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Abstract
To cope with the high level of ambiguity faced in domains such as Computer
Vision or Natural Language processing, robust prediction methods often search
for a diverse set of high-quality candidate solutions or proposals. In structured
prediction problems, this becomes a daunting task, as the solution space (image
labelings, sentence parses, etc.) is exponentially large. We study greedy algo-
rithms for finding a diverse subset of solutions in structured-output spaces by
drawing new connections between submodular functions over combinatorial item
sets and High-Order Potentials (HOPs) studied for graphical models. Specifically,
we show via examples that when marginal gains of submodular diversity functions
allow structured representations, this enables efficient (sub-linear time) approxi-
mate maximization by reducing the greedy augmentation step to inference in a
factor graph with appropriately constructed HOPs. We discuss benefits, trade-
offs, and show that our constructions lead to significantly better proposals.

1 Introduction
Many problems in Computer Vision, Natural Language Processing and Computational Biology in-
volve mappings from an input space X to an exponentially large space Y of structured outputs.
For instance, Y may be the space of all segmentations of an image with n pixels, each of which
may take L labels, so |Y| = Ln. Formulations such as Conditional Random Fields (CRFs) [24],
Max-Margin Markov Networks (M3N) [31], and Structured Support Vector Machines (SSVMs) [32]
have successfully provided principled ways of scoring all solutions y ∈ Y and predicting the single
highest scoring or maximum a posteriori (MAP) configuration, by exploiting the factorization of a
structured output into its constituent “parts”.

In a number of scenarios, the posterior P(y|x) has several modes due to ambiguities, and we seek
not only a single best prediction but a set of good predictions:
(1) Interactive Machine Learning. Systems like Google Translate (for machine translation) or
Photoshop (for interactive image segmentation) solve structured prediction problems that are often
ambiguous ("what did the user really mean?"). Generating a small set of relevant candidate solutions
for the user to select from can greatly improve the results.
(2) M-Best hypotheses in cascades. Machine learning algorithms are often cascaded, with the
output of one model being fed into another [33]. Hence, at the initial stages it is not necessary to
make a single perfect prediction. We rather seek a set of plausible predictions that are subsequently
re-ranked, combined or processed by a more sophisticated mechanism.
In both scenarios, we ideally want a small set of M plausible (i.e., high scoring) but non-redundant
(i.e., diverse) structured-outputs to hedge our bets.

Submodular Maximization and Diversity. The task of searching for a diverse high-quality sub-
set of items from a ground set V has been well-studied in information retrieval [5], sensor place-
ment [22], document summarization [26], viral marketing [17], and robotics [10]. Across these
domains, submodularity has emerged as an a fundamental and practical concept – a property of
functions for measuring diversity of a subset of items. Specifically, a set function F : 2V → R is
submodular if its marginal gains, F (a|S) ≡ F (S∪a)−F (S) are decreasing, i.e. F (a|S) ≥ F (a|T )

1



(a) Image (b) All segmentations: |V | = Ln

+ argmax
a∈V

F (a | S) ≡ r(y) d(y | S)

(c) Structured Representation.

Figure 1: (a) input image; (b) space of all possible object segmentations / labelings (each item is a segmenta-
tion); (c) we convert the problem of finding the item with the highest marginal gain F (a|S) to a MAP inference
problem in a factor graph over base variables y with an appropriately defined HOP.

for all S ⊆ T and a /∈ T . In addition, if F is monotone, i.e., F (S) ≤ F (T ), ∀S ⊆ T , then a simple
greedy algorithm (that in each iteration t adds to the current set St the item with the largest marginal
gain F (a|St)) achieves an approximation factor of (1 − 1

e ) [27]. This result has had significant
practical impact [21]. Unfortunately, if the number of items |V | is exponentially large, then even a
single linear scan for greedy augmentation is infeasible.

