
Optimal Neural Codes for Control and Estimation

Alex Susemihl1, Manfred Opper
Methods of Artificial Intelligence

Technische Universität Berlin
1 Current affiliation: Google

Ron Meir
Department of Electrical Engineering

Technion - Haifa

Abstract

Agents acting in the natural world aim at selecting appropriate actions based on
noisy and partial sensory observations. Many behaviors leading to decision mak-
ing and action selection in a closed loop setting are naturally phrased within a
control theoretic framework. Within the framework of optimal Control Theory,
one is usually given a cost function which is minimized by selecting a control
law based on the observations. While in standard control settings the sensors are
assumed fixed, biological systems often gain from the extra flexibility of optimiz-
ing the sensors themselves. However, this sensory adaptation is geared towards
control rather than perception, as is often assumed. In this work we show that sen-
sory adaptation for control differs from sensory adaptation for perception, even for
simple control setups. This implies, consistently with recent experimental results,
that when studying sensory adaptation, it is essential to account for the task being
performed.

1 Introduction

Biological systems face the difficult task of devising effective control strategies based on partial in-
formation communicated between sensors and actuators across multiple distributed networks. While
the theory of Optimal Control (OC) has become widely used as a framework for studying motor con-
trol, the standard framework of OC neglects many essential attributes of biological control [1, 2, 3].
The classic formulation of closed loop OC considers a dynamical system (plant) observed through
sensors which transmit their output to a controller, which in turn selects a control law that drives
actuators to steer the plant. This standard view, however, ignores the fact that sensors, controllers
and actuators are often distributed across multiple sub-systems, and disregards the communication
channels between these sub-systems. While the importance of jointly considering control and com-
munication within a unified framework was already clear to the pioneers of the field of Cybernetics
(e.g., Wiener and Ashby), it is only in recent years that increasing effort is being devoted to the
formulation of a rigorous systems-theoretic framework for control and communication (e.g., [4]).
Since the ultimate objective of an agent is to select appropriate actions, it is clear that sensation and
communication must subserve effective control, and should be gauged by their contribution to action
selection. In fact, given the communication constraints that plague biological systems (and many
current distributed systems, e.g., cellular networks, sensor arrays, power grids, etc.), a major concern
of a control design is the optimization of sensory information gathering and communication (consis-
tently with theories of active perception). For example, recent theoretical work demonstrated a sharp
communication bandwidth threshold below which control (or even stabilization) cannot be achieved
(for a summary of such results see [4]). Moreover, when informational constraints exists within a
control setting, even simple (linear and Gaussian) problems become nonlinear and intractable, as
exemplified in the famous Witsenhausen counter-example [5].

The inter-dependence between sensation, communication and control is often overlooked both in
control theory and in computational neuroscience, where one assumes that the overall solution to
the control problem consists of first estimating the state of the controlled system (without reference
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to the control task), followed by constructing a controller based on the estimated state. This idea,
referred to as the separation principle in Control Theory, while optimal in certain restricted settings
(e.g., Linear Quadratic Gaussian (LQG) control) is, in general, sub-optimal [6]. Unfortunately, it is
in general very difficult to provide optimal solutions in cases where separation fails. A special case
of the separation principle, referred to as Certainty Equivalence (CE), occurs when the controller
treats the estimated state as the true state, and forms a controller assuming full state information. It
is generally overlooked, however, that although the optimal control policy does not depend directly
on the observation model at hand, the expected future costs do depend on the specifics of that model
[7]. In this sense, even when CE holds, costs still arise from uncertain estimates of the state and one
can optimise the sensory observation model to minimise these costs, leading to sensory adaptation.
At first glance, it might seem that the observation model that will minimise the expected future cost
will be the observation model that minimises the estimation error. We will show, however, that this
is not generally the case.

