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Abstract

We propose a class of closed-form estimators for sparsity-structured graphical
models, expressed as exponential family distributions, under high-dimensional
settings. Our approach builds on observing the precise manner in which the classi-
cal graphical model MLE “breaks down” under high-dimensional settings. Our es-
timator uses a carefully constructed, well-defined and closed-form backward map,
and then performs thresholding operations to ensure the desired sparsity structure.
We provide a rigorous statistical analysis that shows that surprisingly our simple
class of estimators recovers the same asymptotic convergence rates as those of the
`
1

-regularized MLEs that are much more difficult to compute. We corroborate
this statistical performance, as well as significant computational advantages via
simulations of both discrete and Gaussian graphical models.

1 Introduction

Undirected graphical models, also known as Markov random fields (MRFs), are a powerful class
of statistical models, that represent distributions over a large number of variables using graphs, and
where the structure of the graph encodes Markov conditional independence assumptions among the
variables. MRFs are widely used in a variety of domains, including natural language processing [1],
image processing [2, 3, 4], statistical physics [5], and spatial statistics [6]. Popular instances of
this class of models include Gaussian graphical models (GMRFs) [7, 8, 9, 10], used for modeling
continuous real-valued data, and discrete graphical models including the Ising model where each
variable takes values in a discrete set [10, 11, 12]. In this paper, we consider the problem of high-
dimensional estimation, where the number of variables p may exceed the number of observations n.
In such high-dimensional settings, it is still possible to perform consistent estimation by leveraging
low-dimensional structure. Sparse and group-sparse structural constraints, where few parameters (or
parameter groups) are non-zero, are particularly pertinent in the context of MRFs as they translate
into graphs with few edges.

A key class of estimators for learning graphical models has thus been based on maximum likelihood
estimators (MLE) with sparsity-encouraging regularization. For the task of sparse GMRF estima-
tion, the state-of-the-art estimator minimizes the Gaussian negative log-likelihood regularized by the
`
1

norm of the entries (or the off-diagonal entries) of the concentration matrix (see [8, 9, 10]). Strong
statistical guarantees for this estimator have been established (see [13] and references therein). The
resulting optimization problem is a log-determinant program, which can be solved in polynomial
time with interior point methods [14], or by co-ordinate descent algorithms [9, 10]. In a compu-
tationally simpler approach for sparse GMRFs, [7] proposed the use of neighborhood selection,
which consists of estimating conditional independence relationships separately for each node in the
graph, via `

1

-regularized linear regression, or LASSO [15]. They showed that the procedure can
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consistently recover the sparse GMRF structure even under high-dimensional settings. The neigh-
borhood selection approach has also been successfully applied to discrete Markov random fields.
In particular, for binary graphical models, [11] showed that consistent neighborhood selection can
be performed via `

1

-regularized logistic regression. These results were generalized to general dis-
crete graphical models (where each variable can take m � 2 values) by [12] through node-wise
multi-class logistic regression with group sparsity. A related regularized convex program to solve
for sparse GMRFs is the CLIME estimator [16], which reduces the estimation problem to solving
linear programs. Overall, while state of the art optimization methods have been developed to solve
all of these regularized (and consequently non-smooth) convex programs, their iterative approach is
very expensive for large scale problems. Indeed, scaling such regularized convex programs to very
large scale settings has attracted considerable recent research and attention.

In this paper, we investigate the following leading question: “Can one devise simple estimators

with closed-form solutions that are yet consistent and achieve the sharp convergence rates of the

aforementioned regularized convex programs?” This question was originally considered in the
context of linear regression by [17] and to which they had given a positive answer. It is thus natural
to wonder whether an affirmative response can be provided for the more complicated statistical
modeling setting of MRFs as well.

