
A Illustration of the StOP algorithm

77 88

4

7 0

61
2 4

6

6

1 5

4 3

24

10

10

2

5

2 8

7 14

7 7

7

3

7

14

6

77

4
3

1 6

1

3
4

(c) Iteration 3

4 3

24

10

10

2

5

2 8

7 14

7 7

7

3

7 77

1 6 3 4
4 3

12

2 10

2 2 10 10

1 1 1 1 2 5 58

14

1 6

(d) Iteration 4

77 88

4

7 0

61
2 4

6

7 7 77

1 6 3 4
4 31 6

3

24

10

10

2

5

2 8

14

7 7

12

2 10

2 2 10 10

1 1 1 1 2 5 58

14

(d) Iteration 5

77 88

4

7 0

61
2 4

6

14

5 9

5 5 99

5 4
1 81 4

3 2

612

57 5 1

7 7 5 5

3 4 3 4 2 3 1 4

(b) Iteration 2

6 6

3 3 1 5

(a) Iteration 1

Figure 1: Illustration of the StOP algorithm with K = N = 2. Black dots and arrow heads represent
action nodes and transition nodes, respectively. Lines represent transitions to action nodes. The
numbers given show the number of samples allocated to a node or transition. For example, in
Iteration 1, the procedure Sample has allocated 6 samples to each action. The optimistic policy
Π† is selected (Step 11 of StOP), shown by the filled arrows. In iteration 2, the leaves of the
optimistic policy are expanded, and Sample generates more samples along the new policies. The
new optimistic policy is computed. The same process is repeated in later iterations. Note that the
same samples are used to evaluate many policies, and that the leaves of the optimistic policy in
Iteration 4 are not all leaves of the whole tree.

B Chernoff-Hoeffding and Bernstein bounds

This section provides a quick overview of the specific concentration inequalities that are used
to obtain high confidence bounds on the values of the policies. The first one is the Hoeffding
bound (Corollary A.1 in [7]). It implies that for any given random variable that takes values in
the interval [0, a] and has expected value p, the average pm of m independent samples satisfy

P
�
p̂m ≤ p+ a

�
ln(1/δ)
2m

�
≤ δ and P

�
p̂m ≥ p− a

�
ln(1/δ)
2m

�
≤ δ.

The second concentration inequality is the Bernstein bound (see e.g. Corollary A.3 in [7]). It
implies that for any given a > 0 and for any given Bernoulli variable with parameter p, the average
pm of m independent samples satisfy P [p̂m > p+ a] ≤ exp

�
−a2m

2p+2a/3

�
and P [p̂m < p− a] ≤

10

exp
�

−a2m
2p+2a/3

�
. In particular, setting a = p, one obtains that

pm ≥ 8
3 ln(1/δ) ⇒ P [p̂m > 2p] = P [p̂m > p+ a] ≤ exp

�
−pm
8/3

�
≤ δ . (4)

Similarly, setting a = 8 ln(1/δ)
3m , one obtains that

pm < 8 ln(1/δ)
3 ⇒ P

�
p̂m > 16 ln(1/δ)

3m

�
≤ P [p̂m > p+ a] ≤ exp

�
−am
8/3

�
= δ . (5)

C Proof of the consistency result (Theorem 1)

Lemma 3. There can not be an active policy of depth larger than d∗.

Proof. For a policy with depth larger than d∗ to be in an active policy set, there has to be a round t

with d(Πt) = d∗. This can only be the case if d(Π†
t) = d∗ or d(Π††

t) = d∗. However, if d(Π†
t) ≥ d∗,

then it holds that ν(Π†
t) + �/2 ≥ b(Π†

t) ≥ maxu�=u†
t
b(Π†

t,u), so StOP terminates. And since the

selection rule for ut implies that Π†† is only selected as Πt if d(Π†
t) > d(Π††

t), selecting it would
mean d(Π†

t) > d∗, so the algorithm would terminate by the first argument.

For convenience, we restate the theorem.

Theorem 4 (Restatement of the consistency result, Theorem 1). With probability at least (1− δ0),
StOP returns an action with value at least v∗ − �.

To prove the consistency of StOP, the following guarantee of BoundValue is needed.