In this work, we study conditions under which it is feasible to greedily maximize a submodular
function over an exponentially large ground set V = {v1, . . . , vN} whose elements are combinato-
rial objects, i.e., labelings of a base set of n variables y = {y1, y2, . . . , yn}. For instance, in image
segmentation, the base variables yi are pixel labels, and each item a ∈ V is a particular labeling of
the pixels. Or, if each base variable ye indicates the presence or absence of an edge e in a graph,
then each item may represent a spanning tree or a maximal matching. Our goal is to find a set of
M plausible and diverse configurations efficiently, i.e. in time sub-linear in |V | (ideally scaling as
a low-order polynomial in log |V |). We will assume F (·) to be monotone submodular, nonnegative
and normalized (F (∅) = 0), and base our study on the greedy algorithm. As a running example, we
focus on pixel labeling, where each base variable takes values in a set [L] = {1, . . . , L} of labels.

Contributions. Our principal contribution is a conceptual one. We observe that marginal gains of a
number of submodular functions allow structured representations, and this enables efficient greedy
maximization over exponentially large ground sets – by reducing the greedy augmentation step to
a MAP inference query in a discrete factor graph augmented with a suitably constructed High-
Order Potential (HOP). Thus, our work draws new connections between two seemingly disparate
but highly related areas in machine learning – submodular maximization and inference in graphical
models with structured HOPs. As specific examples, we construct submodular functions for three
different, task-dependent definitions of diversity, and provide reductions to three different HOPs for
which efficient inference techniques have already been developed. Moreover, we present a generic
recipe for constructing such submodular functions, which may be “plugged” with efficient HOPs
discovered in future work. Our empirical contribution is an efficient algorithm for producing a set of
image segmentations with significantly higher oracle accuracy1 than previous works. The algorithm
is general enough to transfer to other applications. Fig. 1 shows an overview of our approach.

Related work: generating multiple solutions. Determinental Point Processesare an elegant prob-
abilistic model over sets of items with a preference for diversity. Its generalization to a structured
setting [23] assumes a tree-structured model, an assumption that we do not make. Guzman-Rivera et
al. [14, 15] learn a set of M models, each producing one solution, to form the set of solutions. Their
approach requires access to the learning sub-routine and repeated re-training of the models, which
is not always possible, as it may be expensive or proprietary. We assume to be given a single (pre-
trained) model from which we must generate multiple diverse, good solutions. Perhaps the closest
to our setting are recent techniques for finding diverse M -best solutions [2, 28] or modes [7, 8]
in graphical models. While [7] and [8] are inapplicable since they are restricted to chain and tree
graphs, we compare to other baselines in Section 3.2 and 4.

1.1 Preliminaries and Notation
We select from a ground set V of N items. Each item is a labeling y = {y1, y2, . . . , yn}
of n base variables. For clarity, we use non-bold letters a ∈ V for items, and boldface let-
ters y for base set configurations. Uppercase letters refer to functions over the ground set items
F (a|A), R(a|A), D(a|A), and lowercase letters to functions over base variables f(y), r(y), d(y).

1The accuracy of the most accurate segmentation in the set.
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Formally, there is a bijection φ : V 7→ [L]m that maps items a ∈ V to their representation as base
variable labelings y = φ(a). For notational simplicity, we often use y ∈ S to mean φ−1(y) ∈ S,
i.e. the item corresponding to the labeling y is present in the set S ⊆ V . We write ` ∈ y if the label
` is used in y, i.e. ∃j s.t. yj = `. For a set c ⊆ [n], we use yc to denote the tuple {yi | i ∈ c}.
Our goal to find an ordered set or list of items S ⊆ V that maximizes a scoring function F . Lists
generalize the notation of sets, and allow for reasoning of item order and repetitions. More details
about list vs set prediction can be found in [29, 10].