A great deal of the work in computational neuroscience has dealt independently with the problem
of sensory adaptation and control, while, as stated above, these two issues are part and parcel of
the same problem. In fact, it is becoming increasingly clear that biological sensory adaptation is
task-dependent [8, 9]. For example, [9] demonstrates that task-dependent sensory adaptation takes
place in purely motor tasks, explaining after-effect phenomena seen in experiments. In [10], the
authors show that specific changes occur in sensory regions, implying sensory plasticity in motor
learning. In this work we consider a simple setting for control based on spike time sensory coding,
and study the optimal coding of sensory information required in order to perform a well-defined
motor task. We show that even if CE holds, the optimal encoder strategy, minimising the control cost,
differs from the optimal encoder required for state estimation. This result demonstrates, consistently
with experiments, that neural encoding must be tailored to the task at hand. In other words, when
analyzing sensory neural data, one must pay careful care to the task being performed. Interestingly,
work within the distributed control community dealing with optimal assignment and selection of
sensors, leads to similar conclusions and to specific schemes for sensory adaptation.

The interplay between information theory and optimal control is a central pillar of modern control
theory, and we believe it must be accounted for in the computational neuroscience community.
Though statistical estimation theory has become central in neural coding issues, often through the
Cramér-Rao bound, there have been few studies bridging the gap between partially observed control
and neural coding. We hope to narrow this gap by presenting a simple example where control
and estimation yield different conclusions. The remainder of the paper is organised as follows:
In section 1.1 we introduce the notation and concepts; In section 2 we derive expressions for the
cost-to-go of a linear-quadratic control system observed through spikes from a dense populations of
neurons; in section 3 we present the results and compare optimal codes for control and estimation
with point-process filtering, Kalman filtering and LQG control; in section 4 we discuss the results
and their implications.

1.1 Optimal Codes for Estimation and Control

We will deal throughout this paper with a dynamic system with state Xt, observed through noisy
sensory observations Zt, whose conditional distribution can be parametrised by a set of parameters
ϕ, e.g., the widths and locations of the tuning curves of a population of neurons or the noise prop-
erties of the observation process. The conditional distribution is then given by Pϕ(Zt|Xt = x).
Zt could stand for a diffusion process dependent on Xt (denoted Yt) or a set of doubly-stochastic
Poisson processes dependent on Xt (denoted Nm

t ). In that sense, the optimal Bayesian encoder for
an estimation problem, based on the Mean Squared Error (MSE) criterion, can be written as

ϕ∗e = argmin
ϕ

Ez

[
EXt

[(
Xt − X̂t(Zt)

)2∣∣∣∣Zt = z

]]
,

where X̂t(Zt) = E [Xt|Zt] is the posterior mean, computable, in the linear Gaussian case, by the
Kalman filter. We will throughout this paper consider the MMSE in the equilibrium, that is, the
error in estimating Xt from long sequences of observations Z[0,t]. Similarly, considering a control
problem with a cost given by

C(X0,U0) =

∫ T

0

c(Xs, Us, s)ds+ cT (XT ),
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whereXt = {Xs|s ∈ [t, T ]},U t = {Us|s ∈ [t, T ]}, and so forth. We can define

ϕ∗c = argmin
ϕ

Ez min
Ut

[EXt [C(X0,U0)|Zt = z]] .

The certainty equivalence principle states that given a control policy γ∗ : X → U which minimises
the cost C,

γ∗ = argmin
γ

C(X0,γ(X0)),

the optimal control policy for the partially observed problem given by noisy observations Z0 ofX0

is given by
γCE(Zt) = γ∗ (E [X0|Zt]) .

Note that we have used the notation γ(X0) = {γ(Xs), s ∈ [0, T ]}.