Claim 5. With probability at least (1 − δ), BoundValue(Π, δ) sets v̂(Π) to some value in the

interval
�
v(Π)− 1−γd(Π)

1−γ

�
ln(1/d)

2m , v(Π) + 1−γd(Π)

1−γ

�
ln(1/d)

2m

�
.

Proof. As discussed in Section 2.2.2, τ(Ti,Π) for i = 1, . . . ,m can be interpreted as trajectories
for Π that are independent (because the samples are also independent of each other). Therefore, the
average of their value v̂(Π) = (1/m)

�m
i=1 v(τ(Ti,Π)) is an unbiased estimate of v(Π). According

to the Hoeffding bound (recall Section 2.2.1), the accuracy of this estimate is 1−γd(Π)

1−γ

�
ln(1/d)

2m ≤
γd(Π)

1−γ with probability at least 1− δ.

Based on this, it is now easy to show that the estimates used by the algorithm are all correct with
high probability.

Corollary 6. The event that for every round t of the algorithm, for each action u available at
x0, for each Π ∈ Activet(u), and for each descendant Π� of Π (allowing Π� = Π), the value
v(Π�) of Π� belongs to the interval [ν(Π), b(Π)], has probability at least (1 − δ0), and implies

ν
�
Π†

t,u

�
≤ v(u) ≤ b

�
Π†

t,u

�
.

Proof. If BoundValue is ever called for some policy Π, then it is called with confidence parameter
δ set to δd = (δ0/d

∗)
�d

�=1 K�, where d = d(Π) is the depth of Π. Note also that
�d−1

�=0 (K�)
N�

is the number of partial policies of depth d, and therefore, based on Claim 5 and Lemma 3, with
probability at least 1−�d∗

d=1 δd
�d−1

�=0 (K�)
N�

= 1− δ0, for every Π that ever belongs to the set of

active policies, v(Π) ∈
�
v̂(Π)− 1−γd(Π)

1−γdΠ

�
ln(1/d)

2m , v̂(Π) + 1−γd(Π)

1−γd(Π)

�
ln(1/d)

2m

�
. The claimed result

now follows from (2).

The consistency result of Theorem 1 follows immediately from Corollary 6, Lemma 3, and the
termination condition of StOP.

11

D Proof of the sample complexity (Theorem 2)

For convenience, we restate the theorem.
Theorem 7 (Restatement of the sample complexity bound, Theorem 2). With probability at least
(1− 2δ), StOP outputs a policy of value at least (v∗ − �) after generating at most

�

s∈S�,∗


2p(s)m(�(s), δ�(s)) +B(s)

�(s)�

d=d(s)+1

d�

�=d(s)+1

K�


 (6)

samples, where d(s) = min{d(Π) : s appears in policy Π} is the depth of node s.

For the proof we require that P� does indeed contain, with high probability, all the important poli-
cies. The following lemma is essential for this.
Lemma 8. Assume that for each t ≥ 0, for each action available at x0, for each policy Π ∈
Activet(u), ν(Π) ≤ v(Π) ≤ b(Π). Then Πt ∈ P� for every t ≥ 1 throughout the whole run of the
algorithm, except for (possibly) the last round.

Proof. Note that, whenever a policy is removed from the set of active policies, it is replaced by
its child policies. So, as Πu∗ ∈ Active(u∗) initially, in every subsequent step there will be some
Π ∈ Active(u∗) that has a descendant policy of value v∗. Therefore, by the assumption of the
lemma and by Corollary 6, we have b(Π†

t,u∗) ≥ v∗, and therefore

b(Π†
t) ≥ b

�
Π†

t,u∗

�
≥ v∗. (7)

Additionally, the selection rule of Πt implies

d(Πt) ≤ min
�
d(Π†

t), d(Π
††
t)

�
. (8)

For any u �= u∗ this implies that, whenever Πt = Π†
t,u and the termination criterion is not met,

v(Πt) + 3γd(Πt)

1−γ − � ≥ ν(Πt) + 3γd(Πt)

1−γ − � by the assumption

≥ b(Πt)− � by the definition of b and ν

≥ max
u�=u†

t

b(Π†
t,u)− � by the choice of Πt

> ν(Π†
t) termination criterion is not met

≥ b(Π†
t)− 3γd(Π

†
t)

1−γ by the definition of b and ν

≥ v∗ − 3γd(Π
†
t)

1−γ by (7)

≥ v∗ − 3γd(Πt)

1−γ by (8)

Consequently Πt ∈ P�.

