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Abstract

We consider online prediction problems where the loss between the prediction and
the outcome is measured by the squared Euclidean distance and its generalization,
the squared Mahalanobis distance. We derive the minimax solutions for the case
where the prediction and action spaces are the simplex (this setup is sometimes
called the Brier game) and the `2 ball (this setup is related to Gaussian density
estimation). We show that in both cases the value of each sub-game is a quadratic
function of a simple statistic of the state, with coefficients that can be efficiently
computed using an explicit recurrence relation. The resulting deterministic mini-
max strategy and randomized maximin strategy are linear functions of the statistic.

1 Introduction

We are interested in general strategies for sequential prediction and decision making (a.k.a. online
learning) that improve their performance with experience. Since the early days of online learning,
people have formalized such learning tasks as regret games. The learner interacts with an adver-
sarial environment with the goal of performing almost as well as the best strategy from some fixed
reference set. In many cases, we have efficient algorithms with an upper bound on the regret that
meets the game-theoretic lower bound (up to a small constant factor). In a few special cases, we
have the exact minimax strategy, meaning that we understand the learning problem at all levels of
detail. In even fewer cases we can also efficiently execute the minimax strategy. These cases serve
as exemplars to guide our thinking about learning algorithms.

In this paper we add two interesting examples to the canon of efficiently computable minimax strate-
gies. Our setup, as described in Figure 1, is as follows. The Learner and the Adversary play vectors
a ∈ A and x ∈ X , upon which the Learner is penalized using the squared Euclidean distance
‖a− x‖2 or its generalization, the squared Mahalanobis distance,

‖a− x‖2W = (a− x)ᵀW−1(a− x),

parametrized by a symmetric matrix W � 0. After a sequence of T such interactions, we compare
the loss of the Learner to the loss of the best fixed prediction a∗ ∈ A. In all our examples, this best
fixed action in hindsight is the mean outcome a∗ = 1

T

∑T
t=1 xt, regardless ofW . We use regret, the

difference between the loss of the learner and the loss of a∗, to evaluate performance. The minimax
regret for the T -round game, also known as the value of the game, is given by

V := inf
a1

sup
x1

· · · inf
aT

sup
xT

T∑
t=1

1

2
‖at − xt‖2W − inf

a

T∑
t=1

1

2
‖a− xt‖2W (1)
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where the at range over actionsA and the xt range over outcomesX . The minimax strategy chooses
the at, given all past outcomes x1, . . . ,xt−1, to achieve this regret. Intuitively, the minimax regret
is the regret if both players play optimally while assuming the other player is doing the same.

Our first example is the Brier game, where the action and outcome spaces are the probability simplex
with K outcomes. The Brier game is traditionally popular in meteorology [Bri50].

Given: T ,W , A, X .
For t = 1, 2, . . . , T

• Learner chooses prediction at ∈ A
• Adversary chooses outcome xt ∈ X
• Learner incurs loss 1

2‖at − xt‖
2
W .

Figure 1: Protocol

Our second example is the ball game, where the
action and outcome spaces are the Euclidean norm
ball, i.e. A = X = {x ∈ RK | ‖x‖2 = 1}. (Even
though we measure loss by the squared Mahalanobis
distance, we play on the standard Euclidean norm
ball.) The ball game is related to Gaussian density
estimation [TW00].

In each case we exhibit a strategy that can play a
T -round game in O(TK2) time. (The algorithm
spends O(TK+K3) time pre-processing the game,
and then plays in O(K2) time per round.)

2 Outline

We define our loss using the squared Mahalanobis distance, parametrized by a symmetric matrix
W � 0. We recover the squared Euclidean distance by choosing W = I . Our games will always
last T rounds. For some observed data x1, . . . ,xn, the value-to-go for the remaining T − n rounds
is given by

V (x1, . . . ,xn) := inf
an+1

sup
xn+1

· · · inf
aT

sup
xT

T∑
t=n+1

1

2
‖at − xt‖2W − inf

a

T∑
t=1

1

2
‖a− xt‖2W .

