 1− 1/n10:

|1
p

∑

jk

δjku(j)a(j)u(k)b(k)− 〈u, a〉〈u, b〉| ≤ γ‖b‖2.

where γ ≤ C/ log n, where C > 0 is a global constant.
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Lemma B.7. Let u be a fixed unit vector and let a, b, c be fixed vectors in Rn. Also, let all u, a, b, c ∈
Rn be s.t. their L∞ norm is bounded by µ√

n
and L2 norm is bounded by 1. Also, let p ≥ Cµ3(log2 n)

γ2·n3/2 ,
where C > 0 is a global constant. Then the following holds (w.p. ≥ 1− 2/n10):

‖(〈u, a〉〈u, b〉B −R)c‖2 ≤ γ
√

1− 〈u, a〉2〈u, b〉2,
where B,R are both diagonal matrices with B(i, i) = 1

p

∑
jk δijk(u(j))2(u(k))2, and R(i, i) =

1
p

∑
jk δijku(j)u(k)a(j)b(k).

Lemma B.8. Let u be a fixed unit vector and let a, b be fixed vectors in Rn. Also, let all u be
µ-incoherent unit vectors, and a be such that ‖a‖∞ ≤ µ√

n
and ‖a‖2 ≤ 1. Also, let p ≥ Cµ3(log2 n)

γ2·n3/2 ,
where C > 0 is a global constant. Then the following holds (w.p. ≥ 1− 2/n10):

‖(〈u, a〉〈u, b〉B −R)‖2 ≤ 2γ‖b‖2
where B,R are diagonal matrices s.t. B(i, i) = 1

p

∑
jk δijk(u(j))2(u(k))2, R(i, i) =

1
p

∑
jk δijku(j)u(k)a(j)b(k).

B.3 Proofs of Technical Lemmas

Proof of Lemma B.5. Let Xjk = 1
pδjku(j)u∗(j)u(k)u∗(k). Note that, |Xjk| ≤ µ4

pn2 . Also,

E[
∑

jk

X2
jk] =

1

p

∑

jk

(u(j))2(u∗(j))2(u(k))2(u∗(k))2 ≤ µ4

pn2
.

Hence, using Bernstein’s inequality, we have:

Pr(|
∑

jk

Xjk − E[
∑

jk

Xjk]| > t) ≤ exp(−pn
2

µ4
· t2/2

1 + t/3
).

Lemma now follows by selecting t = C/ log n. �

Proof of Lemma B.6. Let Xjk = 1
pδjku(j)a(j)u(k)b(k). Note that, |Xjk| ≤ µ3‖b‖2

pn1.5 . Also,

E[
∑

jk

X2
jk] =

1

p

∑

jk

(u(j))2(a(j))2(u(k))2(b(k))2 ≤ µ4‖b‖2
pn2

≤ µ3‖b‖2
pn1.5

.

Hence, using Bernstein’s inequality, we have:

Pr(|
∑

jk

Xjk − E[
∑

jk

Xjk]| > t) ≤ exp(−pn
1.5

µ3
· t2/2

‖b‖22 + ‖b‖2t/3
).

Lemma now follows by selecting t = γ‖b‖2. �

Proof of Lemma B.7.

(〈u, a〉〈u, b〉B −R)c =
1

p

∑

ijk

δijkci(〈u, a〉〈u, b〉(u(j))2(u(k))2 − u(j)u(k)a(j)b(k))ei =
∑

ijk

Zijk,

(30)

where Zijk = 1
pδijkci(〈u, a〉〈u, b〉(u(j))2(u(k))2 − u(j)u(k)a(j)b(k))ei. Note that,

‖Zijk − E[Zijk]‖2 ≤
2

p
ciu(j)u(k)

√
1− 〈u, a〉2〈u, b〉2 ≤ γ

√
1− 〈u, a〉2〈u, b〉2,

as p ≥ Cµ3(log2 n)
γ·n3/2 . Also,

‖
∑

ijk

E[ZTijkZijk]‖2 = ‖1

p

∑

ijk

c2i (u(j))2(u(k))2(〈u, a〉〈u, b〉u(j)u(k)−a(j)b(k))2‖2 ≤
1

p

µ4

n2
(1−〈u, a〉2〈u, b〉2).
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Hence, for p and γ mentioned above, we have:

‖
∑

ijk

E[ZTijkZijk]‖2 ≤ γ(1− 〈u, a〉2〈u, b〉2).