Scoring Function. We trade off the relevance and diversity of list S ⊆ V via a scoring function
F : 2V → R of the form

F (S) = R(S) + λD(S), (1)
where R(S) =

∑
a∈S R(a) is a modular nonnegative relevance function that aggregates the quality

of all items in the list; D(S) is a monotone normalized submodular function that measure the diver-
sity of items in S; and λ ≥ 0 is a trade-off parameter. Similar objective functions were used e.g. in
[26]. They are reminiscent of the general paradigm in machine learning of combining a loss func-
tion that measures quality (e.g. training error) and a regularization term that encourages desirable
properties (e.g. smoothness, sparsity, or “diversity”).

Submodular Maximization. We aim to find a list S that maximizes F (S) subject to a cardinality
constraint |S| ≤ M . For monotone submodular F , this may be done via a greedy algorithm that
starts out with S0 = ∅, and iteratively adds the next best item:

St = St−1 ∪ at, at ∈ argmaxa∈V F (a | St−1). (2)

The final solution SM is within a factor of (1 − 1
e ) of the optimal solution S∗: F (SM ) ≥ (1 −

1
e )F (S

∗) [27]. The computational bottleneck is that in each iteration, we must find the item with
the largest marginal gain. Clearly, if |V | has exponential size, we cannot touch each item even once.
Instead, we propose “augmentation sub-routines” that exploit the structure of V and maximize the
marginal gain by solving an optimization problem over the base variables.

2 Marginal Gains in Configuration Space
To solve the greedy augmentation step via optimization over y, we transfer the marginal gain from
the world of items to the world of base variables and derive functions on y from F :

F (φ−1(y) | S)︸ ︷︷ ︸
f(y|S)

= R(φ−1(y))︸ ︷︷ ︸
r(y)

+λD(φ−1(y) | S)︸ ︷︷ ︸
d(y|S)

. (3)

Maximizing F (a|S) now means maximizing f(y|S) for y = φ(a). This can be a hard combinatorial
optimization problem in general. However, as we will see, there is a broad class of useful functions
F for which f inherits exploitable structure, and argmaxy f(y|S) can be solved efficiently, exactly
or at least approximately.

Relevance Function. We use a structured relevance function R(a) that is the score of a factor graph
defined over the base variables y. Let G = (V, E) be a graph defined over {y1, y2, . . . , yn}, i.e.
V = [n], E ⊆

(V
2

)
. Let C = {C | C ⊆ V} be a set of cliques in the graph, and let θC : [L]|C| 7→ R

be the log-potential functions (or factors) for these cliques. The quality of an item a = φ−1(y)
is then given by R(a) = r(y) =

∑
C∈C θC(yC). For instance, with only node and edge factors,

this quality becomes r(y) =
∑
p∈V θp(yp)+

∑
(p,q)∈E θpq(yp, yq). In this model, finding the single

highest quality item corresponds to maximum a posteriori (MAP) inference in the factor graph.

Although we refer to terms with probabilistic interpretations such as “MAP”, we treat our relevance
function as output of an energy-based model [25] such as a Structured SVM [32]. For instance,
r(y) =

∑
C∈C θC(yC) = wᵀψ(y) for parameters w and feature vector ψ(y). Moreover, we as-

sume that the relevance function r(y) is nonnegative2. This assumption ensures that F (·) is mono-
tone. If F is non-monotone, algorithms other than the greedy are needed [4, 12]. We leave this
generalization for future work. In most application domains the relevance function is learned from
data and thus our positivity assumption is not restrictive – one can simply learn a positive relevance
function. For instance, in SSVMs, the relevance weights are learnt to maximize the margin between
the correct labeling and all incorrect ones. We show in the supplement that SSVM parameters that
assign nonnegative scores to all labelings achieve exactly the same hinge loss (and thus the same
generalization error) as without the nonnegativity constraint.

2Strictly speaking, this condition is sufficient but not necessary. We only need nonnegative marginal gains.
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(a) Label Groups (b) Hamming Ball Groups

Figure 2: Diversity via groups:
(a) groups defined by the pres-
ence of labels (i.e. #groups
= L); (b) groups defined by
Hamming balls around each
item/labeling (i.e. #groups =
Ln). In each case, diversity is
measured by how many groups
are covered by a new item. See
text for details.