Our key idea is to revisit the vanilla MLE for estimating a graphical model, and consider where it
“breaks down” in the case of high-dimensions. The vanilla graphical model MLE can be expressed
as a backward mapping [18] in an exponential family distribution that computes the model param-
eters corresponding to some given (sample) moments. There are however two caveats with this
backward mapping: it is not available in closed form for many classes of models, and even if it were
available in closed form, it need not be well-defined in high-dimensional settings (i.e. could lead to
unbounded model parameter estimates). Accordingly, we consider the use of carefully constructed
proxy backward maps that are both available in closed-form, and well-defined in high-dimensional
settings. We then perform simple thresholding operations on these proxy backward maps to obtain
our final estimators. Our class of algorithms is thus both computationally practical and highly scal-
able. We provide a unified statistical analysis of our class of algorithms for graphical models arising
from general exponential families. We then instantiate our analysis for the specific cases of GMRFs
and DMRFs, and show that the resulting algorithms come with strong statistical guarantees achiev-
ing near-optimal convergence rates, but doing so computationally much faster than the regularized
convex programs. These surprising results are confirmed via simulation for both GMRFs and DM-
RFs. There has been considerable recent interest in large-scale statistical model estimation, and in
particular, in scaling these to very large-scale settings. We believe our much simpler class of closed-

form graphical model estimators have the potential to be estimators of choice in such large-scale
settings, particularly if it attracts research on optimizing and scaling its closed-form operations.

2 Background and Problem Setup

Since most popular graphical model families can be expressed as exponential families (see [18]), we
consider general exponential family distributions for a random variable X 2 Rp:

P(X; ✓) = exp

n

h✓,�(X)i �A(✓)
o

(1)

where ✓ 2 ⌦ ✓ Rd is the canonical parameter to be estimated, �(X) denotes the sufficient statistics
with feature function � : Rp 7! Rd, and A(✓) is the log-partition function.

An alternative parameterization of the exponential family, to the canonical parameterization above,
is via the vector of “mean parameters” µ(✓)

def
= E

✓

[�(X)], which are the moments of the sufficient
statistics �(X) under the exponential family distribution. We denote the set of all possible moments
by the moment polytope: M = {µ : 9 distribution p s.t. E

p

(�) = µ}, which consist of moments
of the sufficient statistics under all possible distributions. The problem of computing the mean
parameters µ(✓) 2 M given the canonical parameters ✓ 2 ⌦ constitutes the key machine learning
problem of inference in graphical models (expressed in exponential family form (1)). Let us denote
this computation via a so-called forward mapping A : ⌦ 7! M. By properties of exponential family
distributions, the forward mapping A can actually be expressed in terms of the first derivative of
the log-partition function A(·): A : ✓ 7! µ = rA(✓). It can be shown that this map is injective
(one-to-one with its range) if the exponential family is minimal. Moreover, it is onto the interior of
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M, denoted by Mo. Thus, for any mean parameter µ 2 Mo, there exists a canonical parameter
✓(µ) 2 ⌦ such that E

✓(µ)

[�(X)] = µ. Unless the exponential family is minimal, the corresponding
canonical parameter ✓(µ) however need not be unique. Thus while there will always exist a so-called
backward mapping A⇤

: Mo 7! ⌦, that computes the canonical parameters corresponding to given
moments, it need not be unique. A candidate backward map can be constructed via the conjugate of
the log-partition function A⇤

(µ) = sup

✓2⇥

h✓, µi �A(✓): A⇤
: µ 7! ✓ = rA⇤

(µ).

2.1 High-dimensional Graphical Model Selection

We focus on the high-dimensional setting, where the number of variables p may greatly exceed
the sample size n. Under such high-dimensional settings, it is now well understood that consistent
estimation is possible if structural constraints are imposed on the model parameters ✓. In this paper,
we focus on the structural constraint of sparsity, for which the `

1

norm is known to be well-suited.

Given n samples {X(i)}n
i=1

from P(X; ✓⇤) that belongs to an exponential family (1), a popular
class of M -estimators for recovering the sparse model parameter ✓⇤ is the `

1

-regularized maximum
likelihood estimators:

minimize

✓

h ✓, b� i �A(✓) + �
n

k✓k
1

(2)

where b� :=

1

n

P

n

i=1

�(X(i)

) is the empirical mean of the sufficient statistics. Since the log partition
function A(✓) in (1) is convex, the problem (2) is convex as well.

