
A Useful tools

A.1 Bounds on `1 distance

For two d dimensional product distributions p1 and p2, if we bound the `1 distance on each coordi-
nate by ε, then by triangle inequality D(p1,p2) ≤ dε. However this bound is often weak. One way
to obtain a stronger bound is to relate `1 distance to Bhattacharyya parameter, which is defined as
follows: Bhattacharyya parameter B(p1, p2) between two distributions p1 and p2 is

B(p1, p2) = ∫
x∈X

√
p1(x)p2(x)dx.

The `1 distance between p1 and p2 can be bounded in terms of B(p1, p2) as follows.
Lemma 12. For distributions p1 and p2,

D(p1, p2)
2
≤ 8(1 −B(p1, p2)).

Proof. Since ∫x∈X p1(x)dx = ∫x∈X p2(x)dx = 1,

∫
x∈X

(
√
p1(x) −

√
p2(x))

2

dx = 2(1 −B(p1, p2)).

Moreover since (a + b)2 ≤ 2a2 + 2b2,

∫
x∈X

(
√
p1(x) +

√
p2(x))

2

dx ≤ 4

Using these bounds with the following Cauchy-Schwarz inequality proves the lemma.

∫
x∈X

(
√
p1(x)+

√
p2(x))

2

dx⋅∫
x∈X

(
√
p1(x)−

√
p2(x))

2

dx ≥ (∫
x∈X

∣p1(x)−p2(x)∣dx)
2

=D(p1, p2)
2.

By the definition of Bhattacharyya distance, it is multiplicative for product distributions, namely for
two product distributions p1 and p2, B(p1,p2) = ∏

d
i=1B(p1,i, p2,i). We use this with the previous

lemma to bound the `1 distance of Gaussian mixtures.

We first bound Bhattacharyya parameter for two one-dimensional Gaussian distributions.
Lemma 13. The Bhattacharyya parameter for two one dimensional Gaussian distributions p1 =

N(µ1, σ
2
1) and p2 = N(µ2, σ

2
2) is

B(p1, p2) ≥ 1 −
(µ1 − µ2)

2

4(σ2
1 + σ

2
2)

−
(σ2

1 − σ
2
2)

2

(σ2
1 + σ

2
2)

2
.

Proof. For Gaussian distributions a straight-forward computation shows that B(p1, p2) = ye−x,
where x = (µ1−µ2)

2
)

4(σ2
1+σ

2
2)

and y =
√

2σ1σ2

σ2
1+σ

2
2

. Observe that

y =

√
2σ1σ2
σ2
1 + σ

2
2

=

¿
Á
ÁÀ1 −

(σ1 − σ2)2

σ2
1 + σ

2
2

≥ 1 −
(σ1 − σ2)

2

σ2
1 + σ

2
2

≥ 1 −
(σ2

1 − σ
2
2)

2

(σ2
1 + σ

2
2)

2
.

Hence,

B(p1, p2) = ye
−x

≥ y(1 − x) ≥ (1 − x)(1 −
(σ2

1 − σ
2
2)

2

(σ2
1 + σ

2
2)

2
) ≥ 1 − x −

(σ2
1 − σ

2
2)

2

(σ2
1 + σ

2
2)

2
.

Substituting the value of x results in the lemma.

Therefore,

B(p1,p2) =
d

∏
i=1

B(p1,i, p2,i)

≥
d

∏
i=1

[1 −
(µ1,i − µ2,i)

2

4(σ2
1,i + σ

2
2,i)

−
(σ2

1,i − σ
2
2,i)

2

(σ2
1,i + σ

2
2,i)

2
]

≥ 1 −
d

∑
i=1

[
(µ1,i − µ2,i)

2

4(σ2
1,i + σ

2
2,i)

+
(σ2

1,i − σ
2
2,i)

2

(σ2
1,i + σ

2
2,i)

2
] ,
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where the last step uses∏(1 − xi) ≥ 1 −∑i xi for xi ∈ (0,1).

Using this with Lemma 12,
Lemma 14. For any two Gaussian product distributions p1 and p2,

D(p1,p2)
2
≤

d

∑
i=1

2
(µ1,i − µ2,i)

2

σ2
1,i + σ

2
2,i

+ 8
(σ2

1,i − σ
2
2,i)

2

(σ2
1,i + σ

2
2,i)

2
.

A.2 Concentration inequalities

We use the following concentration inequalities for Gaussian, Chi-Square, and sum of Bernoulli
random variables in the rest of the paper.
Lemma 15. For a Gaussian random variable X with mean µ and variance σ2,

Pr(∣X − µ∣ ≥ tσ) ≤ e−t
2
/2.

Lemma 16 (Chi-square bounds). If Y1, Y2, . . . Yn be n i.i.d.Gaussian variables with mean 0 and
variance σ2, then

Pr(
n

∑
i=1

Y 2
i − nσ

2
≥ 2(

√
nt + t)σ2

) ≤ e−t, and Pr(
n

∑
i=1

Y 2
i − nσ

2
≤ −2

√
ntσ2

) ≤ e−t.

Furthermore for a fixed vector a,

Pr(∣
n

∑
i=1

ai(Y
2
i − 1)∣ ≤ 2(∣∣a∣∣2

√
t + ∣∣a∣∣

∞
t)σ2

) ≤ 2e−t.

A simple combination of the above two results proves the following.
Lemma 17. If X is distributed according to N(µ, σ2Id) then,

Pr (−2
√
dtσ2

− 2 ∣∣µ∣∣2 tσ ≥ ∣∣X∣∣
2
2 − ∣∣µ∣∣

2
2 − dσ

2
≥ 2(

√
dt + t)σ2

+ 2 ∣∣µ∣∣2 tσ) ≤ 2e−t + e−t
2
/2.

Lemma 18 (Chernoff bound). If X1,X2 . . .Xn are distributed according to Bernoulli p, then with
probability 1 − δ,

∣
∑
n
i=1Xi

n
− p∣ ≤

√
2p(1 − p)

n
log

2

δ
+

2

3

log 2
δ

n
.

We now state a non-asymptotic concentration inequality for random matrices that helps us bound
errors in spectral algorithms.
Lemma 19 ([30] Remark 5.51). Let y(1),y(2), . . . ,y(n) be generated according to N(0,Σ). For
every ε ∈ (0,1) and t ≥ 1, if n ≥ c′d( t

ε
)
2

for some constant c′, then with probability ≥ 1 − 2e−t
2n,

∣∣
n

∑
i=1

1

n
y(i)yt(i) −Σ∣∣ ≤ ε ∣∣Σ∣∣ .

A.3 Matrix eigenvalues

We now state few simple lemmas on the eigenvalues of perturbed matrices.
Lemma 20. Let λA1 ≥ λA ≥ . . . λAd ≥ 0 and λB1 ≥ λB ≥ . . . λBd ≥ 0 be the eigenvalues of two
symmetric matrices A and B respectively. If ∣∣A −B∣∣ ≤ ε, then ∀ i, ∣λAi − λ

B
i ∣ ≤ ε.

Proof. Let u1,u2, . . .ud be a set of eigenvectors of A that corresponds to λA1 , λ
A
2 , . . . λ

A
d . Similarly

let v1,v2, . . .vd be eigenvectors of B Consider the first eigenvalue of B,

λB1 = ∣∣B∣∣ = ∣∣A + (B −A)∣∣ ≥ ∣∣A∣∣ − ∣∣B −A∣∣ ≥ λA1 − ε.

Now consider an i > 1. If λBi < λAi − ε, then by definition of eigenvalues

max
v∶∀j≤i−1,v⋅vj=0

∣∣Bv∣∣2 < λ
A
i − ε.
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Now consider a unit vector ∑ij=1 αjuj in the span of u1, . . .ui, that is orthogonal to v1, . . .vi−1.
For this vector,

RRRRRRRRRRR

RRRRRRRRRRR

B
i

∑
j=1

αjuj

RRRRRRRRRRR

RRRRRRRRRRR2

≥

RRRRRRRRRRR

RRRRRRRRRRR

A
i

∑
j=1

αjuj

RRRRRRRRRRR

RRRRRRRRRRR2

−

RRRRRRRRRRR

RRRRRRRRRRR

(A −B)
i

∑
j=1

αjuj

RRRRRRRRRRR

RRRRRRRRRRR2

≥

¿
Á
ÁÀ

i

∑
j=1

α2
j(λ

A
j )

2 − ε ≥ λAi − ε,

a contradiction. Hence, ∀i ≤ d, λBi ≥ λAi − ε. The proof in the other direction is similar and
omitted.

