
Discriminative Metric Learning by
Neighborhood Gerrymandering

(Supplementary Material)

Shubhendu Trivedi, David McAllester, Gregory Shakhnarovich
Toyota Technological Institute

Chicago, IL - 60637
{shubhendu,mcallester,greg}@ttic.edu

1 Proof of correctness of Algorithm 2

First of all it is easy to see that Algorithm 2 terminates. There are k−n∗ iterations after initialization
(of the first n∗ points) and this amounts to at most a linear scan of X . We need O(N logN) time to
sort the data and then finding h∗ involves O(N), thus the algorithm runs in time O(N logN).

We need to prove that the algorithm returns h∗ as defined earlier. First, we establish the correctness
of setting n∗:

Proposition 1. Let R be the number of classes, and let #(h, y) be the count of neighbors from
target class y included in the assignment h. Then, ∆(y∗, h) = 0 only if #(h, y∗) ≥ n∗, where

n∗ =

{⌈
k+R−1
R

⌉
if ties not allowed,⌈

k
R

⌉
if ties allowed.

We prove it below for the case with no ties; the proof when ties are allowed is very similar.

Proof. Suppose by contradiction that ∆(y∗, h) = 0 and #(h, y∗) ≤ dk+R−1
R e − 1. Then, since no

ties are allowed, for all y 6= y∗, we have #(h, y∗) ≤ dk+R−1
R e − 2, and∑

y

#(h, y) ≤ (R− 1)

(⌈
k +R− 1

R

⌉
− 2

)
(1)

+

⌈
k +R− 1

R

⌉
− 1 (2)

< k, (3)

a contradiction to |h| = k.

Next, we prove that the algorithm terminates and produces a correct result. For the purposes of
complexity analysis, we consider R (but not k) to be constant, and number of examples from each
class to be O(N).

Claim 1. Algorithm 2 terminates after at most O((N + k) logN) operations and produces an h
such that |h| = k.

Proof. The elements of X can be held in R priority queues, keyed by DW values, one queue per
class. Construction of this data structure is an O(N logN) operation, carried out before the algo-
rithm starts. To initialize h with n∗ values, the algorithm retrieves n∗ top elements from the priority
queue for class y∗. An O(n∗ logN) operation. Then, for each of the iterations over l, the algorithm

1

needs to examine at most one top element from R queues, which costs O(logN); each such itera-
tion increases |h| by one. Thus after k − n∗ iterations |h| = k; the total cost is thus O(k logN).
Combined with the complexity of data structure construction mentioned above, this concludes the
proof.

Note that for typical scenarios in which N � k, the cost will be dominated by the N logN data
structure setup.
Claim 2. Let h∗ be returned by Algorithm 2. Then,

h∗ = argmax
h:|h|=k,∆(y∗,h)=0)

SW(x, h), (4)

i.e., the algorithm finds the highest scoring h with total of k neighbors among those h that attain
zero loss.

Proof. From Proposition 1 we know that if #(h, y) < n∗, then h does not satisfy the ∆(x, h) = 0
condition. |h| ≥ n∗ to (4) without altering the definition.

We will call h “optimal for l” if

h = argmax
h:|h|=n∗+l,#(h,y)≥n∗,∆(y∗,h))=0

SW(x, h).

We now prove by induction over l that this property is maintained through the loop over l in the
algorithm.

Let h(j) denote choice of h after j iterations of the loop, i.e., |h| = n∗ + j. Suppose that h(l−1) is
optimal for l − 1. Now the algorithm selects xa ∈ X , such that

xa = argmin
xi: yi=y, or #(yi)<#(y)−τ,xi /∈h

DW (x,xi) . (5)

Suppose that h(l) is not optimal for l. Then there exists an xb ∈ X for which DW (x,xb) <
DW (x,xa) such that picking xb instead of xa would produce h optimal for l. But xb is not picked
by the algorithm; this can only happen if conditions on the argmin in (5) are violated, namely, if
#(yb) = #(y)− τ ; therefore picking xb would violate conditions of optimality of h(l), and we get
a contradiction.