By definition, the minimax regret (1) is V = V (ε) where ε is the empty sequence, and the value-to-
go satisfies the recurrence

V (x1, . . . ,xn) =

{
− infa

∑T
t=1

1
2‖a− xt‖

2
W if n = T ,

infan+1
supxn+1

1
2‖an+1 − xn+1‖2W + V (x1, . . . ,xn+1) if n < T .

(2)

Our analysis for the two games proceeds in a similar manner. For some past history of plays
(x1, . . . ,xn) of length n, we summarize the state by s =

∑n
t=1 xt and σ2 =

∑n
t=1 x

ᵀ
tW

−1xt. As
we will see, the value-to-go after n of T rounds can be written as V (s, σ2, n); i.e. it only depends
on the past plays through s and σ2. More surprisingly, for each n, the value-to-go V (s, σ2, n) is
a quadratic function of s and a linear function of σ2 (under certain conditions on W ). While it
is straightforward to see that the terminal value V (s, σ2, T ) is quadratic in the state (this is easily
checked by computing the loss of the best expert and using the first case of Equation (2)), it is not at
all obvious that propagating from V (s+x, σ2+xᵀW−1x, n+1) to V (s, σ2, n), using the second
case of (2), preserves this structure.

This compact representation of the value-function is an essential ingredient for a computationally
feasible algorithm. Many minimax approaches, such as normalized maximum likelihood [Sht87],
have computational complexities that scale exponentially with the time horizon. We derive a strategy
that can play in constant amortized time.

Why is this interesting? We go beyond previous work in a few directions. First, we exhibit two new
games that belong to the tiny class admitting computationally feasible minimax algorithms. Second,
we consider the setting with squared Mahalanobis loss which allows the user intricate control over
the penalization of different prediction errors. Our results clearly show how the learner should
exploit this prioritization.

2.1 Related work

Repeated games with minimax strategies are frequently studied ([CBL06]) and, in online learning,
minimax analysis has been applied to a variety of losses and repeated games; however, computa-
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tionally feasible algorithms are the exception, not the rule. For example, consider log loss, first
discussed in [Sht87]. Whiile the minimax algorithm, Normalized Maximum Likelihood, is well
known [CBL06], it generally requires computation that is exponential in the time horizon as one
needs to aggregate over all data sequences. To our knowledge, there are two exceptions where
efficient NML forecasters are possible: the multinomial case where fast Fourier transforms may
be exploited [KM05], and very particular exponential families that cause NML to be a Bayesian
strategy [HB12], [BGH+13]. The minimax optimal strategy is known also for: (i) the ball game
with W = I [TW00] (our generalization to Mahalanobis W 6= I results in fundamentally differ-
ent strategies), (ii) the ball game with W = I and a constraint on the player’s deviation from the
current empirical minimizer [ABRT08] (for which the optimal strategy is Follow-the-Leader), (iii)
Lipschitz-bounded convex loss functions [ABRT08], (iv) experts with an L∗ bound [AWY08], and
(v) static experts with absolute loss [CBS11]. While not guaranteed to be an exhaustive list, the
previous paragraph demonstrates the rarity of tractable minimax algorithms.

3 The Offline Problem

The regret is defined as the difference between the loss of the algorithm and the loss of the best
action in hindsight. Here we calculate that action and its loss.
Lemma 3.1. Suppose A ⊇ conv(X ) (this will always hold in the settings we study). For data
x1, . . . ,xT ∈ X , the loss of the best action in hindsight equals

inf
a∈A

T∑
t=1

1

2
‖a− xt‖2W =

1

2

(
T∑
t=1

xᵀ
tW

−1xt −
1

T

(
T∑
t=1

xt

)ᵀ

W−1

(
T∑
t=1

xt

))
, (3)

and the minimizer is the mean outcome a∗ = 1
T

∑T
t=1 xt.