Lemma 21. Let A = ∑
k
i=1 η

2
i uiu

t
i be a positive semidefinite symmetric matrix for k ≤ d. Let

u1,u2, . . .uk span a k − 1 dimensional space. Let B = A +R, where ∣∣R∣∣ ≤ ε. Let v1,v2, . . .vk−1
be the top k − 1 eigenvectors of B. Then the projection of ui in space orthogonal to v1,v2, . . .vk−1
is ≤ 2

√
ε

ηi
.

Proof. Let λBi be the ith largest eigenvalue of B. Observe that B + εId is a positive semidefinite
matrix as for any vector v, vt(A + R + εId)v ≥ 0. Furthermore ∣∣A +R + εId −A∣∣ ≤ 2ε. Since
eigenvalues of B + εId is λB + ε, by Lemma 20, for all i ≤ d, ∣λAi − λ

B
i − ε∣ ≤ 2ε. Therefore, ∣λBi ∣ for

i ≥ k is ≤ 3ε.

Let ui = ∑
k−1
j=1 αi,jvj +

√
1 −∑

k−1
j=1 α

2
i,ju

′, for a vector u′ orthogonal to v1,v2, . . .vk−1. We com-
pute u′tAu′ in two ways. Since A = B −R,

∣u′t(B −R)u′∣ ≤ ∣u′tBu′∣ + ∣u′tRu′∣ ≤ ∣∣Bu′∣∣2 + ∣∣R∣∣ .

Since u′ is orthogonal to first k eigenvectors, we have ∣∣Bu′∣∣2 ≤ 3ε and hence ∣u′(B −R)u′∣ ≤ 4ε.

u′tAu′ ≥ η2i (1 −
k−1

∑
j=1

α2
i,j).

We have shown that the above quantity is ≤ 4ε. Therefore (1 −∑
k−1
j=1 α

2
i,j)

1/2
≤ 2

√
ε/ηi.

B Selection from a set of candidate distributions

Given samples from an unknown distribution f , the objective is to output a distribution from a
known collectionF of distributions with `1 distance close toD(f,F). Scheffe estimate [13] outputs
a distribution from F whose `1 distance from f is at most 9.1 max(D(f,F), ε) The algorithm
requires O(ε−2 log ∣F∣) samples and the runs in time O(∣F∣2T (n + ∣X ∣)), where T is the time to
compute the probability fj(x) of x, for any fj ∈ F . We present the modified Scheffe algorithm with
near linear time complexity and then prove Lemma 1.

We first present the algorithm SCHEFFE* with running time Õ(∣F∣2Tn).

Algorithm SCHEFFE*
Input: a set F of candidate distributions, ε ∶ upper bound on D(f,F), n independent samples
x1, . . . , xn from f .

For each pair (p, q) in F do:

1. µf = 1
n ∑

n
i=1 I{p(xi) > q.(xi)}.

2. Generate independent samples y1, . . . , yn and z1, . . . , zn from p and q respectively.

3. µp = 1
n ∑

n
i=1 I{p(yi) > q(yi)}, µq = 1

n ∑
n
i=1 I{p(zi) > q(zi)}.

4. If ∣µp − µf ∣ < ∣µq − µf ∣ declare p as winner, else q.
Output the distribution with most wins, breaking ties arbitrarily.

We make the following modification to the algorithm where we reduce the size of potential distribu-
tions by half in every iteration.
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Algorithm MODIFIED SCHEFFE
Input: set F of candidate distributions, ε ∶ upper bound on minfi∈F D(f, fi), n independent
samples x1, . . . , xn from f .

1. Let G = F , C ← ∅

2. Repeat until ∣G∣ > 1:

(a) Randomly form ∣G∣/2 pairs of distributions in G and run SCHEFFE* on each pair using
the n samples.

(b) Replace G with the ∣G∣/2 winners.
(c) Randomly select a set A of min{∣G∣, ∣F∣1/3} elements from G.
(d) Run SCHEFFE* on each pair in A and add the distributions with most wins to C.

3. Run SCHEFFE* on C and output the winner

Remark 22. For the ease of proof, we assume that δ ≥ 10 log ∣F∣

∣F∣1/3
. If δ < 10 log ∣F∣

∣F∣1/3
, we run the algorithm

with error probability 1/3 and repeat it O(log 1
δ
) times to choose a set of candidate mixtures Fδ .

By Chernoff-bound with error probability ≤ δ, Fδ contains a mixture close to f . Finally, we run
SCHEFFE* on Fδ to obtain a mixture that is close to f .

Proof sketch of Lemma 1. For any set A and a distribution p, given n independent samples from
p the empirical probability µn(A) has a distribution around p(A) with standard deviation ∼ 1

√
n

.
Together with an observation in Scheffe estimation in [13] one can show that if the number of

samples n = O(
log

∣F∣

δ

ε2
), then SCHEFFE* has a guarantee 10 max(ε,D(f,F)) with probability

≥ 1 − δ.

Since we run SCHEFFE* at most ∣F∣(2 log ∣F∣+1) times, choosing δ = δ/(4∣F∣ log ∣F∣+2∣F∣) results
in the sample complexity of

O
⎛

⎝

log ∣F∣
2
(4 log ∣F∣+2)

δ

ε2
⎞

⎠
= O

⎛

⎝

log ∣F∣

δ

ε2
⎞

⎠
,

and the total error probability of δ/2 for all runs of SCHEFFE* during the algorithm. The above
value of n dictates our sample complexity. We now consider the following two cases:

• If at some stage ≥ log(2/δ)

∣F∣1/3
fraction of elements inA have an `1 distance ≤ 10ε from f , then

at that stage with probability ≥ 1 − δ/2 an element with distance ≤ 10ε from f is added to
A. Therefore a distribution with distance ≤ 100ε is selected to C.

• If at no stage this happens, then consider the element that is closest to f , i.e., at `1 distance
at most ε. With probability ≥ (1 − log(2/δ)

∣F∣1/3
)
log ∣F∣

it always competes with an element at a
distance at least 10ε from f and it wins all these games with probability ≥ 1 − δ/2.

Therefore with probability ≥ 1 − δ/2 there is an element in C at `1 distance at most 100ε. Running
SCHEFFE* on this set yields a distribution at a distance ≤ 100 ⋅ 10ε = 1000ε. The error probability is
≤ δ by the union bound.

C Lower bound

We first show a lower bound for a single Gaussian distribution and generalize it to mixtures.

C.1 Single Gaussian distribution

The proof is an application of the following version of Fano’s inequality. It states that we cannot
simultaneously estimate all distributions in a class using n samples if they satisfy certain conditions.
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Lemma 23. [32] Let f1, . . . , fr+1 be a collection of distributions such that for any i ≠ j,D(fi, fj) ≥
α, and KL(fi, fj) ≤ β. Let f be an estimate of the underlying distribution using n i.i.d. samples
from one of the fi’s. Then,

sup
i

E[D(fi, f)] ≥
α

2
(1 −

nβ + log 2

log r
).

We consider d−dimensional spherical Gaussians with identity covariance matrix, with means along
any coordinate restricted to ± cε

√

d
. The KL divergence between two spherical Gaussians with identity

covariance matrix is the squared distance between their means. Therefore, any two distributions we
consider have KL distance at most

β =
d

∑
i=1

(2
cε
√
d
)
2

= 4c2ε2,

We now consider a subset of these 2d distributions to obtain a lower bound on α. By the Gilbert-
Varshamov bound, there exists a binary code with ≥ 2d/8 codewords of length d and minimum
distance d/8. Consider one such code. Now for each codeword, map 1 → cε

√

d
and 0 → − cε

√

d
to

obtain a distribution in our class. We consider this subset of ≥ 2d/8 distributions as our fi’s.

Consider any two fi’s. Their means differ in at least d/8 coordinates. We show that the `1 distance
between them is ≥ cε/4. Without loss of generality, let the means differ in the first d/8 coordinates,
and furthermore, one of the distributions has means cε/

√
d and the other has −cε/

√
d in the first d/8

coordinates. The sum of the first d/8 coordinates isN(cε
√
d/8, d/8) andN(−cε

√
d/8, d/8). The `1

distance between these normal random variables is a lower bound on the `1 distance of the original
random variables. For small values of cε the distance between the two Gaussians is at least ≥ cε/4.
This serves as our α.