2 Stochastic Optimal Control

In stochastic optimal control we seek to minimize the expected future cost incurred by a system
with respect to a control variable applied to that system. We will consider linear stochastic systems
governed by the SDE

dXt = (AXt +BUt) dt+D1/2dWt, (1a)
with a cost given by

C(Xt,U t, t) =

∫ T

t

(
X>s QXs + U>s RUs

)
ds+X>T QTXT . (1b)

From Bellman’s optimality principle or variational analysis [11], it is well known that the optimal
control is given by U∗t = −R−1B>StXt, where St is the solution of the Riccati equation

−Ṡt = Q+ASt + StA
> − StB>R−1BSt, (2)

with boundary condition ST = QT . The expected future cost at time t and state x under the optimal
control is then given by

J(x, t) = min
Ut

E [C(Xt,U t, t)|Xt = x] =
1

2
x>Stx+

∫ T

t

Tr (DSs) ds.

This is usually called the optimal cost-to-go. However, the system’s state is not always directly
accessible and we are often left with noisy observations of it. For a class of systems e.g. LQG
control, CE holds and the optimal control policy for the indirectly observed control problem is
simply the optimal control policy for the original control problem applied to the Bayesian estimate of
the system’s state. In that sense, if the CE were to hold for the system above observed through noisy
observations Yt of the state at time t, the optimal control would be given simply by the observation-
dependent control U∗t = −R−1B>StE [Xt|Yt] [7].

Though CE, when applicable, gives us a simple way to determine the optimal control, when con-
sidering neural systems we are often interested in finding the optimal encoder, or the optimal ob-
servation model for a given system. That is equivalent to finding the optimal tuning function for a
given neuron model. Since CE neatly separates the estimation and control steps, it would be tempt-
ing to assume the optimal codes obtained for an estimation problem would also be optimal for an
associated control problem. We will show here that this is not the case.

As an illustration, let us consider the case of LQG with incomplete state information. One could,
for example, take the observations to be a secondary process Yt, which itself is a solution to

dYt = FXtdt+G1/2dVt,

the optimal cost-to-go would then be given by [11]

J(y, t) = min
Ut

E
[
C(Xt,U t, t)

∣∣Y[0,t] = y
]

(3)

=ν>t Stνt + Tr (KtSt) +

∫ T

t

Tr (DSs) ds+

∫ T

t

Tr
(
SsBR

−1B>SsKs

)
ds,
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where we have defined Y[0,t] = {Ys, s ∈ [0, t]}, νt = E[Xt|Y[0,t]] and Kt = cov[Xt|Y[0,t]]. We
give a demonstration of these results in the SI, but for a thorough review see [11]. Note that through
the last term in equation (3) the cost-to-go now depends on the parameters of the Yt process. More
precisely, the variance of the distribution of Xs given Yt, for s > t obeys the ODE

K̇t = AKt +KtA
> +D −KtF

>G−1FKt. (4)

One could then choose the matrices F and G in such a way as to minimise the contribution of
the rightmost term in equation (3). Note that in the LQG case this is not particularly interesting,
as the conclusion is simply that we should strive to make Kt as small as possible, by making the
term F>G−1F as large as possible. This translates to choosing an observation process with very
strong steering from the unobserved process (large F ) and a very small noise (small G). One case
that provides some more interesting situations is if we consider a two-dimensional system, where
we are restricted to a noise covariance with constant determinant. That means the hypervolume
spanned by the eigenvectors of the covariance matrix is constant. We will compare this case with
the Poisson-coded case below.

2.1 LQG Control with Dense Gauss-Poisson Codes

Let us now consider the case of the system given by equation (1a), but instead of observing the
system directly we observe a set of doubly-stochastic Poisson processes {Nm

t } with rates given by

λm(x) = φ exp

[
−1

2
(x− θm)

>
P † (x− θm)

]
. (5)

To clarify, the process Nm
t is a counting process which counts how many spikes the neuron m

has fired up to time t. In that sense, the differential of the counting process dNm
t will give the

spike train process, a sum of Dirac delta functions placed at the times of spikes fired by neuron
m. Here P † denotes the pseudo-inverse of P , which is used to allow for tuning functions that
do not depend on certain coordinates of the stimulus x. Furthermore, we will assume that the
tuning centre θm are such that the probability of observing a spike of any neuron at a given time
λ̂ =