Proof. The unconstrained minimizer and value are obtained by equating the derivative to zero and
plugging in the solution. The assumption A ⊇ conv(X ) ensures that the constraint a ∈ A is
inactive.

The best action in hindsight is curiously independent of W , A and X . This also shows that the
follow the leader strategy that plays at = 1

t−1
∑t−1
s=1 xs is independent ofW and A as well. As we

shall see, the minimax strategy does not have this property.

4 Simplex (Brier) Game

In this section we analyze the Brier game. The action and outcome spaces are the probability simplex
on K outcomes; A = X = 4 := {x ∈ RK+ | 1ᵀx = 1}. The loss is given by half the squared
Mahalanobis distance, 1

2‖a − x‖
2
W . We present a full minimax analysis of the T -round game: we

calculate the game value, derive the maximin and minimax strategies, and discuss their efficient
implementation.

The structure of this section is as follows. In Lemmas 4.1 and 4.2, the conclusions (value and
optimizers) are obtained under the proviso that the given optimizer lies in the simplex. In our main
result, Theorem 4.3, we apply these auxiliary results to our minimax analysis and argue that the
maximizer indeed lies in the simplex. We immediately work from a general symmetricW � 0 with
the following lemma.
Lemma 4.1. Fix a symmetric matrix C � 0 and vector d. The optimization problem

max
p∈4
−1

2
pᵀC−1p+ dᵀp

has value 1
2

(
dᵀCd− (1ᵀCd−1)2

1ᵀC1

)
= 1

2

(
dᵀ
(
C − C11ᵀC

1ᵀC1

)
d+ 21ᵀCd−1

1ᵀC1

)
attained at optimizer

p∗ = C

(
d− 1ᵀCd− 1

1ᵀC1
1

)
=

(
C − C11ᵀC

1ᵀC1

)
d+

C1

1ᵀC1

provided that p∗ is in the simplex.
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Proof. We solve for the optimal p∗. Introducing Lagrange multiplier λ for the constraint
∑
k pk =

1, we need to have p = C (d− λ1) which results in λ = 1ᵀCd−1
1ᵀC1. Thus, the maximizer equals

p∗ = C
(
d− 1ᵀCd−1

1ᵀC1 1
)

which produces objective value 1
2

(
d+ 1ᵀCd−1

1ᵀC1 1
)ᵀ
C
(
d− 1ᵀCd−1

1ᵀC1 1
)
.

The statement follows from simplification.

This lemma allows us to compute the value and saddle point whenever the future payoff is quadratic.

Lemma 4.2. Fix symmetric matricesW � 0 andA such thatW−1 +A � 0, and a vector b. The
optimization problem

min
a∈4

max
x∈4

1

2
‖a− x‖2W +

1

2
xᵀAx+ bᵀx

achieves its value

1

2
cᵀWc− 1

2

(1ᵀWc− 1)2

1ᵀW1
where c =

1

2
diag

(
W−1 +A

)
+ b

at saddle point (the maximin strategy randomizes, playing x = ei with probability p∗i )

a∗ = p∗ =

(
W − W11ᵀW

1ᵀW1

)
c+

W1

1ᵀW1

provided p∗ � 0.

Proof. The objective is convex in x for each a as W−1 +A � 0, so it is maximized at a corner
x = ek. We apply min-max swap (see e.g. [Sio58]), properness of the loss (which implies that
a∗ = p∗) and expand:

min
a∈4

max
x∈4

1

2
‖a− x‖2W +

1

2
xᵀAx+ bᵀx

= min
a∈4

max
k

1

2
‖a− ek‖2W +

1

2
eᵀkAek + b

ᵀek

= max
p∈4

min
a∈4

E
k∼p

[
1

2
‖a− ek‖2W +

1

2
eᵀkAek + b

ᵀek

]
= max

p∈4
E
k∼p

[
1

2
‖p− ek‖2W +

1

2
eᵀkAek + b

ᵀek

]
= max

p∈4
−1

2
pᵀW−1p+

1

2
diag

(
W−1 +A

)ᵀ
p+ bᵀp

The proof is completed by applying Lemma 4.1.