We now briefly review the two most popular examples of exponential families in the context of
graphical models.
Gaussian Graphical Models. Consider a random vector X = (X

1

, . . . , X
p

) with associated p-
variate Gaussian distribution N (X|µ,⌃), mean vector µ and covariance matrix ⌃. The probability
density function of X can be formulated as an instance of (1):

P(X|✓,⇥) = exp

⇣

� 1

2

hh⇥, XX>ii+ h✓, Xi �A(⇥, ✓)
⌘

(3)

where hhA,Bii denotes the trace inner product tr(ABT

). Here, the canonical parameters are the
precision matrix ⇥ and a vector ✓, with domain ⌦ := {(✓,⇥) 2 Rp⇥Rp⇥p

: ⇥ � 0,⇥ = ⇥

T }. The
corresponding moment parameters of the graphical model distribution are given by the mean µ =

E
✓

[X], and the covariance matrix ⌃ = E
✓

[XXT

] of the Gaussian. The forward map A : (✓,⇥) 7!
(µ,⌃) computing these from the canonical parameters can be written as: ⌃ = ⇥

�1 and µ = ⇥

�1✓.
The moment polytope can be seen to be given by M = {(µ,⌃) 2 Rp ⇥Rp⇥p

: ⌃� µµT ⌫ 0,⌃ ⌫
0}, with interior Mo

= {(µ,⌃) 2 Rp⇥Rp⇥p

: ⌃�µµT � 0,⌃ � 0}. The corresponding backward
map A⇤

: (µ,⌃) 7! (✓,⇥) for (µ,⌃) 2 Mo can be computed as: ⇥ = ⌃

�1 and ✓ = ⌃

�1µ.

Without loss of generality, assume that µ = 0 (and hence ✓ = 0). Then the set of non-zero entries
in the precision matrix ⇥ corresponds to the set of edges in an associated Gaussian Markov random
field (GMRF). In cases where the graph underlying the GMRF has relatively few edges, it thus
makes sense to impose `

1

regularization on the off-diagonal entries of ⇥. Given n i.i.d. random
vectors X(i) 2 Rp sampled from N(0,⌃⇤

), the corresponding `
1

-regularized maximum likelihood
estimator (MLE) is given by:

minimize

⇥�0

hh⇥, Sii � log det⇥+ �
n

k⇥k
1,off , (4)

where S is the sample covariance matrix defined as
P

n

i=1

�

X(i) � X
��

X(i) � X
�>, X :=

1

n

P

n

i=1

X(i), and k · k
1,off is the off-diagonal element-wise `

1

norm.

Discrete Graphical Models. Let X = (X
1

, . . . , X
p

) be a random vector where each variable X
i

takes values in a discrete set X of cardinality m. Given a graph G = (V,E), a pairwise Markov
random field over X is specified via nodewise functions ✓

s

: X 7! R for all s 2 V , and pairwise
functions ✓

st

: X ⇥ X 7! R for all (s, t) 2 E, as
P(X) = exp

n

P

s2V

✓
s

(X
s

) +

P

(s,t)2E

✓
st

(X
s

, X
t

)�A(✓)
o

. (5)

This family of probability distributions can be represented using the so-called overcomplete rep-

resentations [18] as follows. For each random variable X
s

and j 2 {1, . . . ,m}, define nodewise
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indicators I[X
s

= j] equal to 1 if X
s

= j and 0 otherwise. Then pairwise MRFs in (5) can be
rewritten as

P(X) = exp

⇢

X

s2V ;j2[m]

✓
s;j

I[X
s

= j] +
X

(s,t)2E;j,k2[m]

✓
st;jk

I[X
s

= j, X
t

= k]�A(✓)

�

(6)

for a set of parameters ✓ := {✓
s;j

, ✓
st;jk

: s, t 2 V ; (s, t) 2 E; j, k 2 [m]}. Given these sufficient
statistics, the mean/moment parameters are given by the moments µ

s;j

:= E
✓

�

I[X
s

= j]
�

=

P(X
s

= j; ✓), and µ
st;jk

:= E
✓

�

I[X
s

= j,X
t

= k]
�

= P(X
s

= j,X
t

= k; ✓), which precisely
correspond to nodewise and pairwise marginals of the discrete graphical model. Thus, the forward
mapping A : ✓ 7! µ would correspond to the inference task of computing nodewise and pairwise
marginals of the discrete graphical model given the canonical parameters. A backward mapping
A⇤

: µ 7! ✓ corresponds to computing a set of canonical parameters such that the corresponding
graphical model distribution would yield the given set of nodewise and pairwise marginals. The
moment polytope in this case consists of the set of all nodewise and pairwise marginals of any
distribution over the random vector X , and hence is termed the marginal polytope; it is typically
intractable to characterize in high-dimensions [18].