∑
m λ

m(x) is independent of the specific value of the world state x. This can be a consequence
of either a dense packing of the tuning centres θm along a given dimension of x, or of an absolute
insensitivity to that aspect of x through a null element in the diagonal of P †. This is often called
the dense coding hypothesis [12]. It can be readily be shown that the filtering distribution is given
by P (Xt|{N[0,t)}) = N (µt,Σt), where the mean and covariance are solutions to the stochastic
differential equations (see [13])

dµt = (Aµt +BUt) dt+
∑
m

Σt
(
I + P †Σt

)−1
P † (θm − µt) dNm

t , (6a)

dΣt =
(
AΣt + ΣtA

> +D
)
dt− ΣtP

†Σt
(
I + P †Σt

)−1
dNt, (6b)

where we have defined µt = E[Xt|{Nm
[0,t]}] and Σt = cov[Xt|{Nm

[0,t]}]. Note that we have also
defined Nm

[0,t] = {Nm
s |s ∈ [0, t]}, the history of the process Nm

s up to time t, and Nt =
∑
mN

m
t .

Using Lemma 7.1 from [11] provides a simple connection between the cost function and the solution
of the associated Ricatti equation for a stochastic process. We have

C(Xt,U t, t) =X>T QTXT +

∫ T

t

[
X>s QXs + U>s RUs

]
ds

=X>t StXt +

∫ T

t

(Us +R−1B>SsXs)
>R(Us +R−1B>SsXs)ds

+

∫ T

t

Tr(DSs)ds+

∫ T

t

dW>s D
>/2SsXsds+

∫ T

t

X>s SsD
1/2dWs.

We can average over P (Xt,N t|{N[0,t)}) to obtain the expected future cost. That gives us

µ>t Stµt+Tr(ΣtSt)+E

[∫ T

t

(Us +R−1B>SsXs)
>R(Us +R−1B>SsXs)ds

∣∣∣∣∣{N[0,t)}

]
+

∫ T

t

Tr(DSs)ds
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We can evaluate the average over P (Xt, {Nm
t }|{Nm

[0,t)}) in two steps, by first averaging over the
Gaussian densities P (Xs|{Nm

[0,s]}) and then over P ({N[0,s]}|{N[0,t)}). The average gives

E

[∫ T

t

(Us +R−1B>Ssµs)>R(Us +R−1B>Ssµs) + Tr
[
SsBR

−1B>SsΣs({N[0,s]})
]
ds

∣∣∣∣{N[0,t)}
]
,

where µs and Σs are the mean and variance associated with the distribution P (Xs|{N[0,s)}). Note
that choosing Us = −R−1B>Ssµs will minimise the expression above, consistently with CE. The
optimal cost-to-go is therefore given by

J({N[0,t)}, t) =µ>t Stµt + Tr(ΣtSt)

+

∫ T

t

Tr (DSs) ds+

∫ T

t

Tr
(
SsBR

−1B>SsE
[
Σs({N[0,s]})|{N[0,t)}

])
ds

(7)

Note that the only term in the cost-to-go function that depends on the parameters of the encoders is
the rightmost term and it depends on it only through the average over future paths of the filtering
variance Σs. The average of the future covariance matrix is precisely the MMSE for the filtering
problem conditioned on the belief state at time t [13]. We can therefore analyse the quality of an
encoder for a control task by looking at the values of the term on the right for different encoding
parameters. Furthermore, since the dynamics of Σt given by equation (6b) is Markovian, we can
write the average E

[
Σs|{N[0,t)}

]
as E [Σs|Σt]. We will define then the function f(Σ, t) which

gives us the uncertainty-related expected future cost for the control problem as

f(Σ, t) =

∫ T

t

Tr
(
SsBR

−1B>SsE [Σs|Σt = Σ]
)
ds. (8)