Similarly, when Πt = Π†
t,u∗ then {u†

t , u
††
t } = {u∗, u�} for some u�, and, if the termination criterion

is not met, then

max
u�=u∗

v(u) + 3γd(Πt)

1−γ ≥ max
u�=u∗

ν(Π†
t,u) + 3γd(Πt)

1−γ by the assumption

≥ max
u�=u∗

ν(Π†
t,u) + 3γ

d(Π
†
t,u�)

1−γ because of (8) and {u†
t , u

††
t } = {u∗, u�}

≥ ν(Π†
t,u�) + 3γ

d(Π
†
t,u�)

1−γ because u� �= u∗

≥ b(Π†
t,u�) by the definition of b and ν

= max
u�=u∗

b(Π†
t,u) because {u†

t , u
††
t } = {u∗, u�}

12

≥ max
u�=u†

t

b(Π†
t,u) by the choice of u†

t

≥ ν(Π†
t) + � termination criterion is not met

≥ b(Π†
t)− 3γ

d(Π
†
t,u)

1−γ + � by the definition of b and ν

≥ b(Πt)− 3γ
d(Π

†
t,u)

1−γ + � by the choice of Πt

≥ b(Πt)− 3γd(Πt)

1−γ + � by (8)

≥ v(Πt)− 3γd(Πt)

1−γ + � by the assumption

This, combined with (7), implies that Πt ∈ P�
u∗ .

Proof of Theorem 6. In the proof it is assumed that Πt ∈ P� for every t throughout the algorithm,
except for (possibly) the last round. According to Lemma 8 and Corollary 6, this holds with proba-
bility at least (1− δ0).

The assumption implies that all rollouts generated by StOP consist of nodes that belong to S�. It
also implies that for any node s of Π∞, the depth of any policy Π that includes s and is evaluated
by StOP is bounded by �(s). The largest amount of samples required by such a policy is thus
m(�(s), δ�(s)). Therefore, according to the Bernstein bound (4), for any s ∈ S�,∗, the number of
sample trees that contain s is bounded from above by 2p(s)m(�(s), δ�(s)) with probability at least
(1− δ0/(2N �)), and so this also upper bounds the number of samples that are generated for s.

It now remains to upper bound the number of samples that are generated for nodes in (S� \ S�,∗).
For this, first partition these nodes by forming, for each s ∈ S�,∗, a group which consists of all the
nodes that have s as their lowest ancestor in S�,∗. Note that the probability that a trajectory traverses
through this group is p◦(s), and therefore, according to the Bernstein bound, the number of trajec-
tories that traverses this group is upper bounded by B(s) with probability at least (1 − δ/(2N �)).
Indeed, if p◦(s)m(�(s), δ�(s)) ≥ (8/3) ln(2N �/δ), the Bernstein bound (4) guarantees the bound
2p◦(s)m(�(s), δ�(s)) with confidence at least (1− δ/(2N �)), and otherwise (5) provides the bound
p◦(s)m(�(s), δ�(s))+3 ln(2N �/δ) ≤ 6 ln(2N �/δ). In fact, if p◦(s) ≤ δ/(2N �m(�(s), δ�(s))) then,
from the Bernoulli inequality, with probability at least (1 − δ0/(2N �)), no trajectory traverses the
group. Finally, note that a sample tree contains at most

��(s)
d=d(s)+1

�d
�=d(s)+1 K� samples below

node s.

E Worst case bound and special cases

Before we turn to the analysis of the special cases, we discuss shortly the second term in the sample
complexity bound (6).

Claim 9.
�

s∈S�,∗ B(s)
��(s)

d=d(s)+1

�d
�=d(s)+1 K� ≤ |S� \ S�,∗| · 6 · ln(2N �

δ0
)

Proof. First of all, each s ∈ S�,∗ has at least p◦(s)(3/8)m(d, δ�(s))/ ln(2N �/δ0) children s� with
p(s�)m(d, δ�(s�)) < (8/3) ln(2N �/δ0) (note that �(s) = �(s�)), and therefore the maximum of
6 ln(2N

�

δ0
) and 2p◦(s)m(�(s), δ�(s)) is upper bounded by the number of these children multiplied by

6 ln(2N �/δ0). Note also that number of nodes in S� below s� is at least
��(s)

d=d(s)+1

�d
�=d(s)+1 K�.