Applying the Fano’s Inequality, the `1 error on the worst distribution is at least

cε

8
(1 −

n4c2ε2 + log 2

d/8
),

which for c = 16 and n < d
214ε2

is at least ε. In other words, the smallest n to approximate all
spherical normal distributions to `1 distance at most ε is > d

214ε2
.

C.2 Mixtures of k Gaussians

We now provide a lower bound on the sample complexity of learning mixtures of k Gaussians in d
dimensions. We extend the construction for learning a single spherical Gaussian to mixtures of k
Gaussians and show a lower bound of Ω(kd/ε2) samples. We will again use Fano’s inequality over
a class of 2kd/64 distributions as described next.

To prove the lower bound on the sample complexity of learning spherical Gaussians, we designed a
class of 2d/8 distributions around the origin. Let P def

= {P1, . . . , PT }, where T = 2d/8, be this class.
Recall that each Pi is a spherical Gaussian with unit variance. For a distribution P over Rd and
µ ∈ Rd, let P +µ be the distribution P shifted by µ.

We now choose µ1, . . . ,µk’s extremely well-separated. The class of distributions we consider will
be a mixture of k components, where the jth component is a distribution from P shifted by µj .
Since the µ’s will be well separated, we will use the results from last section over each component.

For i ∈ [T ], and j ∈ [k], Pij
def
= Pi +µj . Each (i1, . . . , ik) ∈ [T ]k corresponds to the mixture

1

k
(Pi11 + Pi22 + . . . + Pikk)

of k spherical Gaussians. We consider this class of T k = 2kd/8 distributions. By the Gilbert-
Varshamov bound, for any T ≥ 2, there is a T -ary codes of length k, with minimum distance ≥ k/8
and number of codewords ≥ 2k/8. This implies that among the T k = 2dk/8 distributions, there are
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2kd/64 distributions such that any two tuples (i1, . . . , ik) and (i′1, . . . , i
′

k) corresponding to different
distributions differ in at least k/8 locations.

If we choose the µ’s well separated, the components of any mixture distribution have very little
overlap. For simplicity, we choose µj’s satisfying

min
j1≠j2

∣∣µj1 −µj2 ∣∣2 ≥ (
2kd

ε
)

100

.

This implies that for j ≠ l, ∣∣Pij − Pi′l∣∣1 < (ε/2dk)10. Therefore, for two different mixture distribu-
tions,

∣∣
1

k
(Pi11 + Pi22 + . . . + Pikk) −

1

k
(Pi′11 + Pi′22 + . . . + Pi′kk)∣∣

1

(a)
≥

1

k
∑

j∈[k],ij ,i′j∈[T ]

∣Pijj − Pi′jj ∣ − k
2
(ε/2dk)10

(b)
≥

1

8

cε

4
− k2(ε/2dk)10.

where (a) follows form the fact that two mixtures have overlap only in the corresponding compo-
nents, (b) uses the fact that at least in k/8 components ij ≠ i′j , and then uses the lower bound from
the previous section.

Therefore, the `1 distance between any two of the 2kd/64 distributions is ≥ c1ε/32 for c1 slightly
smaller than c. We take this as α.

Now, to upper bound the KL divergence, we simply use the convexity, namely for any distributions
P1 . . . Pk and Q1 . . .Qk, let P̄ and Q̄ be the mean distributions. Then,

D(P̄ ∣∣Q̄) ≤
1

k

k

∑
i=1

D(Pi∣∣Qi).

By the construction and from the previous section, for any j,

D(Pijj ∣∣Pi′jj) =D(Pi∣∣Pi′) ≤ 4c2ε2.

Therefore, we can take β = 4c2ε2.

Therefore by the Fano’s inequality, the `1 error on the worst distribution is at least

c1ε

64
(1 −

n4c2ε2 + log 2

dk/64
),

which for c1 = 128, c = 128.1 and n < dk
88ε2

is at least ε.

D One dimensional mixtures

D.1 Proof of Lemma 3

The density of N(µ,σ2) is ≥ (7σ)−1 in the interval [µ−
√

2σ,µ+
√

2σ]. Therefore, the probability
that a sample occurs in the interval µ− εσ, µ+ εσ is ≥ 2ε/7. Hence, the probability that none of the n
samples occurs in [µ− εσ, µ+ εσ] is ≤ (1−2ε/7)n ≤ e−2nε/7. If ε ≥ 7 log 2/δ

2n
, then the probability that

none of the samples occur in the interval is ≤ δ/2. A similar argument shows that there is a sample
within interval, [µ + σ − εσ, µ + σ + εσ], proving the lemma.

D.2 Proof fo Lemma 4

Let f = (w1,w2, . . .wk, p1, p2, . . . pk). For f̂ = (ŵ1, ŵ2, . . . , ŵk−1,1 − ∑
k−1
i=1 ŵi, p̂1, p̂2, . . . p̂k), by

the triangle inequality,

D(f, f̂) ≤
k−1

∑
i=1

2∣ŵi −wi∣ +
k

∑
i=1

wiD(pi, p̂i).
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We show that there is a distribution in f̂ ∈ F such that the sum above is bounded by ε. Since we
quantize the grids as multiples of ε/2k, we consider distributions inF such that each ∣ŵi−wi∣ ≤ ε/4k,
and therefore ∑i ∣ŵi −wi∣ ≤

ε
2

.

We now show that for each pi there is a p̂i such thatwiD(pi, p̂i) ≤
ε
2k

, thus proving thatD(f, f̂) ≤ ε.
If wi ≤ ε

4k
, then wiD(pi, p̂i) ≤

ε
2k

. Otherwise, let w′

i >
ε
4k

be the fraction of samples from pi. By
Lemma 3 and 14, with probability ≥ 1 − δ/2k,

D(pi, p̂i)
2
≤ 2

(µi − µ
′

i)
2

σ2
i

+ 16
(σi − σ

′

i)
2

σ2
i

≤
25 log2 4k

δ

(nw′

i)
2

+
800 log2 4k

δ

(nw′

i)
2

≤
825 log2 4k

δ

(nw′

i)
2

.

Therefore,

wiD(pi, p̂i) ≤
30wi log 4k

δ

nw′

i

.

Since wi > ε/4k, with probability ≥ 1 − δ/2k, wi ≤ 2w′

i. By the union bound with probability

≥ 1−δ/k, wiD(pi, p̂i) ≤
60 log 4k

δ

n
. Hence if n ≥

120k log 4k
δ

ε
, the above quantity is less than ε/2k. The

total error probability is ≤ δ by the union bound.

D.3 Proof of Corollary 5

Use n′ def= 120k log 4k
δ

ε
samples to generate a set of at most n′3k−1 candidate distributions as stated in

Lemma 4. With probability ≥ 1 − δ, one of the candidate distributions is ε-close to the underlying
one. Run MODIFIED SCHEFFE on this set of candidate distributions to obtain a 1000ε-close estimate
of f with probability ≥ 1 − δ (Lemma 1). The run time is dominated by the run time of MODIFIED

SCHEFFE which isO(
∣F∣T log

∣F∣

δ

ε2
), where ∣F∣ = n′3k−1 and T = k. The total error probability is ≤ 2δ

by the union bound.

E Proofs for k spherical Gaussians

We first state a simple concentration result that helps us in other proofs.

Lemma 24. Given n samples from a set of Gaussian distributions, with probability ≥ 1 − 2δ, for
every pair of samples X ∼ N(µ1, σ

2Id) and Y ∼ N(µ2, σ
2Id),

∣∣X −Y∣∣
2
2 ≤ 2dσ2

+ 4σ2

√

d log
n2

δ
+ ∣∣µ1 −µ2∣∣

2
2 + 4σ ∣∣µ1 −µ2∣∣2

√

log
n2

δ
+ 4σ2 log

n2

δ
. (1)

and

∣∣X −Y∣∣
2
2 ≥ 2dσ2

− 4σ2

√

d log
n2

δ
+ ∣∣µ1 −µ2∣∣

2
2 − 4σ ∣∣µ1 −µ2∣∣2

√

log
n2

δ
. (2)

Proof. We prove the lower bound, the proof for the upper bound is similar and omitted. Since X
and Y are Gaussians, X −Y is distributed as N(µ1 −µ2,2σ

2). Rewriting ∣∣X −Y∣∣2

∣∣X −Y∣∣
2
2 = ∣∣X −Y − (µ1 −µ2)∣∣

2
2 + ∣∣µ1 −µ2∣∣

2
2 + 2(µ1 −µ2) ⋅ (X −Y − (µ1 −µ2)).