4.1 Minimax Analysis of the Brier Game

Next, we turn to computing V (s, σ2, n) as a recursion and specifying the minimax and maximin
strategies. However, for the value-to-go function to retain its quadratic form, we need an alignment
condition onW . We say thatW is aligned with the simplex if(

W − W11ᵀW

1ᵀW1

)
diag(W−1) � − 2

W1

1ᵀW1
, (4)

where � denotes an entry-wise inequality between vectors. Note that many matrices besides I
satisfy this condition: for example, all symmetric 2 × 2 matrices. We can now fully specify the
value and strategies for the Brier game.

Theorem 4.3. Consider the T -round Brier game with Mahalanobis loss 1
2‖a − x‖

2
W with W

satisfying the alignment condition (4). After n outcomes (x1, . . . ,xn) with statistics s =
∑n
t=1 xt

and σ2 =
∑n
t=1 x

ᵀ
tW

−1xt the value-to-go is

V (s, σ2, n) =
1

2
αns

ᵀW−1s− 1

2
σ2 +

1

2
(1− nαn) diag(W−1)ᵀs+ γn,
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and the minimax and maximin strategies are given by

a∗(s, σ2, n) = p∗(s, σ2, n) =
W1

1ᵀW1
+ αn+1

(
s− nW1

1ᵀW1

)
+

1

2
(1− nαn+1)

(
W − W11ᵀW

1ᵀW1

)
diag(W−1)

where the coefficients are defined recursively by

αT =
1

T
γT = 0

αn = α2
n+1 + αn+1

γn =
(1− nαn+1)

2

2

(
1

4
diag(W−1)ᵀW diag(W−1)−

(
1
21

ᵀW diag(W−1)− 1
)2

1ᵀW1

)
+ γn+1.

Proof. We prove this by induction, beginning at the end of the game and working backwards in
time. Assume that V (s, σ2, T ) has the given form. Recall that the value at the end of the game is
V (s, σ2, T ) = − infa

∑T
t=1

1
2‖a − xt‖

2
W and is given by Lemma 3.1. Matching coefficients, we

find V (s, σ2, T ) corresponds to αT = 1
T and γT = 0.

Now assume that V has the assumed form after n rounds. Using s and σ2 to denote the state after
n− 1 rounds, we can write

V (s, σ2, n− 1) = min
a∈4

max
x∈4

1

2
‖a− x‖2W +

1

2
αn(s+ x)

ᵀW−1(s+ x)

− 1

2
(σ2 + xᵀW−1x) +

1

2
(1− nαn) diag(W−1)ᵀ(s+ x) + γn.

Using Lemma 4.2 to evaluate the right hand side produces a quadratic function in the state, and we
can then match terms to find αn−1 and γn−1 and the minimax and maximin strategy. The final step
is checking the p∗ � 0 condition necessary to apply Lemma 4.2, which is equivalent to W being
aligned with the simplex. See the appendix for a complete proof.

This full characterization of the game allows us to derive the following minimax regret bound.
Theorem 4.4. LetW satisfy the alignment condition (4). The minimax regret of the T -round simplex
game satisfies

V ≤ 1 + ln(T )

2

(
1

4
diag(W−1)ᵀW diag(W−1)−

(
1
21

ᵀW diag(W−1)− 1
)2

1ᵀW1

)
.

Proof. The regret is equal to the value of the game, V = V (0, 0, 0) = γ0. First observe that

(1− nαn+1)
2 = 1− 2nαn+1 + n2α2

n+1

= 1− 2nαn+1 + n2(αn − αn+1)

= αn+1 + 1− (n+ 1)2αn+1 + n2αn.

After summing over n the last two terms telescope, and we find

γ0 ∝
T−1∑
n=0

(1− nαn+1)
2 = − T 2αT +

T−1∑
n=0

(1 + αn+1) =

T∑
n=1

αn.