It is also clear that after initialization with k highest scoring neighbors in y∗, h is optimal for l = 0,
which forms the base of induction. We conclude that h(k−n∗), i.e. the result of the algorithm, is
optimal for k − n∗, which is equivalent to definition in (4).

2 Runtimes using different methods

Here we include the training times in seconds for one fold of each dataset. These timings are for a
single partition, for optimal parameters for k = 7. These experiments were run on a 12-core Intel
Xeon E5-2630 v2 @ 2.60GHz.

Dataset DSLR Caltech Amazon Webcam Letters USPS Isolet
LMNN 358.11 1812.1 1545.1 518.7 179.77 782.66 1762.1
GB-LMNN 410.13 1976.4 1680.9 591.29 272.87 3672.9 2882.6
MLR 4.93 124.42 88.96 85.02 838.13 1281 33.20
MLNG 413.36 1027.6 2157.2 578.74 6657.3 3891.7 3668.9

2

3 Experimental results using different feature normalizations

k = 3
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800
N 7797 9298 20000 157 958 295 1123
C 26 10 26 10 10 10 10
Euclidean - - - 26.71 ±11 37.26 ±2.3 23.39 ±5.3 58.42 ±3.7

LMNN - - - 23.53 ±7.6 26.30 ±1.6 11.53 ±6.7 43.72 ±3.5

GB-LMNN - - - 23.53 ±7.6 26.30 ±1.6 11.53 ±6.7 43.54 ±3.5

MLR - - - 24.78 ±14.2 32.35 ±4.5 14.58 ±3.5 52.18 ±2.0

ITML - - - 22.22 ±9.9 32.67 ±3.2 12.88 ±6.1 51.74 ±4.2

NCA - - - 29.84 ±8.1 33.72 ±2.1 21.36 ±4.9 54.50 ±2.0

ours - - - 21.63 ±6.1 29.23 ±2.8 14.58 ±5.4 46.46 ±2.4

k = 7
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean - - - 32.46 ±8.3 38.2 ±1.6 27.46 ±5.9 56.9 ±2.9

LMNN - - - 26.11 ±8.6 25.47 ±1.6 10.51 ±4.9 41.77 ±4.0

GB-LMNN - - - 25.48 ±10.9 25.36 ±1.7 10.51 ±4.9 41.59 ±3.6

MLR - - - 27.94 ±9.0 30.16 ±3.0 16.95 ±3.4 49.51 ±3.6

ITML - - - 22.28 ±8.8 32.88 ±3.3 13.90 ±6.3 50.59 ±4.7

NCA - - - 37.48 ±8.2 33.09 ±1.9 23.39 ±5.3 51.74 ±2.6

ours - - - 25.65 ±7.1 28.65 ±2.3 17.29 ±5.0 48.62 ±1.7

k = 11
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean - - - 35.02 ±8.9 37.57 ±2.3 30.51 ±4.8 56.55 ±2.4

LMNN - - - 49.64 ±5.7 24.84 ±2.1 10.17 ±3.8 43.19 ±2.7

GB-LMNN - - - 43.89 ±5.6 25.16 ±2.0 10.17 ±3.8 43.10 ±3.1

MLR - - - 28.63 ±7.7 30.48 ±2.4 17.63 ±5.3 48.18 ±3.8

ITML - - - 24.82 ±5.1 31.10 ±2.6 15.25 ±6.3 50.32 ±3.9

NCA - - - 41.37 ±4.7 32.88 ±1.5 24.07 ±8.4 51.20 ±3.9

ours - - - 32.44 ±6.7 32.15 ±2.8 17.65 ±3.5 49.60 ±2.6

Table 1: kNN error,for k=3, 7 and 11. Mean and standard deviation are shown for data sets on
which 5-fold partition was used. These experiments were done after histogram normalization. Best
performing methods are shown in bold. Note that the only non-linear metric learning method in the
above is GB-LMNN