Summing up, B(s) accounts at most 6 ln 2N �

δ0
to every s� ∈ S� \S�,∗ that has s as its lowest ancestor

in S�,∗.

Now recall that d∗ = d∗(�, γ) =
�
ln((1−γ)�/6)

ln γ

�
, and also that this implies

�(1− γ) ≤ 6γd∗−1. (9)

13

Defining

κ1 := κ1(�, δ0, γ) :=

� �

s∈S�,∗

�2(1−γ)2

ln(1/δ0)
2p(s)m(�(s), δ�(s))

�1/d∗

≤
�

�2(1−γ)2

ln(1/δ0)

�

s∈S�,∗

p(s) · 1
γ2�(s) ln

d∗ ��(s)
�=1(K�)

N�

δ0

�1/d∗

≤


 �2(1−γ)2

γ2d∗

�

s∈S�,∗

p(s)


ln d∗ +

�(s)�

�=1

N � lnK�






1/d∗

≤


 6

γ2

�

s∈S�,∗

p(s)


ln d∗ +

�(s)�

�=1

N � lnK�






1/d∗

(by 9)),

one obtains the bound
�

s∈S�,∗

2p(s)m(�(s), δ�(s)) =
ln(1/δ0)
(1−γ)2�2

�

s∈S�,∗

�2(1−γ)2

ln(1/δ0)
2p(s)m(�(s), δ�(s))

= ln(1/δ0)
�2(1−γ)2 · κd∗

1

= ln(1/δ0)
�2(1−γ)2 · κ

ln((1−γ)�)−ln 6
ln γ

1

= (ln 1
δ0
) · κ

ln 6
ln(1/γ)
1 ·

�
1

(1−γ)�

�2+
lnκ1

ln(1/γ)
.

Similarly, defining

κ2 := κ2(�, δ0, γ) :=


 �2(1−γ)2

ln(1/δ0)

�

s∈S�,∗

B(s)

�(s)�

d=d(s)

d�

�=d(s)

K�




1/d∗

=
�

�2(1−γ)2

ln(1/δ0)
· |S� \ S�,∗| · 6 · ln(2|S

�,∗|
δ0

)
�1/d∗

(by Claim (9))

≤
�
�2(1− γ)2 · |S� \ S�,∗| · 6 · ln(2|S�,∗|)

�1/d∗

≤
�
6γ2d∗−2 · |S� \ S�,∗| · 6 · ln(2|S�,∗|)

�1/d∗

(by (9)),

one obtains the bound

�

s∈S�,∗

B(s)

�(s)�

d=d(s)

d�

�=d(s)

K� =
ln(1/δ0)
�2(1−γ)2 ·κ

ln((1−γ)�)−ln 6
ln γ

2 = (ln 1
δ0
) ·κ

ln 6
ln(1/γ)
2 ·

�
1

(1−γ)�

�2+
lnκ1

ln(1/γ)
.

Finally, defining κ := lim sup�→0 max(κ1,κ2), one obtains the following sample complexity
bound.

Theorem 10. Sample complexity (6) is upper bounded by (ln 1
δ0
) · C(κ, γ) ·

�
1

(1−γ)�

�2+
lnκ

ln(1/γ) ,

where C(κ, γ) := 2κ
ln 6

ln(1/γ) .

E.1 Worst case

If K� = K > 1 for each � > 0 then
�

s∈S�,∗ p(s) =
�

s∈S� p(s) ≤ Kd∗
, so

κ1 ≤
�

6
�
ln d∗+Nd∗d∗ lnK

�

γ2

�

s∈S�,∗

p(s)

�1/d∗

≤
�

6
�
ln d∗+Nd∗d∗ lnK

�
Kd∗

γ2

�1/d∗

.

14

Therefore, lim sup�→0 κ1 ≤ KN . Similarly, noting that |S�| ≤ (NK)d
∗
,

κ2 ≤
�
γ2d∗−2 · (NK)d

∗ · 6 · d∗ ln(NK)
�1/d∗

,

which implies lim sup�→0 κ2 ≤ γ2KN .