Each αn can be bounded by 1/n, as observed in [TW00, proof of Lemma 2]. In the base case n = T
this holds with equality, and for n < T we have

αn = α2
n+1 + αn+1 ≤

1

(n+ 1)2
+

1

n+ 1
=

1

n

n(n+ 2)

(n+ 1)2
≤ 1

n
.

It follows that γ0 ∝
∑T
n=1 αn ≤

∑T
n=1

1
n ≤ 1 + ln(T ) as desired.
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5 Norm Ball Game

This section parallels the previous. Here, we consider the online game with Mahalanobis loss and
A = X = © := {x ∈ RK | ‖x‖ ≤ 1}, the 2-norm Euclidian ball (not the Mahalanobis ball). We
show that the value-to-go function is always quadratic in s and linear in σ2 and derive the minimax
and maximin strategies.
Lemma 5.1. Fix a symmetric matrix A and vector b and assume A+W−1 � 0. Let λmax be the
largest eigenvalue ofW−1+A and vmax the corresponding eigenvector. If bᵀ (λmaxI −A)

−2
b ≤

1, then the optimization problem

inf
a∈©

sup
x∈©

1

2
‖a− x‖2W +

1

2
xᵀAx+ xᵀb

has value 1
2b

ᵀ (λmaxI −A)
−1
b + 1

2λmax, minimax strategy a∗ = (λmaxI − A)−1b and a ran-
domized maximin strategy that plays two unit length vectors, with

Pr

(
x = a⊥ ±

√
1− aᵀ

⊥a⊥vmax

)
=

1

2
± 1

2

√
aᵀ
‖a‖

1− aᵀ
⊥a⊥

,

where a⊥ and a‖ are the components of a∗ perpendicular and parallel to vmax.

Proof. As the objective is convex, the inner optimum must be on the boundary and hence will be at
a unit vector x. Introduce a Lagrange multiplier λ for xᵀx ≤ 1 to get the Lagrangian

inf
a∈©

inf
λ≥0

sup
x

1

2
‖a− x‖2W +

1

2
xᵀAx+ xᵀb+ λ

1

2
(1− xᵀx).

This is concave in x ifW−1 +A− λI � 0, that is, λmax ≤ λ. Differentiating yields the optimizer
x∗ = (W−1 +A− λI)−1(W−1a− b), which leaves us with an optimization in only a and λ:

inf
a∈©

inf
λ≥λmax

1

2
aᵀW−1a− 1

2
(W−1a− b)ᵀ(W−1 +A− λI)−1(W−1a− b) + 1

2
λ.

Since the infimums are over closed sets, we can exchange their order. Unconstrained optimization
of a results in a∗ = (λI −A)

−1
b. Evaluating the objective at a∗ and using W−1a∗ − b =

W−1 (λI −A)
−1
b− b =

(
W−1 +A− λI

)
(λI −A)

−1
b results in

inf
λ≥λmax

1

2
bᵀ (λI −A)

−1
b+

1

2
λ = inf

λ≥λmax

1

2

(∑
i

(uᵀ
i b)

2

λ− λi
+ λ

)
,

using the spectral decomposition A =
∑
i λiuiu

ᵀ
i . For λ ≥ λmax, we have λ ≥ λi. Taking

derivatives, provided bᵀ (λmaxI −A)
−2
b ≤ 1, this function is increasing in λ ≥ λmax, and so

obtains its infimum at λmax. Thus, when the assumed inequality is satisfied, the a∗ is minimax for
the given x∗.