Let Z = X − Y − (µ1 − µ2), then Z ∼ N(0,2σ2Id). Therefore by Lemma 16, with probability
1 − δ/n2,

∣∣Z∣∣
2
2 ≥ 2dσ2

− 4σ2

√

d log
n2

δ
.
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Furthermore (µ1−µ2) ⋅Z is sum of Gaussians and hence a Gaussian distribution. It has mean 0 and
variance 2σ2 ∣∣µ1 −µ2∣∣

2
2. Therefore, by Lemma 15 with probability 1 − δ/n2,

(µ1 −µ2) ⋅Z ≥ −2σ ∣∣µ1 −µ2∣∣2

√

log
n2

δ
.

By the union bound with probability 1 − 2δ/n2,

∣∣X −Y∣∣
2
2 ≥ 2dσ2

− 4σ2

√

d log
n2

δ
+ ∣∣µ1 −µ2∣∣

2
2 − 4σ ∣∣µ1 −µ2∣∣2

√

log
n2

δ
.

There are (
n
2
) pairs and the lemma follows by the union bound.

E.1 Proof of Lemma 7

We show that if Equations (1) and (2) are satisfied, then the lemma holds. The error probability is
that of Lemma 24 and is ≤ 2δ. Since the minimum is over k + 1 indices, at least two samples are
from the same component. Applying Equations (1) and (2) for these two samples

2dσ̂2
≤ 2dσ2

+ 4σ2

√

d log
n2

δ
+ 4σ2 log

n2

δ
.

Similarly by Equations (1) and (2) for any two samples X(a),X(b) in [k + 1],

∣∣X(a) −X(b)∣∣
2
2 ≥ 2dσ2

− 4σ2

√

d log
n2

δ
+ ∣∣µi −µj ∣∣

2

2
− 4σ ∣∣µi −µj ∣∣2

√

log
n2

δ

≥ 2dσ2
− 4σ2

√

d log
n2

δ
− 4σ2 log

n2

δ
,

where the last inequality follows from the fact that α2 − 4αβ ≥ −4β2. The result follows from the
assumption that d > 20 logn2/δ.

E.2 Proof of Lemma 8

We show that if Equations (1) and (2) are satisfied, then the lemma holds. The error probability is
that of Lemma 24 and is ≤ 2δ. Since Equations (1) and (2) are satisfied, by the proof of Lemma 7,

∣σ̂2 − σ2∣ ≤ 2.5σ2
√

log(n2/δ)
d

. If two samples X(a) and X(b) are from the same component, by
Lemma 24,

∣∣X(a) −X(b)∣∣
2
2 ≤ 2dσ2

+ 4σ2

√

d log
n2

δ
+ 4σ2 log

n2

δ
≤ 2dσ2

+ 5σ2

√

d log
n2

δ
.

By Lemma 7, the above quantity is less than 2dσ̂2 + 23σ̂2
√

d log n2

δ
. Hence all the samples from

the same component are in a single cluster.

Suppose there are two samples from different components in a cluster, then by Equations (1) and (2),

2dσ̂2
+ 23σ̂2

√

d log
n2

δ
≥ 2dσ2

− 4σ2

√

d log
n2

δ
+ ∣∣µi −µj ∣∣

2

2
− 4σ ∣∣µi −µj ∣∣2

√

log
n2

δ
.

Relating σ̂2 and σ2 using Lemma 7,

2dσ2
+ 40σ2

√

d log
n2

δ
≥ 2dσ2

− 4σ2

√

d log
n2

δ
+ ∣∣µi −µj ∣∣

2

2
− 4σ ∣∣µi −µj ∣∣2

√

log
n2

δ
.

Hence ∣∣µi −µj ∣∣2 ≤ 10σ(d log n2

δ
)
1/4

. There are at most k components; therefore, any two compo-

nents within the same cluster are at a distance ≤ 10kσ(d log n2

δ
)
1/4

.
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E.3 Proof of Lemma 9

The proof is involved and we show it in steps. We first show few concentration bounds which we
use later to argue that the samples are clusterable when the sample covariance matrix has a large
eigenvalue. Let ŵi be the fraction of samples from component i. Let µ̂i be the empirical average of
samples from pi. Let µ̂(C) be the empirical average of samples in cluster C. If C is the entire set
of samples we use µ̂ instead of µ̂(C). We first show a concentration inequality that we use in rest
of the calculations.

Lemma 25. Given n samples from a k-component Gaussian mixture with probability ≥ 1 − 2δ, for
every component i

∣∣µ̂i −µi∣∣
2
2 ≤ (d + 3

√

d log
2k

δ
)
σ2

nŵi
and ∣ŵi −wi∣ ≤

¿
Á
ÁÀ2wi log 2k

δ

n
+

2

3

log 2k
δ

n
. (3)

Proof. Since µ̂i −µi is distributed N(0, σ2Id/nŵi), by Lemma 16 with probability ≥ 1 − δ/k,

∣∣µ̂i −µi∣∣
2
2 ≤ (d + 2

√

d log
2k

δ
+ 2 log

2k

δ
)
σ2

nŵi
≤ (d + 3

√

d log
2k

δ
)
σ2

nŵi
.

The second inequality uses the fact that d ≥ 20 logn2/δ. For bounding the weights, observe that by
Lemma 18 with probability ≥ 1 − δ/k,

∣ŵi −wi∣ ≤

√
2wi log 2k/δ

n
+

2

3

log 2k/δ

n
.

By the union bound the error probability is ≤ 2kδ/2k = δ.

A simple application of triangle inequality yields the following lemma.

Lemma 26. Given n samples from a k-component Gaussian mixture if Equation (3) holds, then

∣∣
k

∑
i=1

ŵi(µ̂i −µi)(µ̂i −µi)
t
∣∣ ≤ (d + 3

√

d log
2k

δ
)
kσ2

n
.

Lemma 27. Given n samples from a k-component Gaussian mixture, if Equation (3) holds

and the maximum distance between two components is ≤ 10kσ(d log n2

δ
)
1/4

, then ∣∣µ̂ −µ)∣∣
2
≤

cσ

√
dk log n

2

δ

n
, for a constant c.

Proof. Observe that

µ̂−µ =
k

∑
i=1

ŵiµ̂i−wiµi =
k

∑
i=1

ŵi(µ̂i−µi)+(ŵi−wi)µi =
k

∑
i=1

ŵi(µ̂i−µi)+(ŵi−wi)(µi−µ). (4)

Hence by Equation (3) and the fact that the maximum distance between two components is
≤ 10kσ(d log n2

δ
)
1/4

,

∣∣µ̂ −µ∣∣
2
≤

k

∑
i=1

ŵi

¿
Á
ÁÀ

(d + 3

√

d log
2k

δ
)

σ
√
nŵi

+ (

√
2wi log 2k/δ

n
+

2

3

log 2k/δ

n
)10k(d log

n2

δ
)

1/4

σ.

For n ≥ d ≥ max(k4,20 logn2/δ,1000), we get the above term is ≤ c
√

kd logn2/δ
n

σ, for some
constant c.

We now make a simple observation on covariance matrices.
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Lemma 28. Given n samples from a k-component mixture,

∣∣
k

∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)
t
−

k

∑
i=1

ŵi(µi −µ)(µi −µ)
t
∣∣

≤ 2 ∣∣µ̂ −µ∣∣
2

2
+

k

∑
i=1

2ŵi ∣∣µ̂i −µi∣∣
2
2 + 2(

√
k ∣∣µ̂ −µ∣∣

2
+

k

∑
i=1

√
ŵi ∣∣µ̂i −µi∣∣2)max

j

√
ŵj ∣∣µj −µ∣∣

2
.

Proof. Observe that for any two vectors u and v,

uut − vvt = u(ut − vt) + (u − v)vt = (u − v)(u − v)
t
+ v(u − v)

t
+ (u − v)vt.

Hence by triangle inequality,

∣∣uut − vvt∣∣ ≤ ∣∣u − v∣∣
2
2 + 2 ∣∣v∣∣2 ∣∣u − v∣∣2 .