E.2 Case K0 > 1,K� = 1 for all � ≥ 1

In this case �

s∈S�,∗

p(s) ≤ d∗K, (10)

and so

κ1 ≤
�

6
γ2

�

s∈S�,∗

p(s) (ln d∗ +N lnK)

�1/d∗

=
�

6
γ2 (ln d

∗ +N lnK) d∗K
�1/d∗

,

which implies lim sup�→0 κ1 ≤ 1.

To bound κ2, note that p◦(s) ≤ p(s) for all s and that
�d∗

d=1

�d∗

�=d K� = 1, which implies

κ2 ≤
�

�2(1−γ)2

ln(1/δ0)

�

s∈S�

�
2p(s)m(�(s), δ�(s)) + 6 ln(2N

�

δ0
)
��1/d∗

≤
�
κd∗
1 + �2(1−γ)2

ln(1/δ0)
· |S�,∗| · 6 ln(2N �

δ0
)
�1/d∗

.

By (10) and the definition of S�,∗, the restriction that K� = 1 for all � > 1 implies

|S�,∗| ≤ K · d∗ 3m(d∗,δd∗)
8 ln(2N �/δ0)

≤ K · d∗ 3N ln(d∗K/δ0)
16γ2d∗ ln(1/δ0)

.

Therefore, recalling also (9),

κ2 ≤
�
κ1 +

γ2d∗−2

ln(1/δ0)
K · d∗ 3N ln(d∗K/δ0)

16γ2d∗ ln(1/δ0)
6d∗ ln(KN

δ0
)
�1/d∗

=
�
κ1 +

(d∗)22NK
γ2

ln(d∗K/δ0) ln(KN/δ0)
ln2(1/δ0)

�1/d∗

.

Consequently, lim sup�→1 κ2 ≤ 1 as well.

E.3 Bandit case

Again K0 > 1,K� = 1 for all � ≥ 1, but it is also assumed that N = 1 and that all the rewards in
the same branch are equal (they can be different though between different branches). Then, directly

from (6), one easily deduces the bound O

��
ln d∗

δ0
)
��

u�=u∗

�
1

(1−γ)(v∗−v(u)+�)

�−2
�

.

E.4 Deterministic MDPs

In case N = 1 and K� = K > 1 for � ≥ 0, we have κ1 ≤
�

6
γ2 ·Kd∗ · (ln d∗ + d∗ · lnK)

�1/d∗

, so
lim sup�→0 κ1 ≤ K. Additionally, κ2 = 0, since in this case p(s) = 1 for each node s.

Assume now some structure in the rewards: for every action u on exactly one path in Π∞, the
rewards are 1; everywhere else they are 0. Then, nodes with depth at least log(5)/ log(1/γ) bigger
than their lowest nonzero-reward ancestor do not appear in S�. Therefore,

κ1 ≤
�

�2(1−γ)2

ln(1/δ0)
·K ·

d∗�

d=1

K log(5)/ log(1/γ)m(d, δd)

�1/d∗

≤
�

3
γ2 ln(1/δ0)

· d∗K1+log(5)/ log(1/γ) ln d∗Kd∗

δ0

�1/d∗

,

and so lim sup�→0 κ1 = 1.

15

F Efficient version of StOP

This section is devoted to fix all the time-efficiency issues in the previous version of the algorithm.
The primary task here is to find a way to solve both the policy evaluation and the construction of the
optimistic policies efficiently.

With some abuse of notation, let Activet denote the set in round t consisting of policies Π for which
rollout τ(Π, Ti) has length d(Π) for 1 ≤ i ≤ m(d(Π), δd(Π)), and, at the same time, for some child
policy Π� of Π some rollout τ(Π, Ti) for 1 ≤ i ≤ m(d(Π), δd(Π)) has length less than d(Π�).

F.1 Evaluating the children of Πt

The first problem to solve is to maintain the sample trees without actually going through all the child
policies of Πt.