2.2 Mutual Information

Many results in information theory are formulated in terms of the mutual information of the com-
munication channel Pϕ(Y |X). For example, the maximum cost reduction achievable with R bits of
information about an unobserved variable X has been shown to be a function of the rate-distortion
function with the cost as the distortion function [14]. More recently there has also been a lot of
interest in the so-called I-MMSE relations, which provide connections between the mutual infor-
mation of a channel and the minimal mean squared error of the Bayes estimator derived from the
same channel [15, 16]. The mutual information for the cases we are considering is not particularly
complex, as all distributions are Gaussians. Let us denote by Σ0

t the covariance of of the unobserved
process Xt conditioned on some initial Gaussian distribution P0 = N (µ0,Σ0) at time 0. We can
then consider the Mutual Information between the stimulus at time t, Xt, and the observations up to
time t, Y[0,t] or N[0,t]. For the LQG/Kalman case we have simply

I(Xt;Y[0,t]|P0) =

∫
dx dyP (x, y) [logP (x|y)− logP (x)] = log |Σ0

t | − log |Σt|,

where Σt is a solution of equation (4). For the Dense Gauss-Poisson code, we can also write

I(Xt;Nt|P0) =

∫
dx dnP (x, n) [logP (x|n)− logP (x)] = log |Σ0

t | −EN[0,t]

[
log |Σt(N[0,t])|

]
,

where Σt(N[0,t]) is a solution to the stochastic differential equation (6b) for the given value ofN[0,t].

3 Optimal Neural Codes for Estimation and Control

What could be the reasons for an optimal code for an estimation problem to be sub-optimal for a
control problem? We present examples that show two possible reasons for different optimal coding
strategies in estimation and control. First, one should note that control problems are often defined
over a finite time horizon. One set of classical experiments involves reaching for a target under
time constraints [3]. If we take the maximal firing rate of the neurons (φ) to be constant while
varying the width of the tuning functions, this will lead the number of observed spikes to be inversely
proportional to the precision of those spikes, forcing a trade-off between the number of observations
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and their quality. This trade-off can be tilted to either side in the case of control depending on the
information available at the start of the problem. If we are given complete information on the system
state at the initial time 0, the encoder needs fewer spikes to reliably estimate the system’s state
throughout the duration of the control experiment, and the optimal encoder will be tilted towards
a lower number of spikes with higher precision. Conversely, if at the beginning of the experiment
we have very little information about the system’s state, reflected in a very broad distribution, the
encoder will be forced towards lower precision spikes with higher frequency. These results are
discussed in section 3.1.

Secondly, one should note that the optimal encoder for estimation does not take into account the
differential weighting of different dimensions of the system’s state. When considering a multidi-
mensional estimation problem, the optimal encoder will generally allocate all its resources equally
between the dimensions of the system’s state. In the framework presented we can think of the dimen-
sions as the singular vectors of the tuning matrix P and the resources allocated to it are the singular
values. In this sense, we will consider a set of coding strategies defined by matrices P of constant
determinant in section 3.2. This constrains the overall firing rate of the population of neurons to be
constant, and we can then consider how the population will best allocate its observations between
these dimensions. Clearly, if we have an anisotropic control problem, which places a higher impor-
tance in controlling one dimension, the optimal encoder for the control problem will be expected to
allocate more resources to that dimension. This is indeed shown to be the case for the Poisson codes
considered, as well as for a simple LQG problem when we constrain the noise covariance to have
the same structure.

We do not mean our analysis to be exhaustive as to the factors leading to different optimal codes
in estimation and control settings, as the general problem is intractable, and indeed, is not even
separable. We intend this to be a proof of concept showing two cases in which the analogy between
control and estimation breaks down.

3.1 The Trade-off Between Precision and Frequency of Observations

In this section we consider populations of neurons with tuning functions as given by equation (5)
with tuning centers θm distributed along a one- dimensional line. In the case of the Ornstein-
Uhlenbeck process these will be simply one-dimensional values θm whereas in the case of the
stochastic oscillator, we will consider tuning centres of the form θm = (ηm, 0)>, filling only the
first dimension of the stimulus space. Note that in both cases the (dense) population firing rate
λ̂ =

∑
m λm(x) will be given by λ̂ =

√
2πpφ/|∆θ|, where ∆θ is the separation between neigh-

bouring tuning centres θm.