Applying the above observation to u = µ̂i − µ̂ and v = µi −µ, we get

k

∑
i=1

ŵi ∣∣(µ̂i − µ̂)(µ̂i − µ̂)
t
− (µi −µ)(µi −µ)

t∣∣

≤
k

∑
i=1

(ŵi ∣∣µ̂i − µ̂ −µi −µ∣∣
2

2
+ 2

√
ŵi ∣∣µi −µ∣∣2

√
ŵi ∣∣µ̂i − µ̂ −µi −µ∣∣

2
)

≤
k

∑
i=1

(2ŵi ∣∣µ̂i −µi∣∣
2
2 + 2ŵi ∣∣µ̂ −µ∣∣

2

2
+ 2 max

j

√
ŵj ∣∣µj −µ∣∣

2
(
√
ŵi ∣∣µ̂i −µi∣∣2 +

√
ŵi ∣∣µ̂ −µ∣∣

2
))

≤ 2 ∣∣µ̂ −µ∣∣
2

2
+

k

∑
i=1

2ŵi ∣∣µ̂i −µi∣∣
2
2 + 2(

√
k ∣∣µ̂ −µ∣∣

2
+

k

∑
i=1

√
ŵi ∣∣µ̂i −µi∣∣2)max

j

√
ŵj ∣∣µj −µ∣∣

2
.

The lemma follows from triangle inequality.

The following lemma immediately follows from Lemmas 27 and 28.
Lemma 29. Given n samples from a k-component Gaussian mixture, if Equation (3) and the maxi-

mum distance between two components is ≤ 10kσ(d log n2

δ
)
1/4

, then

∣∣
k

∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)
t
−

k

∑
i=1

ŵi(µi −µ)(µi −µ)
t
∣∣

≤
cσ2dk2 log n2

δ

n
+ cσ

¿
Á
ÁÀdk2 log n2

δ

n
max
i

√
ŵi ∣∣µi −µ∣∣2 ,

for a constant c.
Lemma 30. For a set of samples X(1), . . .X(n) from a k-component mixture,

n

∑
i=1

(X(i) − µ̂)(X(i) − µ̂)t

n
=

k

∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)
t
− ŵi(µ̂i −µi)(µ̂i −µi)

t

+ ∑
j∣X(j)∼pi

(X(j) −µi)(X(j) −µi)
t

n
.

where ŵi and µ̂i are the empirical weights and averages of components i and µ̂ = 1
n ∑

n
i=1 Xi.

Proof. The given expression can be rewritten as

1

n

n

∑
i=1

(X(i) − µ̂)(X(i) − µ̂)
t
=

k

∑
i=1

ŵi ∑
j∣X(j)∼pi

1

nŵi
X(j) − µ̂)(X(j) − µ̂)

t.

First observe that for any set of points xi and their average x̂ and any value a,

∑
i

(xi − a)
2
= ∑

i

(xi − x̂)
2
+ (x̂ − a)2.
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Hence for samples from a component i,

∑
j∣X(j)∼pi

1

nŵi
(X(j) − µ̂)(X(j) − µ̂)

t

= ∑
j∣X(j)∼pi

1

nŵi
(µ̂i − µ̂)(µ̂i − µ̂)

t
+ ∑
j∣X(j)∼pi

1

nŵi
(X(j) − µ̂i)(X(j) − µ̂i)

t

= (µ̂i − µ̂)(µ̂i − µ̂)
t
+ ∑
j∣X(j)∼pi

1

nŵi
(X(j) − µ̂i)(X(j) − µ̂i)

t

= (µ̂i − µ̂)(µ̂i − µ̂)
t
+ ∑
j∣X(j)∼pi

1

nŵi
(X(j) −µi)(X(j) −µi)

t
− (µ̂i −µi)(µ̂i −µi)

t.

Summing over all components results in the lemma.

We now bound the error in estimating the eigenvalue of the covariance matrix.
Lemma 31. Given X(1), . . .X(n), n samples from a k-component Gaussian mixture, if Equa-
tions (1), (2), and (3) hold, then with probability ≥ 1 − 2δ,

∣∣
1

n

n

∑
i=1

(X(i) − µ̂)(X(i) − µ̂)
t
− σ̂2Id −

k

∑
i=1

ŵi(µi −µ)(µi −µ)
t
∣∣

≤ c(n)
def
= cσ2

¿
Á
ÁÀd log n2

δ

n
+ cσ2 dk

2 log n2

δ

n
+ cσ

¿
Á
ÁÀdk2 log n2

δ

n
max
i

√
ŵi ∣∣µi −µ∣∣2 ,

(5)

for a constant c.

Proof. Since Equations (1), (2), and (3) hold, conditions in Lemmas 27 and 29 are satisfied. By
Lemma 29,

∣∣
k

∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)
t
−

k

∑
i=1

ŵi(µi −µ)(µi −µ)
t
∣∣

= O
⎛
⎜
⎝
σ2 dk

2 log n2

δ

n
+ σ

¿
Á
ÁÀdk2 log n2

δ

n
max
i

√
ŵi ∣∣µi −µ∣∣2

⎞
⎟
⎠
.

Hence it remains to show,

∣∣
1

n

n

∑
i=1

(X(i) − µ̂)(X(i) − µ̂)
t
−

k

∑
i=1

ŵi(µ̂i − µ̂)(µ̂i − µ̂)
t
∣∣ = O

⎛
⎜
⎝

¿
Á
ÁÀkd log 5k2

δ

n
σ2

⎞
⎟
⎠
.

By Lemma 30, the covariance matrix can be rewritten as

k

∑
i=1

ŵi(µ̂i−µ̂)(µ̂i−µ̂)
t
−ŵi(µ̂i−µi)(µ̂i−µi)

t
+
k

∑
i=1

∑
j∣X(j)∼pi

1

n
(X(j)−µi)(X(j)−µi)

t
−σ̂2Id. (6)

We now bound the norms of second and third terms in the above equation. Consider the third term,
∑
k
i=1∑j∣X(j)∼pi

1
n
(X(j) −µi)(X(j) −µi)

t. Conditioned on the fact that X(j) ∼ pi, X(j) −µi is
distributed N(0, σ2Id), therefore by Lemma 19 and Lemma 7 ,with probability ≥ 1 − 2δ,

RRRRRRRRRRRR

RRRRRRRRRRRR

k

∑
i=1

∑
j∣X(j)∼pi

1

n
(X(j) −µi)(X(j) −µi)

t
− σ̂2Id

RRRRRRRRRRRR

RRRRRRRRRRRR

≤ c′

¿
Á
ÁÀd log 2d

δ

n
σ2

+ 2.5σ2

¿
Á
ÁÀ log n2

δ

d
.

The second term in Equation (6) is bounded by Lemma 26. Hence together with the fact that
d ≥ 20 logn2/δ we get that with probability ≥ 1 − 2δ, the second and third terms are bounded

by O(σ2
√

dk
n

log n2

δ
) .
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Lemma 32. Let u be the largest eigenvector of the sample covariance matrix and n ≥ c ⋅dk2 log n2

δ
.

If maxi
√
ŵi ∣∣µi −µ∣∣2 = ασ and Equation (5) holds, then there exists i such that ∣u ⋅ (µi − µ)∣ ≥

σ(α − 1 − 1/α)/
√
k.

Proof. Observe that ∣∣∑j wjvjv
t
j ∣∣ ≥ ∣∣∑j wjvjv

t
j

vi
∣∣vi∣∣

∣∣
2
≥ wi ∣∣vi∣∣

2
2. Therefore

∣∣
k

∑
i=1

ŵi(µi −µ)(µi −µ)
t
∣∣ ≥

RRRRRRRRRRR

RRRRRRRRRRR

k

∑
j=1

ŵj(µj −µ)(µj −µ)
t
(µi −µ)/ ∣∣µi −µ∣∣

RRRRRRRRRRR

RRRRRRRRRRR2

≥ α2σ2.

Hence by Lemma 31 and the triangle inequality, the largest eigenvalue of the sample-
covariance matrix is ≥ α2σ2 − c(n). Similarly by applying Lemma 31 again we
get,∣∣∑ki=1 ŵi(µi −µ)(µi −µ)tu∣∣

2
≥ α2σ2 − 2c(n). By triangle inequality and Cauchy-Schwartz

inequality,

∣∣
k

∑
i=1

ŵi(µi −µ)(µi −µ)
tu∣∣

2

≤
k

∑
i=1

∣∣ŵi(µi −µ)(µi −µ)
tu∣∣

2

≤
k

∑
i=1

ŵi ∣∣(µi −µ)∣∣2 max
j

∣(µj −µ) ⋅ u∣

≤

¿
Á
ÁÀ

k

∑
i=1

ŵi ∣∣(µi −µ)∣∣
2
2 max

j
∣(µj −µ) ⋅ u∣

≤
√
kασmax

j
∣(µj −µ) ⋅ u∣.

Hence
√
kασmaxi ∣(µi −µ) ⋅u∣ ≥ α2σ2 − 2c(n). The lemma follows by substituting the bound on

n in c(n).