Lemma now follows by using Bernstein’s inequality and the fact that
∑
ijk Zijk = 0. �

Proof of Lemma B.8. Consider the i-th element of the diagonal matrix (〈u, a〉〈u, b〉B − R) =
〈u, a〉〈u, b〉B(i, i)−R(i, i). Now, using Lemma B.5, |B(i, i)| ≤ 1+γ w.p. ≥ 1−1/n10. Similarly,
using Lemma B.6, |R(i, i)− 〈u, a〉〈u, b〉| ≤ γ‖b‖2. Hence, w.p. ≥ 1− 1/n10, we have:

|〈u, a〉〈u, b〉B(i, i)−R(i, i)| ≤ 2γ‖b‖2.
Lemma now follows by observing that

‖(〈u, a〉〈u, b〉B −R)‖2 = maxi |〈u, a〉〈u, b〉B(i, i)−R(i, i)| and using the above mentioned
bound with union bound. �

B.4 Proof of Theorem 2.3 and general rank-r analysis of alternating minimization

Proof. We prove the theorem by showing the following for all q:

σ∗q
(
(∆σ

q )t+1 + ‖dt+1
q ‖2

)
≤ 1

2
d∞([U,Σ], [U∗,Σ∗]).

The update for ûq
t+1 is given by:

ûq
t+1

(i) =

∑
jk δijkσ

∗
q · uq(j)uq(k)u∗q(j)u

∗
q(k)∑

jk δijkuq(j)
2uq(k)2

u∗q(i)

+

∑
` 6=q
∑
jk δijkuq(j)uq(k)(σ∗` · u∗` (i)u∗` (j)u∗` (k)− σ` · u`(i)u`(j)u`(k))∑

jk δijkuq(j)
2uq(k)2

. (31)

It can be written as a vector update,

ûq
t+1

= σ∗q 〈uq,u∗q〉2u∗q −B−1(σ∗q 〈uq,u∗q〉2B − σ∗qC)u∗q +
∑

` 6=q

(
σ∗` 〈uq,u∗` 〉2u∗` − σ`〈uq,u`〉2u`

)

+
∑

` 6=q
B−1

(
σ∗` · (〈uq,u∗` 〉2B − F`)u∗` − σ` · (〈uq,u`〉2B −G`)u`

)
,

(32)

where B, C, F`, G` are all diagonal matrices, s.t.,

B(i, i) =
∑

jk

δjkuq(j)
2uq(k)2, C(i, i) =

∑

jk

δjkuq(j)u
∗
q(j)uq(k)u∗q(k),

F`(i, i) =
∑

jk

δijkuq(j)uq(k)u∗` (j)u
∗
` (k), and G`(i, i) =

∑

jk

δijkuq(j)uq(k)u`(j)u`(k). (33)

We decompose the error terms ûq
t+1−σ∗qu∗q = err0

q+
∑
` 6=q(err1

`+err2
`) and provide upper bounds

for each, where

err0
q ≡ σ∗q (〈uq,u∗q〉2 − 1)u∗q − σ∗qB−1(〈uq,u∗q〉2B − C)u∗q ,

err1
` ≡ σ∗` 〈uq,u∗` 〉2u∗` − σ`〈uq,u`〉2u`,

err2
` ≡ B−1

(
σ∗` · (〈uq,u∗` 〉2B − F`)u∗` − σ` · (〈uq,u`〉2B −G`)u`

)
. (34)

Using Lemma B.7, we have for all p satisfying p ≥ (Cµ3(log n)2)/(γ2 n3/2), with probability at
least 1− 2/n10:

‖err0
q‖2 ≤ σ∗q

(√
1− 〈uq,u∗q〉2 + 2γ

)√
1− 〈uq,u∗q〉2 ≤ σ∗q (‖dq‖2 + 2γ) ‖dq‖2. (35)
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Eventually, we set γ ≤ 1
1600r ·

σ∗min

σ∗max
to prove the theorem. Using Lemma B.10, we have (w.p.

≥ 1− 1/n8):
∑

6̀=q
‖err1

`‖2 ≤ 8
∑

6̀=q
(‖dq‖2 + ‖d`‖2) · σ∗` · (‖d`‖2 + ∆σ

` ). (36)

Using Lemma B.11, we get (w.p. ≥ 1− 1/n8):
∑

6̀=q
‖err2

`‖2 ≤ 16γ
∑

6̀=q
σ∗` · (∆σ

` + ‖d`‖2). (37)

Using (31), (35), (36), (37), we have (w.p. ≥ 1− 3/n8):

ûq
t+1

= σt+1
q ut+1

q = σ∗qu
∗
q + errq, (38)

where,

‖errq‖2 ≤ σ∗q (‖d`‖2 + 2γ) ‖dq‖2 + 8
∑

` 6=q
(‖dq‖2 + ‖d`‖2 + 2γ)σ∗` (‖d`‖2 + ∆σ

` ) . (39)