The Ornstein-Uhlenbeck (OU) process controlled by a process Ut is given by the SDE

dXt = (bUt − γXt)dt+D1/2dWt.

Equation (7) can then be solved by simulating the dynamics of Σs. This has been considered exten-
sively in [13] and we refer to the results therein. Specifically, it has been found that the dynamics of
the average can be approximated in a mean-field approach yielding surprisingly good results. The
evolution of the average posterior variance is given by the average of equation (6b), which involves
nonlinear averages over the covariances. These are intractable, but a simple mean-field approach
yields the approximate equation for the evolution of the average 〈Σs〉 = E [Σs|Σ0]

d 〈Σs〉
ds

= A 〈Σs〉+ 〈Σs〉>A> +D − λ̂ 〈Σs〉P † 〈Σs〉
(
I + P † 〈Σs〉

)−1
.

The alternative is to simulate the stochastic dynamics of Σt for a large number of samples and
compute numerical averages. These results can be directly employed to evaluate the optimal cost-
to-go in the control problem f(Σ, t).

Alternatively, we can look at a system with more complex dynamics, and we take as an example the
stochastic damped harmonic oscillator given by the system of equations

Ẋt = Vt, dVt =
(
bUt − γVt − ω2Xt

)
dt+ η1/2dWt. (9)

Furthermore, we assume that the tuning functions only depend on the position of the oscillator,
therefore not giving us any information about the velocity. The controller in turn seeks to keep the
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Figure 1: The trade-off between the precision and the frequency of spikes is illustrated for the OU process
(a) and the stochastic oscillator (b). In both figures, the initial condition has a very uncertain estimate of the
system’s state, biasing the optimal tuning width towards higher values. This forces the encoder to amass the
maximum number of observations within the duration of the control experiment. Parameters for figure (a) were:
T = 2, γ = 1.0, η = 0.6, b = 0.2, φ = 0.1, ∆θ = 0.05, Q = 0.1, QT = 0.001, R = 0.1. Parameters for
figure (b) were T = 5, γ = 0.4, ω = 0.8, η = 0.4, r = 0.4, q = 0.4, QT = 0, φ = 0.5, ∆θ = 0.1.

oscillator close to the origin while steering only the velocity. This can be achieved by the choice of
matrices A = (0, 1;−ω2,−γ), B = (0, 0; 0, b), D = (0, 0; 0, η2), R = (0, 0; 0, r), Q = (q, 0; 0, 0)
and P = (p2, 0; 0, 0).

In figure 1 we provide the uncertainty-dependent costs for LQG control, for the Poisson observed
control, as well as the MMSE for the Poisson filtering problem and for a Kalman-Bucy filter with the
same noise covariance matrix P . This illustrates nicely the difference between Kalman filtering and
the Gauss-Poisson filtering considered here. The Kalman filter MSE has a simple, monotonically
increasing dependence on the noise covariance, and one should simply strive to design sensors with
the highest possible precision (p = 0) to minimise the MMSE and control costs. The Poisson
case leads to optimal performance at a non-zero value of p. Importantly the optimal values of p
for estimation and control differ. Furthermore, in view of section 2.2, we also plotted the mutual
information between the process Xt and the observation process Nt, to illustrate that information-
based arguments would lead to the same optimal encoder as MMSE-based arguments.

3.2 Allocating Observation Resources in Anisotropic Control Problems

A second factor that could lead to different optimal encoders in estimation and control is the struc-
ture of the cost function C. Specifically, if the cost functions depends more strongly on a certain
coordinate of the system’s state, uncertainty in that particular coordinate will have a higher impact
on expected future costs than uncertainty in other coordinates. We will here consider two simple
linear control systems observed by a population of neurons restricted to a certain firing rate. This
can be thought of as a metabolic constraint, since the regeneration of membrane potential necessary
for action potential generation is one of the most significant metabolic expenditures for neurons
[17]. This will lead to a trade-off, where an increase in precision in one coordinate will result in a
decrease in precision in the other coordinate.