Given n i.i.d. samples from an unknown distribution (6) with parameter ✓⇤, one could consider
estimating the graphical model structure with an `

1

-regularized MLE: b✓ 2 minimize

✓

�h✓, b�i +
A(✓) + �k✓k

1,E

, where k · k
1,E

is the `
1

norm of the edge-parameters: k✓k
1,E

=

P

s 6=t

k✓
st

k,
and where we have collated the edgewise parameters {✓

st;jk

}m
j,k=1

for an edge (s, t) 2 E into the
vector ✓

st

. However, there is an critical caveat to actually computing this regularized MLE: the
computation of the log-partition function A(✓) is intractable (see [18] for details). To overcome this
issue, one might consider instead the following class of M -estimators, discussed in [19]:

b✓ 2 minimize

✓

�h✓, b�i+B(✓) + �k✓k
1,E

. (7)

Here B(✓) is a variational approximation to the log-partition function A(✓) of the form: B(✓) =

sup

µ2Lh✓, µi � B⇤
(µ), where L is a tractable bound on the marginal polytope M, and B⇤

(µ) is a
tractable approximation to the graphical model entropy A⇤

(µ). An example of such approximation,
which we shall later leverage in this paper, is the tree-reweighted entropy [20] given by B⇤

trw(µ) =
P

s

H
s

(µ
s

) �
P

st

⇢
st

I
st

(µ
st

), where H
s

(µ
s

) is the entropy for node s, I
st

(µ
st

) is the mutual
information for an edge (s, t), and ⇢

st

denote the edge-weights that lie in a so-called spanning tree
polytope. If all ⇢

st

are set to 1, this boils down to the Bethe approximation [21].

3 Closed-form Estimators for Graphical Models

The state-of-the-art `
1

-regularized MLE estimators discussed in the previous section enjoy strong
statistical guarantees but involve solving difficult non-smooth programs. Scaling them to very large-
scale problems is thus an important and challenging ongoing research area.

In this paper we tackle the scalability issue at the source by departing from regularized MLE ap-
proaches and proposing instead a family of closed-form estimators for graphical models.

Elem-GM Estimation: minimize

✓

k✓k
1

(8)

s. t.
�

�

�

✓ � B⇤
(

b�)
�

�

�

1
 �

n

where B⇤
(·) is the proxy of backward mapping A⇤, and �

n

is a regularization parameter as in (2).

One of the most important properties of (8) is that the estimator is available in closed-form: b✓ =

S
�n

�

B⇤
(

b�)
�

, where [S
�

(u)]
i

= sign(u
i

)max(|u
i

| � �, 0) is the element-wise soft-thresholding
function. This can be shown by the fact that the optimization problem (8) is decomposable into
independent element-wise sub-problems, where each sub-problem corresponds to soft-thresholding.

To get some intuition on our approach, let us first revisit classical MLE estimators for graphical mod-
els as in (1), and see where they “break down” in a high-dimensional setting: minimize

✓

h ✓, b� i �
A(✓). By the stationary condition of this optimization problem, the MLE estimator can be simply
expressed as a backward mapping A⇤

(

b�). There are two caveats here in high-dimensional settings.
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The first is that this backward mapping need not have a simple closed-form, and is typically in-
tractable to compute for a large number of variables p. The second is that the backward mapping is
well-defined only for mean parameters that are in the interior Mo of the marginal polytope, whereas
the sample moments b� might well lie on the boundary of the marginal polytope. We will illustrate
these two caveats in the next two examples.

Our key idea is to use instead a well-defined proxy function B⇤
(·) in lieu of the MLE backward

map A⇤
(·) so that B⇤

(

b�) is both well-defined under high-dimensional settings, as well as with a
simple closed-form. The optimization problem (8) seeks an estimator with minimum complexity in
terms of regularizer k · k

1

while being close enough to some “initial estimator” B⇤
(

b�) in terms of
element-wise `1 norm; ensuring that the final estimator has the desired sparse structure.