Now, since ‖d`‖2 ≤ 1
1600r ·

σ∗min

σ∗max
,∀`, and γ ≤ 1

1600r , we have (w.p. ≥ 1− 3/n8):

‖errq‖2 ≤
σ∗q
16
· σ
∗
min

σ∗max
‖dq‖2 +

1

16
· σ∗min · d∞([U, Σ], [U∗, Σ∗]), (40)

Using (38) and (40), and the fact that |σt+1
q − σ∗q | ≤ |σt+1

q ut+1
q − u∗qσ

∗
q | for normalized vectors

ut+1
q and u∗q , we have:

|σt+1
q − σ∗q | ≤

σ∗q
16
‖dq‖2 +

σ∗min
16

d∞([U, Σ], [U∗, Σ∗]) ≤ σ∗q
8
d∞([U, Σ], [U∗, Σ∗]). (41)

Similarly, using (38) and (41), we have:

σ∗q‖ut+1
q − u∗q‖2 ≤

σ∗q
4
d∞([U, Σ], [U∗, Σ∗]). (42)

That is,

(∆σ
q )t+1 + ‖dt+1

q ‖2 ≤
1

2
d∞([U, Σ], [U∗, Σ∗]). (43)

First part of the Theorem now follows by observing that d∞([U t+1, Σt+1], [U∗, Σ∗]) =
maxq σ

∗
q

(
(∆σ

q )t+1 + ‖dt+1
q ‖2

)
and by using the above equation.

Second part of the Theorem follows directly from Lemma B.9.

�

B.5 Technical lemmas for general rank-r analysis

Lemma B.9. Let ût+1
q be obtained by update (31) and let ut+1

q = ût+1
q /‖ût+1

q ‖2. Also, let the
conditions given in Theorem 2.3 hold. Then, w.p. ≥ 1− 1/n9, ut+1

q is 2µ-incoherent.

Proof. Using (31) and the definitions of B, C, F`, G` given in (33), we have:

|ût+1
q (i)| ≤ σ∗q

|C(i, i)|
|B(i, i)|

µ√
n

+
∑

`

σ∗`
|F`(i, i)|
|B(i, i)|

µ√
n

+ σ`
|G`(i, i)|
|B(i, i)|

µ√
n
,

≤
(
σ∗q (1 + γ)/(1− γ) +

∑

`

σ∗` (γ + ‖d`‖2) + 2
∑

`

σ∗` · (1 + ∆σ
` ) · (γ + ‖d`‖2)

)
µ/
√
n,

≤ σ∗q (1 +
1

100
) · µ√

n
(44)

where the second inequality follows by bounds on Bii, Cii, Fii, Gii obtained using Lemma B.6 and
the distance bound d∞ ([u1,u2], [u∗1,u

∗
2]).

Lemma now follows using (44) and the bound on |σt+1
q − σ∗q | given by (43). �
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Lemma B.10. Let d` = u∗`−u` and ∆σ
` = |σ`−σ∗` |/σ∗` , where ‖d`‖2 ≤ 1. Let u∗` ,u`, ∀1 ≤ ` ≤ r

be unit vectors and let 〈u∗` ,u∗q〉 = 0, ∀` 6= q. Then, the following holds:

‖σ∗` · 〈uq,u∗` 〉2u∗` − σ` · 〈uq,u`〉2u`‖ ≤ 4σ∗` (‖d`‖2 + ‖dq‖2)(‖d`‖2 + ∆σ
` ).

Proof. Let σ` = σ∗` + ∆σ
` .

Now,

〈uq,u`〉2 = (〈uq,u∗` 〉+ 〈uq,d`〉)2 = 〈uq,u∗` 〉2 + 〈uq,d`〉2 + 2〈uq,u∗` 〉〈uq,d`〉. (45)

Hence,

‖〈uq,u∗` 〉2u∗` − 〈uq,u`〉2u`‖2 = ‖〈uq,u`〉2d` − 〈uq,d`〉2u∗` − 2〈uq,u∗` 〉〈uq,d`〉u∗`‖2,
≤ 〈uq,u`〉2‖d`‖2 + ‖d`‖2 + 2|〈uq,u∗` 〉|‖d`‖2. (46)

Now, 〈uq,u∗` 〉 = 〈dq,u∗` 〉 ≤ ‖dq‖2. Also, 〈uq,u`〉2 ≤ 〈uq,u`〉 = (〈dq,u∗` 〉 + 〈u∗q ,d`〉 +
〈dq,d`〉) ≤ 2(‖dq‖+ ‖d`‖). Using the above observations with (46), we have:

‖σ∗` · 〈uq,u∗` 〉2u∗` − σ` · 〈uq,u`〉2u`‖ ≤ σ∗` ‖〈uq,u∗` 〉2u∗` − 〈uq,u`〉2u`‖2 + σ∗` ·∆σ
` 〈uq,u`〉2.