We consider a population of neurons whose tuning functions cover a two-dimensional space. Taking
a two-dimensional isotropic OU system with state Xt = (X1,t, X2,t)

> where both dimensions are
uncoupled, we can consider a population with tuning centres θm = (ηm1 , η

m
2 )> densely covering

the stimulus space. To consider a smoother class of stochastic systems we will also consider a
two-dimensional stochastic oscillator with state Xt = (X1,t, V1,t, X2,t, V2,t)

>, where again, both
dimensions are uncoupled, and the tuning centres of the form θm = (ηm1 , 0, η

m
2 , 0)>, covering

densely the position space, but not the velocity space.

Since we are interested in the case of limited resources, we will restrict ourselves to popula-
tions with a tuning matrix P yielding a constant population firing rate. We can parametrise
these simply as POU (ζ) = p2 Diag(tan(ζ), cotan(ζ)), for the OU case and POsc(ζ) =
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Figure 2: The differential allocation of resources in control and estimation for the OU process (left) and the
stochastic oscillator (right). Even though the estimation MMSE leads to a symmetric optimal encoder both in
the Poisson and in the Kalman filtering problem, the optimal encoders for the control problem are asymmetric,
allocating more resources to the first coordinate of the stimulus.

p2 Diag(tan(ζ), 0, cotan(ζ), 0) for the stochastic oscillator, where ζ ∈ (0, π/2). Note that this
will yield the firing rate λ̂ = 2πpφ/(∆θ)2, independent of the specifics of the matrix P .

We can then compare the performance of all observers with the same firing rate in both control and
estimation tasks. As mentioned, we are interested in control problems where the cost functions are
anisotropic, that is, one dimension of the system’s state vector contributes more heavily to the cost
function. To study this case we consider cost functions of the type

c(Xt, Ut) = Q1X
2
1,t +Q2X

2
2,t +R1U

2
1,t +R2U

2
2,t.

This again, can be readily cast into the formalism introduced above, with a suitable choice of matri-
ces Q and R for both the OU process as for the stochastic oscillator. We will also consider the case
where the first dimension of Xt contributes more strongly to the state costs (i.e., Q1 > Q2).

The filtering error can be obtained from the formalism developed in [13] in the case of Poisson
observations and directly from the Kalman-Bucy equations in the case of Kalman filtering [18]. For
LQG control, one can simply solve the control problem for the system mentioned using the standard
methods (see e.g. [11]). The Poisson-coded version of the control problem can be solved using
either direct simulation of the dynamics of Σs or by a mean-field approach which has been shown
to yield excellent results for the system at hand. These results are summarised in figure 2, with
similar notation to that in figure 1. Note the extreme example of the stochastic oscillator, where the
optimal encoder is concentrating all the resources in one dimension, essentially ignoring the second
dimension.

4 Conclusion and Discussion

We have here shown that the optimal encoding strategies for a partially observed control problem is
not the same as the optimal encoding strategy for the associated state estimation problem. Note that
this is a natural consequence of considering noise covariances with a constant determinant in the
case of Kalman filtering and LQG control, but it is by no means trivial in the case of Poisson-coded
processes. For a class of stochastic processes for which the certainty equivalence principle holds we
have provided an exact expression for the optimal cost-to-go and have shown that minimising this
cost provides us with an encoder that in fact minimises the incurred cost in the control problem.

Optimality arguments are central to many parts of computational neuroscience, but it seems that
partial observability and the importance of combining adaptive state estimation and control have
rarely been considered in this literature, although supported by recent experiments. We believe the
present work, while treating only a small subset of the formalisms used in neuroscience, provides a
first insight into the differences between estimation and control. Much emphasis has been placed on
tracing the parallels between the two (see [19, 20], for example), but one must not forget to take into
account the differences as well.
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