To this end, define first md(s) as the number of times s appears in sample trees T1, T2, . . . , Tm(d,δd)

in the current round. Similarly, let r̂d(s) denote the average of the rewards for s in
T1, T2, . . . , Tm(d,δd) at the current round. These values are easily updated using a simple recursion
rule applied in algorithm Sample-eff.
Claim 11. Executing Sample-eff(Π, s,m) ensures that τ(Ti,Π) has length d(Π) (i.e., has full
length) for i = 1, 2, . . . ,m, and runs in time O(m · d(Π)).

As the next step note that, if the first Kd child policies of Πt which StOP picks to evalu-
ate in round t (where d = d(Πt)) do not share any leaves, then BoundValue will not call
SampleTransition or SampleReward for any other children of Πt. The reason for this is
that the the first Kd trees include all the nodes that appear in any child policy of Πt.

The above argument shows that the evaluation of a policy Π in StOP-eff and in StOP are essen-
tially equivalent.

F.2 Constructing the optimistic policies

Note that, in round t, for any Π ∈ ∪t�≤tActive it holds that

v̂(Π) =
�

s∈Π

γd(s) ·md(s) · r̂d(s) .

Additionally, as b(Π) = v̂(Π) + 2γd(Π)

1−γ , it holds for any two policies Π and Π� of the same depth
that

b(Π) > b(Π�) ⇔ v̂(Π) > v̂(Π�) .

It is therefore easy to compute the value of any active policy, and also to decide which of two policies
is better. However, it is less obvious how to construct the optimistic policies efficiently.

Theorem 12. For any action u accessible from x0, and any round t, ValueTr(su) returns Π†
t,u,

where su is the child of the root labeled u.

Proof. Let ad(s) = ad,t(s) be the indicator that, for some 1 ≤ i ≤ m(d, δd), sample tree Ti
has a leaf below s with d(s) = d at iteration t. Note that for action node s, ad(s) must be set
to 1 if md(s)(s) > 0 and md(s)+1(s

�) = 0 for some child s� of s, otherwise it must be set to
0. For node s of depth d(s) < d, at,d(s) can be computed based on the simple recursion rule
ad(s) := maxs� child of s ad(s

�).

Equivalently, ad,t(s) indicates that, for some policy Π of depth d containing s, rollout τ(Ti,Π) has
length d (i.e., full length) for i = 1, . . . ,m(d, δd), but for some child policy Π� of Π and for some
1 ≤ i ≤ m(d, δd) rollout τ(Π�, Ti) goes through s and has length at most d (instead of d + 1,
which would be the maximal possible). On one hand, the extra requirement about the rollout going
through s makes a distinction between ad,t(s) and the indicator that s belongs to some policy in
Activet, but, at the same time, this is the distinction that makes it easy to compute it efficiently with
the recursive rule described above. This is the key insight that is used in constructing the optimistic
policies efficiently, too.

16

Now, consider, for each node s the policies in ∪t�≤tActivet� with d(Π) = d, and denote by Πcomp
t,d (s)

the one that has the largest cumulative reward below s in the first m(d, δd) sample trees. Denote this
cumulative reward by v̂comp(s), and note that it can be computed recursively by

• setting it to r̂d(s) for each action node s with d(s) = d,

• setting it to maxs� children of s v̂
comp
d (s�) for all action nodes with d(s) < d, and

• setting it to v̂compl
d (s) := γ

�
s�: child of s(md(s

�) · v̂compl
d (s�)) for a transition node s with

d(s) ≤ d.

Finally, consider, for a node s, those policies in ∪t�≤tActivet� that satisfy

• d(Π) = d

• rollout τ(Ti,Π) has length d (i.e., full length) for i = 1, . . . ,m(d, δd),

• for some child policy Π� of Π and for some 1 ≤ i ≤ m(d, δd) rollout τ(Π�, Ti) goes
through s and has length d too (instead of d+ 1).

Denote by Πinc
t,d (s) the one that has the largest cumulative reward below s in the first m(d, δd)

sample trees, and by v̂incd this cumulative reward. This value can also be computed efficiently using
recursion:

• v̂incd (s) := r̂d(s) for a transition node s with d(s) = d

• v̂incd (s) := maxs� children of swith ad(s)=1 v̂
inc
d (s�) for a transition node s with d(s) < d, and

•

v̂incd (s) := γ max
s�: child of s with ad(s�)=1

�
md(s

�) · v̂incd (s�)+
�

s�� �=s� child of s

(md(s
��) · v̂compl

d (s��))
�

for an action node s with d(s) ≤ d

The claim of the theorem follows by noting that, for any child node s of the root, Πinc
t,d (s) = Π†

t,u,
where u is the label of s.