3 Structured Diversity Functions
We next discuss a general recipe for constructing monotone submodular diversity functions D(S),
and for reducing their marginal gains to structured representations over the base variables d(y|S).
Our scheme relies on constructing groups Gi that cover the ground set, i.e. V =

⋃
iGi. These

groups will be defined by task-dependent characteristics – for instance, in image segmentation, G`
can be the set of all segmentations that contain label `. The groups can be overlapping. For instance,
if a segmentation y contains pixels labeled “grass” and “cow”, then y ∈ Ggrass and y ∈ Gcow.

Group Coverage: Count Diversity. Given V and a set of groups {Gi}, we measure the diversity
of a list S in terms of its group coverage, i.e., the number of groups covered jointly by items in S:

D(S) =
∣∣∣{i | Gi ∩ S 6= ∅}∣∣∣, (4)

where we define Gi∩S as the intersection of Gi with the set of unique items in S. It is easy to show
that this function is monotone submodular. If G` is the group of all segmentations that contain label
`, then the diversity measure of a list of segmentations S is the number of object labels that appear
in any a ∈ S. The marginal gain is the number of new groups covered by a:

D(a | S) =
∣∣∣{i | a ∈ Gi and S ∩Gi = ∅

}∣∣∣. (5)

Thus, the greedy algorithm will try to find an item/segmentation that belongs to as many as yet
unused groups as possible.

Group Coverage: General Diversity. More generally, instead of simply counting the number of
groups covered by S, we can use a more refined decay

D(S) =
∑

i
h
(∣∣Gi ∩ S∣∣). (6)

where h is any nonnegative nondecreasing concave scalar function. This is a sum of submodular
functions and hence submodular. Eqn. (4) is a special case of Eqn. (6) with h(y) = min{1, y}.
Other possibilities are

√·, or log(1 + ·). For this general definition of diversity, the marginal gain is

D(a | S) =
∑

i:Gi3a

[
h
(
1 +

∣∣Gi ∩ S∣∣)− h(∣∣Gi ∩ S∣∣)]. (7)

Since h is concave, the gain h
(
1 +

∣∣Gi ∩ S∣∣)− h(∣∣Gi ∩ S∣∣) decreases as S becomes larger. Thus,
the marginal gain of an item a is proportional to how rare each group Gi 3 a is in the list S.

In each step of the greedy algorithm, we maximize r(y) + λd(y|S). We already established a
structured representation of r(y) via a factor graph on y. In the next few subsections, we specify
three example definitions of groups Gi that instantiate three diversity functions D(S). For each
D(S), we show how the marginal gains D(a|S) can be expressed as a specific High-Order Potential
(HOP) d(y|S) in the factor graph over y. These HOPs are known to be efficiently optimizable, and
hence we can solve the augmentation step efficiently. Table 1 summarizes these connections.

Diversity and Parsimony. If the groups Gi are overlapping, some y can belong to many groups
simultaneously. While such a y may offer an immediate large gain in diversity, in many applications
it is more natural to seek a small list of complementary labelings rather than having all labels occur
in the same y. For instance, in image segmentation with groups defined by label presence (Sec. 3.1),
natural scenes are unlikely to contain many labels at the same time. Instead, the labels should
be spread across the selected labelings y ∈ S. Hence, we include a parsimony factor p(y) that
biases towards simpler labelings y. This term is a modular function and does not affect the diversity
functions directly. We next outline some example instantiations of the functions (4) and (6).
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Groups (Gi) Higher Order Potentials
Section 3.1 Labels Label Cost
Supplement Label Transitions Co-operative Cuts
Section 3.2 Hamming Balls Cardinality Potentials

Table 1: Different diversity functions and corresponding HOPs.
3.1 Diversity of Labels
For the first example, letG` be the set of all labelings y containing the label `, i.e. y ∈ G` if and only
if yj = ` for some j ∈ [n]. Such a diversity function arises in multi-class image segmentation – if the
highest scoring segmentation contains “sky” and “grass”, then we would like to add complementary
segmentations that contain an unused class label, say “sheep” or “cow”.