We now make a simple observation on Gaussian mixtures.

Fact 33. The samples from a subset of components A of the Gaussian mixture are distributed ac-
cording to a Gaussian mixture of components A with weights being w′

i = wi/(∑j∈Awj).

We now prove Lemma 9.

Proof of Lemma 9. Observe that we run the recursive clustering at most n times. At every step,
the underlying distribution within a cluster is a Gaussian mixture. Let Equations (1), (2) hold with
probability 1 − 2δ. Let Equations (3) (5) all hold with probability ≥ 1 − δ′, where δ′ = δ/2n at each
of n steps. By the union bound the total error is ≤ 2δ + δ′ ⋅ 2n ≤ 3δ. Since Equations (1), (2) holds,
the conditions of Lemmas 7 and 8 hold. Furthermore it can be shown that discarding at most nε/4k
samples at each step does not affect the calculations.

We first show that if
√
wi ∣∣µi −µ(C)∣∣2 ≥ 25

√
k3 log(n3/δ)σ, then the algorithm gets into the loop.

Let w′

i be the weight of the component within the cluster and n′ ≥ nε/5k be the number of samples
in the cluster. Let α = 25

√
k3 log(n3/δ). By Fact 33, the components in cluster C have weight

w′

i ≥ wi. Hence
√
w′

i ∣∣µi −µ(C)∣∣2 ≥ ασ. Since
√
w′

i ∣∣µi −µ(C)∣∣2 ≥ ασ, and by Lemma 8
∣∣µi −µ(C)∣∣ ≤ 10kσ(d logn2/δ)1/4, we have w′

i ≥ α
2/(100k2

√
d logn2/δ). Hence by lemma 25,

w′

i ≥ wi/2 and
√
ŵ′

i ∣∣µi −µ(C)∣∣2 ≥ ασ/
√

2. Hence by Lemma 31 and triangle inequality the
largest eigenvalue of S(C) is

≥ α2σ2
/2 − c(n′) ≥ α2σ2

/4 ≥ α2σ̂2
/8 ≥ 12σ̂2k3 logn2/δ′ = 12σ̂2k3 logn3/δ.

Therefore the algorithm gets into the loop.

If n′ ≥ nε/8k2 ≥ c ⋅ dk2 log n3

δ
, then by Lemma 32, there exists a component i such that ∣u ⋅ (µi −

µ(C))∣ ≥ σ(α/
√

2 − 1 −
√

2/α)/
√
k, where u is the top eigenvector of the first nε/4k2 samples.
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Observe that ∑i∈C wiu ⋅ (µi −µ(C)) = 0 and maxi ∣u ⋅ (µi −µ(C))∣ ≥ σ(α/
√

2 − 1 −
√

2/α)/
√
k.

Let µi be sorted according to their values of u ⋅ (µi −µ(C)), then

max
i

∣u ⋅ (µi −µi+1)∣ ≥ σ
α/

√
2 − 1 −

√
2/α

k3/2
≥ 12σ

√

log
n3

δ
≥ 9σ̂

√

log
n3

δ
,

where the last inequality follows from Lemma 7 and the fact that d ≥ 20 logn2/δ. For a sample from
component pi, similar to the proof of Lemma 8, by Lemma 15, with probability ≥ 1 − δ/n2k,

∣∣u ⋅ (X(i) −µi)∣∣ ≤ σ
√

2 log(n2k/δ)2 ≤ 2σ̂
√

log(n2k/δ),

where the second inequality follows from Lemma 7. Since there are two components that are

far apart by ≥ 9σ̂
√

log n2

δ
σ̂ and the maximum distance between a sample and its mean is ≤

2σ̂
√

log(n2k/δ) and the algorithm divides into at-least two non-empty clusters such that no two
samples from the same distribution are clustered into two clusters.

For the second part observe that by the above concentration on u, no two samples from the same
component are clustered differently irrespective of the mean separation. Note that we are using the
fact that each sample is clustered at most 2k times to get the bound on the error probability. The
total error probability by the union bound is ≤ 4δ.

E.4 Proof of Lemma 10

We show that if the conclusions in Lemmas 9 and 25 holds, then the lemma is satisfied. We also
assume that the conclusions in Lemma 31 holds for all the clusters with error probability δ′ = δ/k.
By the union bound the total error probability is ≤ 7δ.

By Lemma 9 all the components within each cluster satisfy
√
wi ∣∣µi −µ(C)∣∣2 ≤

25σ
√
k3 log(n3/δ). Let n ≥ c ⋅ dk9ε−4 log2 d/δ. For notational convenience let S(C) =

1
∣C∣
∑

∣C∣

i=1(X(i) −µ(C))(X(i) −µ(C))t − σ̂2Id. Therefore by Lemma 31 for large enough c,

∣∣S(C) −
n

∣C ∣
∑
i∈C

ŵi(µi −µ(C))(µi −µ(C))
t
∣∣ ≤

ε2σ2

1000k2
n

∣C ∣
.

Let v1,v2, . . .vk−1 be the top eigenvectors of 1
∣C∣
∑i∈C wi(µi − µ(C))(µi − µ(C))t. Let ηi =

√
ŵ′

i ∣∣µi −µ(C)∣∣2 =
√
ŵi

√
n
∣C∣

∣∣µi −µ(C)∣∣2. Let ∆i =
µi−µ(C))

∣∣(µi−µ(C))∣∣2
. Therefore,

∑
i∈C

n

∣C ∣
∑
i∈C

ŵi(µi −µ(C))(µi −µ(C))
t
= ∑
i∈C

η2i∆i∆
t
i.

Hence by Lemma 21, the projection of ∆i on the space orthogonal to top k−1 eigenvectors of S(C)

is

≤

¿
Á
ÁÀ ε2σ2

1000k2
n

∣C ∣

1

ηi
≤

εσ

16
√
ŵi ∣∣µi −µ(C)∣∣2 k

≤
εσ

8
√

2
√
wi ∣∣µi −µ(C)∣∣2 k

.

The last inequality follows from the bound on ŵi in Lemma 25.

E.5 Proof of Theorem 11

We show that the theorem holds if the conclusions in Lemmas 10 and 27 holds with error probability
δ′ = δ/k. Since in the proof of Lemma 10, the probability that Lemma 9 holds is included, Lemma 9
also holds with the same probability. Since there are at most k clusters, by the union bound the total
error probability is ≤ 9δ.

For every component i, we show that there is a choice of mean vector and weight in the search step
such that wiD(pi, p̂i) ≤ ε/2k and ∣wi − ŵi∣ ≤ ε/4k. That would imply that there is a f̂ during the
search such that

D(f , f̂) ≤ ∑
C

∑
i∈C

wiD(pi, p̂i) + 2
k−1

∑
i=1

∣wi − ŵi∣ ≤
ε

2k
+
ε

2k
= ε.
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Since the weights are gridded by ε/4k, there exists a ŵi such that ∣wi − ŵi∣ ≤ ε/4k. We now show
that there exists a choice of mean vector such that wiD(pi, p̂i) ≤ ε/2k. Note that if a component
has weight ≤ ε/4k, the above inequality follows immediately. Therefore we only look at those
components with wi ≥ ε/4k, by Lemma 25, for such components ŵi ≥ ε/5k and therefore we only
look at clusters such that ∣C ∣ ≥ nε/5k. By Lemmas 14 and for any i,

D(pi, p̂i)
2
≤ 2

d

∑
j=1

(µi,j − µ̂i,j)
2

σ2
+ 8d

(σ2 − σ̂2)2

σ4
.

Note that since we are discarding at most nε/8k2 random samples at each step. A total number of
≤ nε/8k random samples are discarded. It can be shown that this does not affect our calculations and

we ignore it in this proof. By Lemma 7, the first estimate of σ2 satisfies ∣σ̂2 −σ2∣ ≤ 2.5σ2
√

logn2/δ
d

.

Hence while searching over values of σ̂2, there exist one such that ∣σ′2 −σ2∣ ≤ εσ2/
√

64dk2. Hence,

D(pi, p̂i)
2
≤ 2

∣∣µi − µ̂i∣∣
2
2

σ2
+
ε2

8k2
.

Therefore if we show that there is a mean vector µ̂i during the search such that ∣∣µi − µ̂i∣∣2 ≤

εσ/
√

16k2ŵi, that would prove the Lemma. By triangle inequality,

∣∣µi − µ̂i∣∣2 ≤ ∣∣µ(C) − µ̂(C)∣∣
2
+ ∣∣µi −µ(C) − (µ̂i − µ̂(C))∣∣

2
.