3.1 Strong Statistical Guarantees of Closed-form Estimators

We now provide a statistical analysis of estimators in (8) under the following structural constraint:
(C-Sparsity) The “true” canonical exponential family parameter ✓⇤ is exactly sparse with k non-
zero elements indexed by the support set S. All other elements in Sc are zeros.
Theorem 1. Consider any graphical model in (1) with sparse canonical parameter ✓⇤ as stated in

(C-Sparsity). Suppose we solve (8) setting the constraint bound �
n

such that �
n

�
�

�✓⇤�B⇤
(

b�)
�

�

1.

(A) Then the optimal solution

b✓ satisfies the following error bounds:

�

�

b✓ � ✓⇤
�

�

1  2�
n

, kb✓ � ✓⇤k
2

 4

p
k�

n

, and

�

�

b✓ � ✓⇤
�

�

1

 8k�
n

.

(B) The support set of the estimate

b✓ correctly excludes all true zero coordinates of ✓⇤. Moreover,

under the additional assumption that min

s2S

|✓⇤
s

| � 3

�

�✓⇤ � B⇤
(

b�)
�

�

1, it correctly includes all

non-zero coordinates of ✓⇤.

Remarks. Theorem 1 is a non-probabilistic result, and holds deterministically for any selection of
�
n

and any selection of B⇤
(·). We would then use a probabilistic analysis when we applying the

theorem to specific distributional settings and choices of the backward map B⇤
(·).

We note that while the theorem analyses the case of sparsity structured parameters, our class of
estimators as well as analyses can be seamlessly extended to more general structures (such as group
sparsity and low rank), by substituting appropriate regularization functions in (8).

A key ingredient in our class of closed-form estimators is the proxy backward map B⇤
(

b�). The
conditions of the theorem require that this backward map has to be carefully constructed in order
for the error bounds and sparsistency guarantees to hold. In the following sections, we will see how
to precisely construct such backward maps B⇤

(·) for specific problem instances, and then derive the
corresponding consequences of our abstract theorem as corollaries.

4 Closed-form Estimators for Inverse Covariance Estimation in Gaussian
Graphical Models

In this section, we derive a class of closed-form estimators for the multivariate Gaussian setting
in Section 2.1. From our discussion of Gaussian graphical models in Section 2.1, the backward
mapping from moments to the canonical parameters can be simply computed as A⇤

(⌃) = ⌃

�1, but
only provided ⌃ 2 Mo

:= {⌃ 2 Rp⇥p

: ⌃ � 0}. However, given the sample covariance, we
cannot just compute the MLE as A⇤

(S) = S�1 since the sample covariance matrix is rank-deficient
and hence does not belong the Mo under high-dimensional settings where p > n.

In our estimation framework (8), we thus use an alternative backward mapping B⇤
(·) via a thresh-

olding operator. Specifically, for any matrix M 2 Rp⇥p, we consider the family of thresholding op-
erators T

⌫

(M) : Rp⇥p ! Rp⇥p with thresholding parameter ⌫, defined as [T
⌫

(M)]

ij

:= ⇢
⌫

(M
ij

)

where ⇢
⌫

(·) is an element-wise thresholding operator. Soft-thresholding is a natural option, however,
along the lines of [22], we can use arbitrary sparse thresholding operators satisfying the conditions:

(C-Thresh) For any input a 2 R, (i) |⇢
⌫

(a)|  |a|, (ii) |⇢
⌫

(a)| = 0 for |a|  ⌫, and finally (iii)
|⇢

⌫

(a)� a|  ⌫.
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As long as T
⌫

(S) is invertible (which we shall examine in section 4.1), we can define B⇤
(S) :=

[T
⌫

(S)]�1 and obtain the following class of estimators:

Elem-GGM Estimation: minimize

⇥

k⇥k
1,off (9)

s. t.
�

�

⇥� [T
⌫

(S)]�1

�

�

1,off  �
n

where k · k1,off is the off-diagonal element-wise `1 norm as the dual of k · k
1,off.

Comparison with related work. Note that [16] suggest a Dantzig-like estimator :
minimize

⇥

k⇥k
1

s. t. kS⇥ � Ik1  �
n

where both k · k
1

and k · k1 are entry-wise (`
1

and `1,
respectively) norms for a matrix. This estimator applies penalty functions even for the diagonal ele-
ments so that the problem can be decoupled into multiple but much simpler optimization problems.
It still requires solving p linear programs with 2p linear constraints for each. On the other hand, the
estimator from (9) has a closed-form solution as long as T

⌫

(S) is invertible.