Structured Representation of Marginal Gains. The marginal gain for this diversity function turns
out to be a HOP called label cost [9]. It penalizes each label that occurs in a previous segmentation.
Let lcountS(`) be the number of segmentations in S that contain label `. In the simplest case of
coverage diversity (4), the marginal gain provides a constant reward for every as yet unseen label `:

d(y | S) =
∣∣∣{` | y ∈ G`, S ∩G` = ∅}∣∣∣ = ∑

`∈y,lcountS(`)=0

1. (8)

For the general group coverage diversity (6), the gain becomes

d(y|S) =
∑

`:G`3y

[
h
(
1 +

∣∣G` ∩ S
∣∣)− h

(∣∣G` ∩ S
∣∣)] =∑

`∈y

[
h
(
1 + lcountS(`)

)
− h
(
lcountS(`)

)]
.

Thus, d(y|S) rewards the presence of a label ` in y by an amount proportional to how rare ` is in
the segmentations already chosen in S. The parsimony factor in this setting is p(y) =

∑
`∈y c(`).

In the simplest case, c(`) = −1, i.e. we are charged a constant for every label used in y.

With this type of diversity (and parsimony terms), the greedy augmentation step is equivalent to
performing MAP inference in a factor graph augmented with label reward HOPs: argmaxy r(y) +
λ(d(y | S) + p(y)). Delong et al. [9] show how to perform approximate MAP inference with such
label costs via an extension to the standard α-expansion [3] algorithm.

Label Transitions. Label Diversity can be extended to reward not just the presence of previously
unseen labels, but also the presence of previously unseen label transitions (e.g., a person in front
of a car or a person in front of a house). Formally, we define one group G`,`′ per label pair `, `′,
and y ∈ G`,`′ if it contains two adjacent variables yi, yj with labels yi = `, yj = `′. This diversity
function rewards the presence of a label pair (`, `′) by an amount proportional to how rare this pair
is in the segmentations that are part of S. For such functions, the marginal gain d(y|S) becomes
a HOP called cooperative cuts [16]. The inference algorithm in [19] gives a fully polynomial-time
approximation scheme for any nondecreasing, nonnegative h, and the exact gain maximizer for the
count function h(y) = min{1, y}. Further details may be found in the supplement.

3.2 Diversity via Hamming Balls
The label diversity function simply rewarded the presence of a label `, irrespective of which or how
many variables yi were assigned that label. The next diversity function rewards a large Hamming dis-
tance Ham(y1,y2) =

∑n
i=1[[y

1
i 6= y2i ]] between configurations (where [[·]] is the Iverson bracket.)

Let Bk(y) denote the k-radius Hamming ball centered at y, i.e. B(y) = {y′ | Ham(y′,y) ≤ k}.
The previous section constructed one group per label `. Now, we construct one group Gy for each
configuration y, which is the k-radius Hamming ball centered at y, i.e. Gy = Bk(y).
Structured Representation of Marginal Gains. For this diversity, the marginal gain d(y|S) be-
comes a HOP called cardinality potential [30]. For count group coverage, this becomes

d(y|S) =
∣∣∣{y′ | Gy′ ∩ (S ∪ y) 6= ∅

}∣∣∣− ∣∣∣{y′ | Gy′ ∩ S 6= ∅
}∣∣∣ (9a)

=
∣∣∣ ⋃
y′∈S∪y

Bk(y′)
∣∣∣− ∣∣∣ ⋃

y′∈S
Bk(y′)

∣∣∣ = ∣∣∣Bk(y)∣∣∣− ∣∣∣∣Bk(y) ∩ [ ⋃
y′∈S
Bk(y′)