By Lemma 27 for large enough n,

∣∣µ(C) − µ̂(C)∣∣
2
≤ cσ

¿
Á
ÁÀdk log2 n2/δ

∣C ∣
≤

εσ

8k
√
wi
.

The second inequality follows from the bound on n and the fact that ∣C ∣ ≥ nŵi. Since wi ≥ ε/4k, by
Lemma 25, ŵi ≥ wi/2, we have

∣∣µi − µ̂i∣∣2 ≤ ∣∣µi −µ(C) − (µ̂i − µ̂(C))∣∣
2
+

εσ

8k
√
wi
.

Let u1 . . .uk−1 are the top eigenvectors the sample covariance matrix of cluster C. We
now prove that during the search, there is a vector of the form ∑

k−1
j=1 gjεgσ̂uj such that

∣∣µi −µ(C) −∑
k−1
j=1 gjεgσ̂uj ∣∣2 ≤ εσ

8k
√
wi

, during the search, thus proving the lemma. Let ηi =
√
wi ∣∣µi −µ(C)∣∣2. By Lemma 10, there are set of coefficients αi such that

µi −µ(C)

∣∣µi −µ(C)∣∣ 2
=
k−1

∑
j=1

αjuj +
√

1 − ∣∣α∣∣
2
u′,

where u′ is perpendicular to u1 . . .uk−1 and
√

1 − ∣∣α∣∣
2
≤ εσ/(8

√
2ηik). Hence, we have

µi −µ(C) =
k−1

∑
j=1

∣∣µi −µ(C)∣∣2 αjuj + ∣∣µi −µ(C)∣∣2

√

1 − ∣∣α∣∣
2
2u

′,

Since wi ≥ ε/4k and by Lemma 9, ηi ≤ 25
√
k3σ log(n3/δ), and ∣∣µi −µ(C)∣∣2 ≤

100
√
k4ε−1σ log(n3/δ). Therefore ∃gj such that ∣gj σ̂ − αj ∣ ≤ εgσ̂ on each eigenvector. Hence,

wi ∣∣µi −µ(C) −
k−1

∑
i=1

gjεgσ̂uj∣∣

2

2

≤ wikε
2
gσ̂

2
+wi ∣∣µi −µ(C)∣∣

2
2 (1 − ∣∣α∣∣

2
)

≤ kε2gσ̂
2
+ η2i

ε2σ2

128η2i k
2

≤
ε2σ2

128k2
+
ε2σ2

128k2
≤
ε2σ2

64k2
.

The last inequality follows by Lemma 7 and the fact that εg ≤ ε/16k3/2, and hence the theorem.
The run time can be easily computed by retracing the steps of the algorithm and using an efficient
implementation of single-linkage.
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F Mixtures with unequal variances

In this section, we outline the analysis for the case when the components have different variances.

The main difference would be the coarse clustering algorithm which we describe now. The algo-
rithm repeatedly finds components with smallest variances and clusters samples such that within
each cluster the variances differ by a factor of 1 + Õ(1/

√
d) and the means are close-by. However,

two subtleties arise.
Randomized thresholding: Suppose we fix a threshold for clustering in step 3 of the coarse clus-
tering algorithm, then there might be a component whose average distance from x(a) or x(b) is
exactly the threshold and due to randomness in samples, few samples can lie in one cluster and few
can lie on the other. We overcome this, by choosing a random threshold, thus making it unlikely that
there is a component with average distance at the threshold.
Components with single sample: If two samples are from the same component i, then their
squared-distance concentrates around 2dσ2

i . We can use this fact to estimate the variance. How-
ever if there is only one sample from a component, we cannot estimate its variance and moreover
it can affect the calculations of other components. Hence in Step 4, we find such components and
discard the corresponding samples.
Generalized coarse clustering: Let α = 4

√
log(n2/δ)/d. Initialize C to the set of all samples.

Repeat the following k times.
1. Find threshold t = mina≠b,a,b∈C ∣∣x(a) − x(b)∣∣2. Let a and b be the indices that achieve

this minimum.

2. Let r be a uniform random variable between 10 and 4000k2.

3. Find the set of samples C1 that are at a distance ≤ t
√

(1 + αr) from either x(a) or x(b).

4. If the maxc,d∈C1 ∣∣x(c) − x(d)∣∣
2
2 > t

√
(1 + 50αr), discard x(a), x(b) and the samples

that achieve the maximum, else declare C1 as a new cluster and remove samples in C1

from C.

The rest of the analysis is similar to the case with equal variances. We now outline analysis for
Generalized coarse clustering. We first show an auxiliary concentration inequality that helps us
prove the rest of the results.
Lemma 34. Given n samples from a set of Gaussian distributions, with probability ≥ 1 − 2δ, for
every pair of samples X ∼ N(µ1, σ

2
1Id) and Y ∼ N(µ2, σ

2
2Id),

1 − 4

¿
Á
ÁÀ log n2

δ

d
≤

∣∣X −Y∣∣
2
2

d(σ2
1 + σ

2
2) + ∣∣µ1 −µ2∣∣

2
2

≤ 1 + 4

¿
Á
ÁÀ log n2

δ

d
. (7)

Proof. Since X and Y are Gaussians, X − Y is distributed N(µ1 − µ2, (σ
2
1 + σ

2
2)Id). Therefore

substituting t = log n2

δ
in Lemma 17, with probability 1 − 4δ/n2,

∣∣X −Y∣∣
2
2 ≥ d(σ

2
1 + σ

2
2) − 2(σ2

1 + σ
2
2)

√

d log
n2

δ
+ ∣∣µ1 −µ2∣∣

2
2 − 2

√

σ2
1 + σ

2
2 ∣∣µ1 −µ2∣∣2

√

log
n2

δ
.

and

∣∣X −Y∣∣
2
2 ≤ d(σ

2
1 + σ

2
2) + 2(σ2

1 + σ
2
2)

√

d log
n2

δ
+ ∣∣µ1 −µ2∣∣

2
2

+ 2
√

σ2
1 + σ

2
2 ∣∣µ1 −µ2∣∣2

√

log
n2

δ
+ 2(σ2

1 + σ
2
2) log

n2

δ
.

There are (
n
2
) pairs and the error probability follows by the union bound. Dividing the bounds by

d(σ2
1 + σ

2
2) + ∣∣µ1 −µ2∣∣

2
2 and using the arithmetic-geometric mean inequality we get

1 − 3

¿
Á
ÁÀ log n2

δ

d
≤

∣∣X −Y∣∣
2
2

d(σ2
1 + σ

2
2) + ∣∣µ1 −µ2∣∣

2
2

≤ 1 + 3

¿
Á
ÁÀ log n2

δ

d
+ 2

log n2

δ

d
.
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Using d ≥ 20 log n2

δ
proves the lemma.

We now show a few properties of Coarse clustering. In particular, we show that

• There is no mis-clustering.

• After k steps of iteration, all the samples would be clustered.

• The means and variances of all components within any cluster are close to each other.

Let α def
= 4

√
log n

2

δ

d
. For the rest of the proof we assume that d ≥ 4000 log(n2/δ), thus α ≤ 1/10.

We first show that the probability of mis-clustering is ≤ 1/100.

Lemma 35. If Equation (7) holds, then after coarse clustering algorithm, with probability ≥ 99/100,
all the samples from each component will be in the same cluster.

Proof. Without loss of generality, let x(a) be from component 1 and x(b) be from component
2. If for all components i and j ∈ {1,2} if (d(σ2

j + σ
2
i ) + ∣∣µj −µi∣∣

2

2
) (1 + α) < t2(1 + αr) or

(d(σ2
j + σ

2
i ) + ∣∣µj −µi∣∣

2

2
) (1 − α) > t2(1 + αr), then by Equation (7) the pairwise distances con-

centrate and all the samples would be clustered without any error. Hence the error probability is

Pr (∃i, j s.t. t2
(1 + αr) ∈ [(d(σ2

j + σ
2
i ) + ∣∣µj −µi∣∣

2

2
) (1 − α) , (d(σ2

j + σ
2
i ) + ∣∣µj −µi∣∣

2

2
) (1 + α)]) .

For a given i, j, this probability is

≤
2

4000t2k2 − 10
(d(σ2

j + σ
2
i ) + ∣∣µj −µi∣∣

2

2
)1 ((d(σ2

j + σ
2
i ) + ∣∣µj −µi∣∣

2

2
) (1 − α) ≤ t2

(1 + 4000k2α)) .