4.1 Convergence Rates for Elem-GGM

In this section we derive a corollary of theorem 1 for Elem-GGM. A prerequisite is to show that
B⇤

(S) := [T
⌫

(S)]�1 is well-defined and “well-behaved”. The following conditions define a broad
class of Gaussian graphical models that satisfy this requirement.
(C-MinInf⌃) The true canonical parameter ⇥⇤ of (3) has bounded induced operator norm such that

|||⇥⇤|||1 := sup

w 6=02Rp
k⇥⇤

wk1
kwk1

 
1

.

(C-Sparse⌃) The true covariance matrix ⌃

⇤
:= (⇥

⇤
)

�1 is “approximately sparse” along the lines
of Bickel and Levina [23]: for some positive constant D, ⌃⇤

ii

 D for all diagonal entries, and
moreover, for some 0  q < 1 and c

0

(p), max

i

P

p

j=1

|⌃⇤
ij

|q  c
0

(p). If q = 0, then this
condition boils down to ⌃

⇤ being sparse. We additionally require inf

w 6=02Rp
k⌃⇤

wk1
kwk1

� 
2

.

Now we are ready to utilize Theorem 1 and derive the convergence rates for our Elem-GGM (9).
Corollary 1. Consider Gaussian graphical models (3) where the true parameter ⇥

⇤
has k non-zero

off-diagonal elements, and the conditions in (C-MinInf⌃) and (C-Sparse⌃) hold. Suppose that we

solve the optimization problem in (9) with a generalized thresholding operator satisfying (C-Thresh)

and setting ⌫ := 16(max

i

⌃

ii

)

q

10⌧ log p

0

n

:= a
q

log p

0

n

for p0 := max{n, p}. Furthermore, suppose

also that we select �
n

:=

41a

2

q

log p

0

n

. Then, as long as n > c
3

log p0, any optimal solution

b

⇥ of

(9) satisfies

��b
⇥�⇥

⇤��
1,off 

81a
2

r
log p0

n
,

������b
⇥�⇥

⇤������
F  161a

2

r
k log p0

n
,
��b
⇥�⇥

⇤��
1,off 

321a
2

k

r
log p0

n

with probability at least 1� c
1

exp(�c
2

log p0).

We remark that the rates in Corollary 1 are asymptotically the same as those for standard `
1

regular-

ized MLE estimators in (4); for instance, [13] show that |||b⇥MLE � ⇥

⇤|||F = O
⇣

q

k log p

0

n

⌘

. This is
remarkable given the simplicity of Elem-GGM.

5 Closed-form Estimators for Discrete Markov Random Fields

We now specialize our class of closed-form estimators (8) to the setting of discrete Markov random
fields described in Section 2.1. In this case, computing the backward mapping A⇤ is non-trivial and
typically intractable if the graphical structure has loops [18]. Therefore, we need an approximation
of the backward map A⇤, for which we will leverage the tree-reweighted variational approximation
discussed in Section 2.1. Consider the following map ¯✓ := B⇤

trw(
b�), where

¯✓
s;j

= log

b�
s;j

, and ¯✓
st;jk

= ⇢
st

log

b�
st;jk

b�
s;j

b�
t;k

(10)

where b�
s;j

=

1

n

P

n

i=1

I[X
s,i

= j] and b�
st;jk

=

1

n

P

n

i=1

I[X
s,i

= j]I[X
t,i

= k] are the empirical
moments of the sufficient statistics in (6) (we define 0/0 := 1). It was shown in [20] that B⇤

trw(·)
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satisfies the following property: the (pseudo)marginals computed by performing tree-reweighted
variational inference with the parameters ¯✓ := B⇤

trw(
b�) yield the sufficient statistics b�. In other

words, the approximate backward map B⇤
trw computes an element in the pre-image of the approxi-

mate forward map given by tree-reweighted variational inference. Since tree-reweighted variational
inference approximates the true marginals well in practice, the map B⇤

trw(·) is thus a great candidate
for as an approximate backward map.