]∣∣∣∣, (9b)

i.e., the marginal gain of adding y is the number of new configurations y′ covered by the Hamming
ball centered at y. Since the size of the intersection of Bk(y) with a union of Hamming balls does
not have a straightforward structured representation, we maximize a lower bound on d(y|S) instead:

d(y | S) ≥ dlb(y | S) ≡
∣∣Bk(y)∣∣−∑

y′∈S

∣∣Bk(y) ∩ Bk(y′)∣∣ (10)

5



This lower bound dlb(y|S) overcounts the intersection in Eqn. (9b) by summing the intersections
with each Bk(y′) separately. We can also interpret this lower bound as clipping the series arising
from the inclusion-exclusion principle to the first-order terms. Importantly, (10) depends on y only
via its Hamming distance to y′. This is a cardinality potential that depends only on the number of
variables yi assigned to a particular label. Specifically, ignoring constant terms, the lower bound can
be written as a summation of cardinality factors (one for each previous solution y′ ∈ S): dlb(y|S) =∑

y′∈S θy′(y), where θy′(y) = b
|S| − Iy′(y), b is a constant (size of a k-radius Hamming ball), and

Iy′(y) is the number of points in the intersection of k-radius Hamming balls centered at y′ and y.

With this approximation, the greedy step means performing MAP inference in a factor graph aug-
mented with cardinality potentials: argmaxy r(y) + λdlb(y|S). This may be solved via message-
passing, and all outgoing messages from cardinality factors can be computed in O(n log n) time
[30]. While this algorithm does not offer any approximation guarantees, it performs well in prac-
tice. A subtle point to note is that dlb(y|S) is always decreasing w.r.t. |S| but may become negative
due to over-counting. We can fix this by clamping dlb(y|S) to be greater than 0, but in our experi-
ments this was unnecessary – the greedy algorithm never chose a set where dlb(y|S) was negative.

Comparison to DivMBest. The greedy algorithm for Hamming diversity is similar in spirit to the
recent work of Batra et al. [2], who also proposed a greedy algorithm (DivMBest) for finding diverse
MAP solutions in graphical models. They did not provide any justification for greedy, and our
formulation sheds some light on their work. Similar to our approach, at each greedy step, DivMBest
involves maximizing a diversity-augmented score: argmaxy r(y)+λ

∑
y′∈S θy′(y). However, their

diversity function grows linearly with the Hamming distance, θy′(y) = Ham(y′,y) =
∑n
i=1[[y

′
i 6=

yi]]. Linear diversity rewards are not robust, and tend to over-reward diversity. Our formulation uses
a robust diversity function θy′(y) = b

|S| − Iy′(y) that saturates as y moves far away from y′.

In our experiments, we make the saturation behavior smoothly tunable via a parameter γ: Iy′(y) =
e−γ Ham(y′,y). A larger γ corresponds to Hamming balls of smaller radius, and can be set to optimize
performance on validation data. We found this to work better than directly tuning the radius k.

4 Experiments
We apply our greedy maximization algorithms to two image segmentation problems: (1) interactive
binary segmentation (object cutout) (Section 4.1); (2) category-level object segmentation on the
PASCAL VOC 2012 dataset [11] (Section 4.2). We compare all methods by their respective oracle
accuracies, i.e. the accuracy of the most accurate segmentation in the set ofM diverse segmentations
returned by that method. For a small value of M ≈ 5 to 10, a high oracle accuracy indicates that
the algorithm has achieved high recall and has identified a good pool of candidate solutions for
further processing in a cascaded pipeline. In both experiments, the label “background” is typically
expected to appear somewhere in the image, and thus does not play a role in the label cost/transition
diversity functions. Furthermore, in binary segmentation there is only one non-background label.
Thus, we report results with Hamming diversity only (label cost and label transition diversities are
not applicable). For the multi-class segmentation experiments, we report experiments with all three.