In order to simplify the pseudocode, the construction of the optimistic policies is not implemented.
Nevertheless, they can be easily obtained similar to how the values v̂comp

d (s) and v̂incd (s) are com-
puted.

Finally, note that in a given step t, only those values that belong to the nodes of policy Πt require
updating. Making use of this, an even more significant speed-up is possible.

17

Algorithm 4 StOP-eff(s0, δ0, �, γ)
1: for all u available from x0 do � Initialize
2: Π := smallest policy with the child su of s0 labeled u
3: δ1 := (δ0/d

∗) · (K0)
−1 � d(Π) = 1

4: Sample(Π, su,m(1, δ1))

5: t := 1
6: for round t = 1, 2, . . . do
7: for all u available at x0 do
8: ValueTr(su)

9: Π†
t,u := argmaxΠ∈Active(u) b(Π)

10: Π†
t := Π†

t,u†
t

, where u†
t := argmaxu b(Π

†
t,u) � optimistic policy and action

11: Π††
t := Π†

t,u††
t

, where u††
t := argmaxu�=u†

t
b(Π†

t,u) � secondary policy and action

12: if ν(Π†
t) + � ≥ maxu�=u†

t
b(Π†

t,u) then � termination criterion

13: return u†
t

14: if d(Π††
t) ≥ (Π†

t) then � choose action and policy to explore
15: ut := u†

t and Πt := Π†
t

16: else
17: ut := u††

t and Πt := Π††
t

18: set dt := d(Πt)

19: δ := (δ0/d
∗) ·�dt−1

�=0 (K�)
−N�

� the # of policies of depth at most d is
�d−1

�=0 (K�)
N�

20: for each of the Kdt
action u do

21: let Πt,u be the policy children of Π that follow action u from each leaf of Π
22: set adt

(s) := 1 for each node s of Πt,u that is not in Πt

23: Sample (Πt,i, sut
, m(dt + 1, δdt+1))

24: t := t+ 1

Algorithm 5 Sample-eff(Π, s,m)

1: if s is a leaf of Π then return
2: let s� be the child node of s in Π
3: while md(Π)(s

�) < m � make sure that s has at least m samples do
4: md(Π)(s

�) := md(Π)(s
�) + 1

5: s�� := SampleTransition(s�)

6: r̂d(Π)(s
��) :=

r̂d(Π)(s
��)·md(Π)(s

��)+SampleReward(s��)
1+md(Π)(s��)

7: md(Π)(s
��) := md(Π)(s

��) + 1

8: for all grandchildren s�� of s do � ensure that all rollouts going through s have full length in Π
9: Sample-eff(Π, s��,md(Π)(s

��))

Algorithm 6 ValueTr(s)
1: ad(s) = 0
2: for all children s� of s with maxd=d(s�),...,d∗ md(s

�) > 0 do
3: ValueAc(s�)
4: for all d := d(s) + 1, . . . , d∗ with md(s) > 0 do
5: v̂compl

d (s) := γ
�

s�: child of s(md(s
�) · v̂compl

d (s�))
6: ad(s) := maxs� child of s ad(s

�)

7: v̂incd (s) := γmaxs�: child of s with ad(s�)=1

�
md(s

�) · v̂incd (s�)

8: +
�

s�� �=s� child of s(md(s
��) · v̂compl

d (s��))
�

18

Algorithm 7 ValueAc(s)
1: for all children s� of s do
2: ValueTr(s�)
3: v̂comp

d(s) (s) := r̂d(s)(s)

4: if md(s)(s) > 0 but md(s)+1(s
�) = 0 for some child s� of s then

5: ad(s)(s) := 1

6: v̂incd(s)(s) := r̂d(s)(s)

7: for d := d(s) + 1, . . . , d∗ do
8: v̂comp

d (s) := maxs� children of s v̂
comp
d (s�)

9: ad(s) := maxs� children of s ad(s
�)

10: v̂incd (s) := maxs� children of swith ad(s)=1 v̂
inc
d (s�)

19