3

k = 3
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

d 170 256 16 800 800 800 800
N 7797 9298 20000 157 958 295 1123
C 26 10 26 10 10 10 10
Euclidean 8.98 5.03 4.31 ±0.2 58.01 ±5.0 56.89 ±2.4 40.34 ±4.2 74.89 ±3.2

LMNN 4.17 5.38 3.26 ±0.1 23.53 ±5.6 28.08 ±2.2 11.19 ±5.6 44.97 ±2.6

GB-LMNN 3.72 5.03 2.50 ±0.2 23.53 ±5.6 28.08 ±2.2 11.53 ±5.5 44.70 ±2.4

MLR 17.32 8.42 45.70 ±18.7 35.69 ±7.6 23.40 ±1.7 20 ±4.6 47.11 ±1.7

ITML 6.86 4.78 4.35 ±0.2 24.82 ±10.9 34.77 ±4.7 12.20 ±4.1 53.97 ±3.2

NCA 5.07 5.18 4.39 ±1.1 24.19 ±5.8 29.54 ±1.4 12.88 ±4.9 46.84 ±2.0

ours 4.11 5.13 2.84 ±0.2 22.77 ±5.9 27.84 ±2.4 14.58 ±3.9 44.54 ±2.9

k = 7
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 6.93 5.08 4.69 ±0.2 60.46 ±5.2 59.07 ±4.5 43.05 ±3.7 72.3 ±3.3

LMNN 4.04 5.28 3.53 ±0.2 24.15 ±9.0 28.19 ±2.8 13.56 ±4.5 43.90 ±2.4

GB-LMNN 3.72 5.03 2.32 ±0.2 24.80 ±8.1 28.29 ±3.1 13.14 ±5.8 43.54 ±2.2

MLR 23.28 8.12 33.61 ±16.8 38.17 ±10.9 23.79 ±3.9 20.34 ±2.9 45.60 ±4.8

ITML 5.90 5.23 4.93 ±0.5 23.57 ±9.6 32.46 ±3.2 11.19 ±5.7 52.63 ±3.3

NCA 5.52 4.98 5.06 ±1.1 37.58 ±5.7 31.01 ±2.0 16.81 ±5.9 43.90 ±2.4

ours 4.07 4.93 3.13 ±0.2 29.94 ±7.6 27.62 ±3.4 13.24 ±3.1 42.83 ±3.1

k = 11
Dataset Isolet USPS letters DSLR Amazon Webcam Caltech

Euclidean 7.95 5.68 5.26 ±0.2 61.71 ±6.4 61.48 ±3.7 49.15 ±3.9 73.1 ±3.6

LMNN 3.85 5.73 4.09 ±0.2 49.6 ±5.5 27.04 ±1.8 14.58 ±4.6 44.61 ±1.3

GB-LMNN 3.98 6.33 2.96 ±0.1 45.18 ±10.5 27.25 ±2.2 14.58 ±4.6 45.55 ±6.9

MLR 33.61 10.26 35.50 ±16.5 34.40 ±8.2 24.21 ±3.4 18.31 ±5.3 46.04 ±1.9

ITML 7.18 5.88 5.35 ±0.3 28.04 ±7.7 33.09 ±2.1 12.54 ±5.4 51.91 ±3.3

NCA 5.52 5.03 5.8 ±1.3 45.18 ±6.5 32.47 ±1.7 19.32 ±7.5 44.17 ±2.6

ours 3.87 4.98 3.28 ±0.4 27.50 ±8.1 27.91 ±3.5 14.24 ±6.5 45.76 ±2.9

Table 2: kNN error,for k=3, 7 and 11. No feature scaling was applied in these experiments. Mean
and standard deviation are shown for data sets on which 5-fold partition was used. Best performing
methods are shown in bold. Note that the only non-linear metric learning method in the above is
GB-LMNN.

4

	Proof of correctness of Algorithm 2
	Runtimes using different methods
	Experimental results using different feature normalizations