To obtain the maximin strategy, we can take the usual convexification where the Adversary plays
distributions P over the unit sphere. This allows us to swap the infimum and supremum (see e.g.
Sion’s minimax theorem[Sio58]) and obtain an equivalent optimization problem. We then see that
the objective only depends on the meanµ = Ex and second momentD = Exxᵀ of the distribution
P . The characterization in [KNW13, Theorem 2.1] tells us that µ,D are the first two moments of a
distribution on units iff tr(D) = 1 andD � µµᵀ. Then, our usual min-max swap yields

V = sup
P

inf
a∈©

E
x∼P

[
1

2
aᵀW−1a− aᵀW−1x+

1

2
xᵀW−1x+

1

2
xᵀAx+ bᵀx

]
= sup
µ,D

inf
a∈©

1

2
aᵀW−1a− aᵀW−1µ+

1

2
tr
(
(W−1 +A)D

)
+ bᵀµ

= sup
µ,D
−1

2
µᵀW−1µ+

1

2
tr
(
(W−1 +A)D

)
+ bᵀµ

= −1

2
a∗ᵀW−1a∗ + bᵀa∗ + sup

D�a∗a∗ᵀ

tr(D)=1

1

2
tr
(
(W−1 +A)D

)
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vmax

µ

Figure 2: Illustration of the maximin distribution from Lemma 5.1. The mixture of red unit vectors
with mean µ has second momentD = µµᵀ + (1− µᵀµ)vmaxv

ᵀ
max.

where the second equality uses a = µ and the third used the saddle point condition µ∗ = a∗. The
matrix D with constraint tr(D) = 1 now seeks to align with the largest eigenvector of W−1 +A
but it also has to respect the constraint D � a∗a∗ᵀ. We now re-parameterise by C = D − a∗a∗ᵀ.
We then need to find

sup
C�0

tr(C)=1−a∗ᵀa∗

1

2
tr
(
(W−1 +A)C

)
.

By linearity of the objective the maximizer is of rank 1, and hence this is a (scaled) maximum
eigenvalue problem, with solution given by C∗ = (1 − a∗ᵀa∗)vmaxv

ᵀ
max, so that D∗ = a∗a∗ᵀ +

(1 − a∗ᵀa∗)vmaxv
ᵀ
max. This essentially reduces finding P to a 2-dimensional problem, which can

be solved in closed form [KNW13, Lemma 4.1]. It is easy to verify that the mixture in the theorem
has the desired mean a∗ and second momentD∗. See Figure 2 for the geometrical intuition.

Notice that both the minimax and maximin strategies only depend onW through λmax and vmax.

5.1 Minimax Analysis of the Ball Game

With the above lemma, we can compute the value and strategies for the ball game in an analogous
way to Theorem 4.3. Again, we find that the value function at the end of the game is quadratic in
the state, and, surprisingly, remains quadratic under the backwards induction.

Theorem 5.2. Consider the T -round ball game with loss 1
2‖a − x‖

2
W . After n rounds, the value-

to-go for a state with statistics s =
∑n
t=1 xt and σ2 =

∑n
t=1 x

ᵀ
tW

−1xt is

V (s, σ2, n) =
1

2
sᵀAns−

1

2
σ2 + γn.

The minimax strategy plays

a∗(s, σ2, n) =
(
λmaxI − (An+1 −W−1)

)−1
An+1s

and the maximin strategy plays two unit length vectors with

Pr

(
x = a⊥ ±

√
1− aᵀ

⊥a⊥vmax

)
=

1

2
± 1

2

√
aᵀ
‖a‖

1− aᵀ
⊥a⊥

,

where λmax and vmax correspond to the largest eigenvalue of An+1 and a⊥ and a‖ are the com-
ponents of a∗ perpendicular and parallel to vmax. The coefficients An and γn are determined
recursively by base caseAT = 1

TW
−1 and γT = 0 and recursion

An = An+1

(
W−1 + λmaxI −An+1

)−1
An+1 +An+1

γn =
1

2
λmax + γn+1.
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Proof outline. The proof is by induction on the number n of rounds played. In the base case n = T
we find (see (3))AT = 1

TW
−1 and γT = 0. For the the induction step, we need to calculate

V (s, σ2, n) = inf
a∈©

sup
x∈©

1

2
‖a− x‖2W + V (s+ x, σ2 + xᵀW−1x, n+ 1).