Lemma now follows by combining the above equation with the above given bound on 〈uq,u`〉2. �

Lemma B.11. Let u`, d`, ∆σ
` , ∀` be as defined in Theorem 2.3 and let B,F`, G` be as defined

in (33). Also, let T and p satisfy assumptions of Theorem 2.3. Then, the following holds with
probability ≥ 1− 4/n9:

‖σ∗` · (〈uq,u∗` 〉2B − F`)u∗` − σ` · (〈uq,u`〉2B −G`)u`‖2 ≤ 8γ · σ∗` · (∆σ
` + ‖d`‖2).

Proof.
(〈uq,u`〉2B −G`)u` = (〈uq,u`〉2B −G`)u∗` + (〈uq,u`〉2B −G`)d`. (47)

Now,

G`(i, i) =
∑

jk

δijkuq(j)uq(k)u`(j)u`(k) =
∑

jk

δijkuq(j)uq(k)(u∗` (j) + d`(j))(u
∗
` (k) + d`(k))

=
∑

jk

δijkuq(j)uq(k)(u∗` (j)u
∗
` (k) + d`(j)u

∗
` (k) + u∗` (j)d`(k) + d`(j)d`(k))

= F`(i, i) +D1(i, i) +D2(i, i) +D3(i, i). (48)

Using (45), and (48), we have:

(〈uq,u`〉2B −G`) = (〈uq,u∗` 〉2B − F`) + (〈uq,u∗` 〉〈uq,d`〉B −D1)

+ (〈uq,u∗` 〉〈uq,d`〉B −D2) + (〈uq,d`〉2B −D3) (49)

Combining the above equation with (47), we get:

(〈uq,u`〉2B−G`)u`−(〈uq,u∗` 〉2B−F`)u∗` = (〈uq,u∗` 〉〈uq,d`〉B−D1)u∗`+(〈uq,u∗` 〉〈uq,d`〉B−D2)u∗`
+ (〈uq,d`〉2B −D3)u∗` − (〈uq,u`〉2B −G`)d`. (50)

Hence, using Lemma B.7 and B.8, we get:

σ∗` ‖(〈uq,u`〉2B −G`)u` − (〈uq,u∗` 〉2B − F`)u∗`‖2 ≤ 8γσ∗` ‖d`‖2. (51)

Similarly, using Lemma B.7, we have:

∆σ
` · σ∗` ‖(〈uq,u`〉2B −G`)u`‖2 ≤ γ ·∆σ

` · σ∗` . (52)

Lemma now follows by combining (51), (52), and by using triangular inequality. �
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B.6 Proof of Lemma 2.4

Proof.

‖σa(ua ⊗ ua ⊗ ua)− σ∗a(u∗a ⊗ u∗a ⊗ u∗a)‖F
≤ ε̃σ∗a + σ∗a‖(ua ⊗ ua ⊗ ua)− (u∗a ⊗ u∗a ⊗ u∗a)‖F
≤ ε̃σ∗a + σ∗a

(
‖(ua − u∗a)⊗ u∗a ⊗ u∗a‖F + ‖ua ⊗ (ua − u∗a)⊗ u∗a‖F − ‖ua ⊗ ua ⊗ (ua − u∗a)‖F

)

≤ 4 ε̃ σ∗a .

Similarly, applying Cauchy-Schwartz,we get for a 6= b,

〈σa(ua ⊗ ua ⊗ ua)− σ∗a(u∗a ⊗ u∗a ⊗ u∗a), σb(ub ⊗ ub ⊗ ub)− σ∗b (u∗b ⊗ u∗b ⊗ u∗b)〉
≤ 16 ε̃2 σ∗aσ

∗
b .

It follows that

‖T − T̂‖2F =
∑

a,b∈[r]

〈σa(ua ⊗ ua ⊗ ua)− σ∗a(u∗a ⊗ u∗a ⊗ u∗a), σb(ub ⊗ ub ⊗ ub)− σ∗b (u∗b ⊗ u∗b ⊗ u∗b)〉

≤ 16 ε̃2 (
∑

a

σ∗a)2 ≤ (4 ε̃ r σ∗max)2 ≤ (4 ε̃ r1/2 ‖T‖F )2 .

�
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