Baselines. We compare our proposed methods against DivMBest [2], which greedily produces
diverse segmentation by explicitly adding a linear Hamming distance term to the factor graph. Each
Hamming term is decomposable along the variables yi and simply modifies the node potentials
θ̃(yi) = θ(yi)+λ

∑
y′∈S [[yi 6= y′i]]. DivMBest has been shown to outperform techniques such as M-

Best-MAP [34, 1], which produce high scoring solutions without a focus on diversity, and sampling-
based techniques, which produce diverse solutions without a focus on the relevance term [2]. Hence,
we do not include those methods here. We also report results for combining different diversity
functions via two operators: (⊗), where we generate the top M

k solutions for each of k diversity
functions and then concatenate these lists; and (⊕), where we linearly combine diversity functions
(with coefficients chosen by k-D grid search) and generateM solutions using the combined diversity.
4.1 Interactive segmentation
In interactive foreground-background segmentation, the user provides partial labels via scribbles.
One way to minimize interactions is for the system to provide a set of candidate segmentations for
the user to choose from. We replicate the experimental setup of [2], who curated 100 images from
the PASCAL VOC 2012 dataset, and manually provided scribbles on objects contained in them.
For each image, the relevance model r(y) is a 2-label pairwise CRF, with a node term for each
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Label Cost (LC) Hamming Ball (HB) Label Transition (LT)

MAP M=5 M=15 MAP M=5 M=15 MAP M=5 M=15

min{1, ·} 42.35 45.43 45.58 DivMBest 43.43 51.21 52.90 min{1, ·} 42.35 44.26 44.78√
(·) 42.35 45.72 50.01 HB 43.43 51.71 55.32

√
(·) 42.35 45.43 46.21

log(1 + ·) 42.35 46.28 50.39 log(1 + ·) 42.35 45.92 46.89
⊗ Combined Diversity ⊕ Combined Diversity

M=15 M=16 M=15

HB⊗ LC⊗ LT 56.97 - DivMBest⊕ HB 55.89
DivMBest⊗ HB⊗ LC⊗ LT - 57.39 DivMBest⊕ LC⊕ LT 53.47

Table 2: PASCAL VOC 2012 val oracle accuracies for different diversity functions.

superpixel in the image and an edge term for each adjacent pair of superpixels. At each superpixel,
we extract colour and texture features. We train a Transductive SVM from the partial supervision
provided by the user scribbles. The node potentials are derived from the scores of these TSVMs. The
edge potentials are contrast-sensitive Potts. Fifty of the images were used for tuning the diversity
parameters λ, γ, and the other 50 for reporting oracle accuracies. The 2-label contrast-sensitive Potts
model results in a supermodular relevance function r(y), which can be efficiently maximized via
graph cuts [20]. The Hamming ball diversity dlb(y|S) is a collection of cardinality factors, which
we optimize with the Cyborg implementation [30].

Results. For each of the 50 test images in our dataset we generated the single best y1 and 5 addi-
tional solutions {y2, . . . ,y6} using each method. Table 3 shows the average oracle accuracies for
DivMBest, Hamming ball diversity, and their two combinations. We can see that the combinations
slightly outperform both approaches.

MAP M=2 M=6

DivMBest 91.57 93.16 95.02
Hamming Ball 91.57 93.95 94.86
DivMBest⊗Hamming Ball - - 95.16
DivMBest⊕Hamming Ball - - 95.14

Table 3: Interactive segmentation: oracle pixel accuracies averaged over 50 test images

4.2 Category level Segmentation

In category-level object segmentation, we label each pixel with one of 20 object categories or back-
ground. We construct a multi-label pairwise CRF on superpixels. Our node potentials are outputs of
category-specific regressors trained by [6], and our edge potentials are multi-label Potts. Inference
in the presence of diversity terms is performed with the implementations of Delong et al. [9] for
label costs, Tarlow et al. [30] for Hamming ball diversity, and Boykov et al. [3] for label transitions.

Figure 3: Qualitative Results:
each row shows the original im-
age, ground-truth segmentation
(GT) from PASCAL, the single-
best segmentation y1, and oracle
segmentation from the M = 15
segmentations (excluding y1) for
different definitions of diversity.
Hamming typically performs the
best. In certain situations (row3),
label transitions help since the
single-best segmentation y1 in-
cluded a rare pair of labels (dog-
cat boundary).