Using the induction hypothesis, we expand the right-hand-side to

inf
a∈©

sup
x∈©

1

2
‖a− x‖2W +

1

2
(s+ x)ᵀAn+1(s+ x)−

1

2
(σ2 + xᵀW−1x) + γn+1.

which we can evaluate by applying Lemma 5.1 with A = An+1 − W−1 and b = sᵀAn+1.
Collecting terms and matching with V (s, σ2, n) = 1

2s
ᵀAns − 1

2σ
2 + γn yields the recursion for

An and γn as well as the given minimax and maximin strategies. As before, much of the algebra
has been moved to the appendix.

Understanding the eigenvalues of An As we have seen from the An recursion, the eigensystem
is always the same as that of W−1. Thus, we can characterize the minimax strategy completely by
its effect on the eigenvalues of W−1. Denote the eigenvalues of An and W−1 to be λin and νi,
respectively, with λ1n−1 corresponding to the largest eigenvalue. The eigenvalues follow:

λin−1 =
(λin)

2

νi + λ1n − λin
+ λi =

λin(νi + λ1n)

νi + λ1n − λin
,

which leaves the order of λin unchanged. The largest eigenvalue λ1n satisfies the recurrence λ1T /ν1 =

1/T and λ1n/ν1 =
(
λ1n+1/ν1

)2
+ λ1n+1/ν1, which, remarkably, is the same recurrence for the αn

parameter in the Brier game, i.e. λmax
n = αnνmax.

This observation is the key to analyzing the minimax regret.
Theorem 5.3. The minimax regret of the T -round ball game satisfies

V ≤ 1 + ln(T )

2
λmax(W

−1).

Proof. We have V = V (0, 0, 0) = γ0 =
∑T
n=1 λ

max
n = λmax(W

−1)
∑T
n=1 αn, the last equality

following from the discussion above. The proof of Theorem 4.4 gives the bound on
∑T
n=1 αn.

Taking stock, we find that the minimax regrets of the Brier game (Theorems 4.3) and ball game
(Theorems 5.2) have identical dependence on the horizon T but differ in a complexity factor arising
from the interaction of the action space and the loss matrixW .

6 Conclusion

In this paper, we have presented two games that, unexpectedly, have computationally efficient min-
imax strategies. While the structure of the square Mahalanobis distance is important, it is the in-
terplay between the loss and the constraint set that allows efficient calculation of the backwards
induction, value-to-go, and achieving strategies. For example, the square Mahalanobis game with
`1 ball action spaces does not admit a quadratic value-to-go unlessW = I .

We emphasize the low computational cost of this method despite the exponential blow-up in state
space size. In the Brier game, the αn coefficients need to be precomputed, which can be done in
O(T ) time. Similarly, computation of the eigenvalues of theAn coefficients for the ball game can be
done in O(TK +K3) time. Then, at each iteration of the algorithm, only matrix-vector multiplica-
tions between the current state and the precomputed parameters are required. Hence, playing either
T round game requires O(TK2) time. Unfortunately, as is the case with most minimax algorithms,
the time horizon must be known in advance.

There are many different future directions. We are currently pursuing a characterization of action
spaces that permit quadratic value functions under squared Mahalanobis loss, and investigating con-
nections between losses and families of value functions closed under backwards induction. There
is some notion of conjugacy between losses, value-to-go functions, and action spaces, but a gen-
eralization seems difficult: the Brier game and ball game worked out for seemingly very different
reasons.
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[CBS11] Nicolò Cesa-Bianchi and Ohad Shamir. Efficient online learning via randomized round-
ing. In J. Shawe-Taylor, R.S. Zemel, P. Bartlett, F.C.N. Pereira, and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems 24, pages 343–351, 2011.

[HB12] Fares Hedayati and Peter L. Bartlett. Exchangeability characterizes optimality of se-
quential normalized maximum likelihood and bayesian prediction with jeffreys prior.
In International Conference on Artificial Intelligence and Statistics, pages 504–510,
2012.
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