Since d ≥ c ⋅ k4 log n2

δ
for a large enough constant c, we have 1 + 4000k2α ≤ 2. Hence, the above

probability is ≤ 4
3990(1−α)k2

≤ 1
997(1−α)k2

. Since α ≤ 1/10, this is ≤ 1
200k2

. By the union bound over
all possible components i, j, the error probability is ≤ 1

100k
. Since we run the algorithm k times, by

the union bound the total error probability is ≤ 1
100

.

Lemma 36. If Equation (7) holds and there is no mis-clustering, and a cluster is created at any
of the k steps , then for each pair of components i, j in that cluster with ŵi, ŵj ≥ 2/n, 2dσ2

i ∈

[t2(1 −α),t2(1 + 56αr)] and ∣∣µi −µj ∣∣
2

2
≤ c ⋅ k2t2α for some constant c. Furthermore, for every

other component l, ∣∣µi −µl∣∣
2
2 + σ

2
i ≤ c ⋅ t

2.

Proof. The square of the maximum separation between any two samples in a cluster is ≤ t2(1 +
50αr) and the points are clustered correctly. Let i be a component such that ŵi ≥ 2/n. Let x(g) and
x(h) be two samples from component i, then

2dσ2
i (1 − α) ≤ ∣∣x(g) − x(h)∣∣

2
2 ≤ t

2
(1 + 50αr),

where the first inequality follows from Equation (7). Hence, 2dσ2
i ≤ t2(1 + 50αr)/(1 − α) ≤

t2(1 + 56αr). Furthermore, since x(g) and x(h) has pairwise distance ≥ t, by Equation (7),

2dσ2
i (1 + α) ≥ ∣∣x(g) − x(h)∣∣

2
2 ≥ t

2,

and hence 2dσ2
i ≥ t

2(1 − α).

For two samples x(g) and x(h) generated by components i and j, we have,

t2
(1 + 50αr)

(a)
≥ ∣∣x(g) − x(h)∣∣

2
2

(b)
≥ (d(σ2

i + σ
2
j ) + ∣∣µi −µj ∣∣

2

2
) (1 − α)

(c)
≥ t2

(1 − 2α) + ∣∣µi −µj ∣∣
2

2
(1 − α),

25



where (a) follows from the fact that the maximum separation between two samples is ≤ t2(1 +
50αr), Equation (7) implies (b), and (c) follows from first part of the lemma. Hence, we have
∣∣µi −µj ∣∣

2

2
≤ t2(50αr + 2α)/(1 − α) ≤ t2(3 ⋅ 106αk2).

Let x(g) and x(h) be from components i and l respectively. Similar to the first two parts of the
lemma we have, maximum separation between any two samples is

t2
(1+50αr) ≥ ∣∣x(g) − x(h)∣∣

2
2 ≥ (d(σ2

i + σ
2
l ) + ∣∣µi −µl∣∣

2
2) (1−α) ≥ (dσ2

l + ∣∣µi −µl∣∣
2
2) (1−α).

Hence dσ2
l + ∣∣µi −µl∣∣

2
2 ≤ t

2(1 + 50αr)/(1 −α) ≤ c ⋅ t2, for some constant c. The last part follows
from the assumption that d = Ω(k4 log n2

δ
).

Lemma 37. If Equation (7) holds and there is no mis-clustering, at end of the generalized coarse
clustering ∣C ∣ = 0.

Proof. We show that if C is non-empty, at each iteration the number of components in C decreases
by at least one. Since there is no mis-clustering, if we create a cluster at a particular iteration, it
would contain all the samples from at least one component and hence the number of components in
C reduces by one. We now show that if we discard four samples, at least one of them would be a
unique sample from its component (ŵi = 1/n) and hence discarding it would reduce the number of
components by one.

Let x(a),x(b) be the two samples that attain the minimum and without loss of generality let the
corresponding components be 1 and 2. Let x(c),x(d) be the two samples that achieve the maximum
and i, j be their corresponding components. We now show that if min(ŵ1, ŵ2, ŵi, ŵj) ≥ 2/n, then
the samples would not be discarded thus proving our claim. By Equation (7),

d(σ2
1 + σ

2
2) + ∣∣µ1 −µ2∣∣

2
2 ≤

∣∣x(a) − x(b)∣∣
2
2

1 − α
≤ t2

(1 + 3α),

and since two samples from component 1 or 2 did not achieve the minimum, 2dσ2
2 ≥ t

2(1 − α) and
2dσ2

1 ≥ t
2(1 − α). Rearranging and substituting in the three equations we get, ∣∣µ1 −µ2∣∣

2
2 ≤ 4t2α,

2dσ2
1 ≤ t

2(1 + 7α) and 2dσ2
2 ≤ t

2(1 + 7α) . Without loss of generality, let x(c) be included in C1

because x(c) was close to x(a).

d(σ2
1 + σ

2
i ) + ∣∣µ1 −µi∣∣

2
2 ≤

∣∣x(a) − x(c)∣∣
2
2

1 − α
≤ t2

(1 + 3αr),

and furthermore two samples from components i or 1 did not achieve minimum and hence, 2dσ2
i ≥

t2(1 − α) and 2dσ2
1 ≥ t2(1 − α). Solving, we get 2dσ2

i ≤ t
2(1 + 7αr) and ∣∣µ1 −µi∣∣

2
2 ≤ 4t2αr.

Similarly, 2dσ2
j ≤ t2(1 + 7αr) and ∣∣µl −µj ∣∣

2

2
≤ 4t2αr, for some l ∈ {1,2}. We now have all

the inequalities necessary to show that ∣∣x(c) − x(d)∣∣
2
2 ≤ t2(1 + 50αr) and hence would not be

discarded.

∣∣x(c) − x(d)∣∣
2
2

(a)
≤ (d(σ2

i + σ
2
j ) + ∣∣µi −µj ∣∣

2

2
) (1 + α)

(b)
≤ t2

(1 + 7αr) + ∣∣µi −µ1 +µ1 −µl +µl −µj ∣∣
2

2

(c)
≤ t2

(1 + 7αr) + 3(∣∣µi −µ1∣∣
2
2 + ∣∣µ1 −µl∣∣

2
2 + ∣∣µl −µj ∣∣

2

2
)

(d)
≤ t2

(1 + 50αr).

(a) follows from Equation (7). (b) follows from the bounds on σ2
i and σ2

j . (c) follows from Cauchy-
Schwarz inequality and (d) the bounds on the difference of means which we have shown implies
(d).

The above four lemmas immediately yields,
Lemma 38. After coarse clustering, the algorithm divides the samples into clusters such that with
probability ≥ 99/100 − 2δ,
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• There is no mis-clustering.

• For any pair of components i, j within a cluster with ŵi, ŵj ≥ 2/n, the variances lie within

a factor of 1 ± 56αr around t2 and ∣∣µi −µj ∣∣
2

2
≤ O(t2α2).

• For every component i within a cluster C, ∣∣µi −µ(C)∣∣
2
2 + dσ

2
i ≤ O(t2).

It can be shown that once the conclusions in Lemma 38 holds, then the performance of recursive
clustering algorithm would be same as Lemma 9 upto constants. The only modification is the com-
putation of σ̂2(C) which is given by

σ̂2
(C) =

1

∣C ∣(∣C ∣ − 1)
∑
a,b∈C

1

2d
∣∣x(a) − x(b)∣∣

2
2 .

By Lemma 38, out of (∣C∣

2
) pairs at most k∣C ∣ would have distances away from t2. It can be shown

that this does not affect the analysis.

Finally for the exhaustive search, instead of just substituting a single σ′, we try out all possible
combinations of σ′(C) for each cluster C, where σ′(C) ∈ σ̂2(1 + iε/d

√
128dk2),∀ −L′ < i ≤ L′},

where L′ = 32k
√

logn2/δ

ε
. Note that since we are searching over k different variances instead of

just one, the number of candidate mixtures increases by and hence the time complexity. The time
complexity for unequal variances can be shown to be

O
⎛

⎝
n2d logn + d(

k7

ε3
log2 d

δ
)

k2

2

(
k
√

log d/δ

ε
)
k⎞

⎠
.

Note that even though our error probability is 1/100 + 2δ, and is not arbitrarily close to 0, we can
repeat the entire algorithm O(log 1

δ′
) times and run SCHEFFE on the resulting components to find

the closest one. By the Chernoff bound, the error probability of this new estimator would be ≤ δ′.
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