As an alternative to the `
1

regularized approximate MLE estimators (7), we thus obtain the
following class of estimators using B⇤

trw(·) as an instance of (8):

Elem-DMRF Estimation:
minimize

✓

k✓k
1,E

(11)

s. t.
�

�✓ � B⇤
trw(

b�)
�

�

1,E

 �
n

where k · k1,E

is the maximum absolute value of edge-parameters as a dual of k · k
1,E

.

Note that given the empirical means of sufficient statistics, B⇤
trw(

b�) can usually be obtained easily,
without the need of explicitly specifying the log-partition function approximation B(·) in (7).

5.1 Convergence Rates for Elem-DRMF

We now derive the convergence rates of Elem-DRMF for the case where B⇤
(·) is selected as in

(10) following the tree reweighed approximation [20]. Let µ⇤ be the “true” marginals (or mean
parameters) from the true log-partition function and true canonical parameter ✓⇤: µ⇤

= A(✓⇤). We
shall require that the approximation Btrw(·) be close enough to the true A(·) in terms of backward
mapping. In addition we assume that true marginal distributions are strictly positive.
(C-LogPartition)

�

�✓⇤ � B⇤
trw(µ

⇤
)

�

�

1,E

 ✏.

(C-Marginal) For all s 2 V and j 2 [m], the true singleton marginal µ⇤
s;j

:= E
✓

⇤
�

I[X
s

= j]
�

=

P(X
s

= j; ✓⇤) satisfies ✏min < µ⇤
s;j

for some strictly positive constant ✏min 2 (0, 1). Similarly,
for all s, t 2 V and all j, k 2 [m], µ⇤

st;jk

satisfies ✏min < µ⇤
st;jk

.

Now we are ready to utilize Theorem 1 to derive the convergence rates for our closed-form estimator
(11) when ✓⇤ has k non-zero pairwise parameters ✓⇤

st

, where we recall the notatation that ✓
st

:=

{✓
st;jk

}m
j,k=1

is a collation of the edgewise parameters for edge (s, t). We also define k✓k
q,E

:=

(

P

s 6=t

k✓
st

kq)1/q , for q 2 {1, 2,1}.

Corollary 2. Consider discrete Markov random fields (6) when the true parameter ✓⇤ has actually

k non-zero pair-wise parameters, and the conditions in (C-LogPartition) and (C-Marginal) also

hold in these discrete MRFs. Suppose that we solve the optimization problem in (11) with B⇤
trw(·)

set as (10) using tree reweighed approximation. Furthermore, suppose also that we select �
n

:=

✏ + c
1

q

log p

n

for some positive constant c
1

depending only on ✏min. Then, as long as n > 4c

2
1 log p

✏

2
min

,

there are universal positive constants (c
2

, c
3

) such that any optimal solution

b✓ of (11) satisfies

kb✓ � ✓⇤k1,E  2✏+ 2c1

r
log p
n

, kb✓ � ✓⇤k2,E  4

p
k✏+ 4c1

r
k log p

n
, kb✓ � ✓⇤k1,E  8k✏+ 8c1k

r
log p
n

with probability at least 1� c
2

exp(�c
3

log p0).

6 Experiments

In this section, we report a set of synthetic experiments corroborating our theoretical results on both
Gaussian and discrete graphical models.
Gaussian Graphical Models We now corroborate Corollary 1, and furthermore, compare our
estimator with the `

1

regularized MLE in terms of statistical performance with respect to the
parameter error kb⇥�⇥

⇤k
q

for q 2 {2,1}, as well as in terms of computational performance.

To generate true inverse covariance matrices ⇥

⇤ with a random sparsity structure, we follow the
procedure described in [25, 24]. We first generate a sparse matrix U whose non-zero entries are set
to ±1 with equal probabilities. ⇥⇤ is then set to U>U and then a diagonal term is added to ensure
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Table 1: Performance of our Elem-GM vs. state of the art QUIC algorithm [24] solving (4) under
two different regimes: (Left) (n, p) = (800, 1600), (Right) (n, p) = (5000, 10000).