Results. We evaluate all methods on the PASCAL VOC 2012 data [11], consisting of train, val
and test partitions with about 1450 images each. We train the regressors of [6] on train, and
report oracle accuracies of different methods on val (we cannot report oracle results on test since
those annotations are not publicly available). Diversity parameters (γ, λ) are chosen by perform-
ing cross-val on val. The standard PASCAL accuracy is the corpus-level intersection-over-union
measure, averaged over all categories. For both label cost and transition, we try 3 different concave
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functions h(·) = min{1, ·},
√
(·) and log(1 + ·). Table 2 shows the results.3 Hamming ball diver-

sity performs the best, followed by DivMBest, and label cost/transitions are worse here. We found
that while worst on average, label transition diversity helps in an interesting scenario – when the
first best segmentation y1 includes a pair of rare or mutually confusing labels (say dog-cat). Fig. 3
shows an example, and more illustrations are provided in the supplement. In these cases, searching
for a different label transition produces a better segmentation. Finally, we note that lists produced
with combined diversity significantly outperform any single method (including DivMBest).

5 Discussion and Conclusion
In this paper, we study greedy algorithms for maximizing scoring functions that promote diverse
sets of combinatorial configurations. This problem arises naturally in domains such as Computer
Vision, Natural Language Processing, or Computational Biology, where we want to search for a set
of diverse high-quality solutions in a structured output space.

The diversity functions we propose are monotone submodular functions by construction. Thus, if
r(y) + p(y) ≥ 0 for all y, then the entire scoring function F is monotone submodular. We showed
that r(y) can simply be learned to be positive. The greedy algorithm for maximizing monotone
submodular functions has proved useful in moderately-sized unstructured spaces. To the best of our
knowledge, this is the first generalization to exponentially large structured output spaces. In par-
ticular, our contribution lies in reducing the greedy augmentation step to inference with structured,
efficiently solvable HOPs. This insight makes new connections between submodular optimization
and work on inference in graphical models. We now address some questions.

Can we sample? One question that may be posed is how random sampling would perform for large
ground sets V . Unfortunately, the expected value of a random sample of M elements can be much
worse than the optimal value F (S∗), especially if N is large. Lemma 1 is proved in the supplement.
Lemma 1. Let S ⊆ V be a sample of size M taken uniformly at random. There exist monotone
submodular functions where E[F (S)] ≤ M

N max|S|=M F (S).

Guarantees? If F is nonnegative, monotone submodular, then using an exact HOP inference algo-
rithm will clearly result in an approximation factor of 1− 1/e. But many HOP inference procedures
are approximate. Lemma 2 formalizes how approximate inference affects the approximation bounds.
Lemma 2. Let F ≥ 0 be monotone submodular. If each step of the greedy algorithm uses an
approximate marginal gain maximizer bt+1 with F (bt+1 | St) ≥ αmaxa∈V F (a | St)− εt+1, then
F (SM ) ≥ (1− 1

eα )max|S|≤M F (S)−∑M
i=1 εt.

Parts of Lemma 2 have been observed in previous work [13, 29]; we show the combination in the
supplement. If F is monotone but not nonnegative, then Lemma 2 can be extended to a relative error
bound F (SM )−Fmin

F (S∗)−Fmin
≥ (1 − 1

eα ) −
∑
i εi

F (S∗)−Fmin
that refers to Fmin = minS F (S) and the optimal

solution S∗. While stating these results, we add that further additive approximation losses occur if
the approximation bound for inference is computed on a shifted or reflected function (positive scores
vs positive energies). We pose theoretical improvements as an open question for future work. That
said, our experiments convincingly show that the algorithms perform very well in practice, even
when there are no guarantees (as with Hamming Ball diversity).

Generalization. In addition to the three specific examples in Section 3, our constructions generalize
to the broad HOP class of upper-envelope potentials [18]. The details are provided in the supplement.
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