K Time(sec) `F (off) `1 (off) FPR TPR

Elem-GM
0.01 < 1 6.36 0.1616 0.48 0.99
0.02 < 1 6.19 0.1880 0.24 0.99
0.05 < 1 5.91 0.1655 0.06 0.99
0.1 < 1 6 0.1703 0.01 0.97

QUIC

0.5 2575.5 12.74 0.11 0.52 1.00
1 1009 7.30 0.13 0.35 0.99
2 272.1 6.33 0.18 0.16 0.99
3 78.1 6.97 0.21 0.07 0.94
4 28.7 7.68 0.23 0.02 0.86

K Time(sec) `F (off) `1 (off) FPR TPR

Elem-GM

0.05 47.3 11.73 0.1501 0.13 1.00
0.1 46.3 8.91 0.1479 0.03 1.00
0.5 45.8 5.66 0.1308 0.0 1.00
1 46.2 8.63 0.1111 0.0 0.99

QUIC

2 * * * * *
2.5 * * * * *
3 4.8 ⇥ 10

4 9.85 0.1083 0.06 1.00
3.5 2.7 ⇥ 10

4 10.51 0.1111 0.04 0.99

Table 2: Performance of Elem-DMRF vs. the regularized MLE-based approach of [12] for structure
recovery of DRMFs.

Graph Type # Parameters Method Time(sec) TPR FNR

Chain Graph
128 Elem-DMRF 0.17 0.87 0.01

Regularized MLE 7.30 0.81 0.01

2000 Elem-DMRF 21.67 0.79 0.12

Regularized MLE 4315.10 0.75 0.21

Grid Graph
128 Elem-DMRF 0.17 0.97 0.01

Regularized MLE 7.99 0.84 0.02

2000 Elem-DMRF 21.68 0.80 0.12

Regularized MLE 4454.44 0.77 0.18

⇥

⇤ is positive definite. Finally, we normalize ⇥

⇤ with max

p

i=1

⇥

⇤
ii

so that the maximum diagonal
entry is equal to 1. We control the number of non-zeros in U so that the number of non-zeros in the
final ⇥⇤ is approximately 10p. We additionally set the number of samples n to half of the number
of variables p. Note that though the number of variables is p, the total number of entries in the
canonical parameter consisting of the covariance matrix is O(p2).

Table 1 summarizes the performance of our closed-form estimators in terms of computation time,
kb⇥ � ⇥

⇤k1,off and |||b⇥ � ⇥

⇤|||F,off. We fix the thresholding parameter ⌫ = 2.5
p

log p/n for all
settings, and vary the regularization parameter �

n

= K
p

log p/n to investigate how this regularizer
affects the final estimators. Baselines are `

1

regularized MLE estimators in (4); we use QUIC
algorithms [24], which is one of the fastest way to solve (4). In the table, we show the results of the
QUIC algorithm run with a tolerance ✏ = 10

�4; * indicates that the algorithm does not stop within
15 hours. In Appendix, we provide more extensive comparisons including receiver operator curves
(ROC) for these methods for settings in Table 1. As can be seen from the table and the figure, the
performance of Elem-GM estimators is both statistically competitive in terms of all types of errors
and support set recovery, while performing much better computationally than classical methods
based on `

1

regularized MLE.

Discrete Graphical Models We consider two different classes of pairwise graphical models:
chain graphs and grids. For each case, the size of the alphabet is set to m = 3; the true param-
eter vector ✓⇤ is generated by sampling each non-zero entry from N(0, 1).

We compare Elem-DMRF with the group-sparse regularized MLE-based approach of Jalali et al.
[12], which uses group `

1

/`
2

regularization, where all the parameters of an edge form a group, so as
to encourage sparsity in terms of the edges, and which we solved using proximal gradient descent.
While our estimator in (11) used vanilla sparsity, we used a simple extension to the group-sparse
structured setting; please see Appendix E for more details. For both methods, the tuning parameter
is set to �

n

= c
p

log p/n, where c is selected using cross-validation. We use 20 simulation runs
where for each run n = p/2 samples are drawn from the distribution specified by ✓⇤.

We report true positive rates, false positive rates and timing for running each method. We note
that the timing is for running each method without counting the time spent in the cross-validation
process (Had we taken the cross-validation into account, the advantage of our method would be
even more pronounced, since the entire path of solutions can be computed via simple group-wise
thresholding operations.) The results in Table 2 show that Elem-DMRF is much faster than its
MLE-based counterpart, and yield competitive results in terms of structure recovery.
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