
Supplementary Material for the Paper entitled
Online and Stochastic Gradient Methods for Non-decomposable

Loss Functions

A Proof of Theorem 1

Broadly, we follow the proof structure of FTRL given in [1, 23]. We first observe that the “forward
regret” analysis follows easily despite the non-convexity of Lt. That is,

T∑
t=1

Lt(wt+1) ≤ x1:T , y1:T ,w∗) +
η

2
‖w∗‖22, (7)

where w∗ = arg minw∈W x1:T , y1:T ,w). The proof of this statement can be found in [23, Theorem
7] and is reproduced below as Lemma 9 for completeness. Next, using strong convexity of the
regularizer ‖w‖22 and optimality of wt and wt+1 for their respective update steps, we get:

`P(x1:t, y1:t,wt+1) +
η

2
‖wt+1 −wt‖22 ≤ `P(x1:t, y1:t,wt)

`P(x1:t−1, y1:t−1,wt+1) ≥ `P(x1:t−1, y1:t−1,wt) +
η

2
‖wt+1 −wt‖22,

which when subtracted, give us

η‖wt+1 −wt‖22 ≤ Lt(wt)− Lt(wt+1) ≤ Gt‖wt+1 −wt‖2, (8)

where the last inequality follows using the Lipschitz continuity of Lt. We now use the fact that

T∑
t=1

Lt(wt) =

T∑
t=1

Lt(wt+1) +

T∑
t=1

(Lt(wt)− Lt(wt+1)),

along with (7) and (8) to get

T∑
t=1

Lt(wt) ≤ x1:T , y1:T ,w∗) +
η

2
‖w∗‖22 +

∑T
t=1G

2
t

η
.

The result now follows by selecting η =
√

2
∑T
t=1G

2
t/ ‖w∗‖

2
2.

Lemma 9. For the setting described in Theorem 1, we have

T∑
t=1

Lt(wt+1) ≤ x1:T , y1:T ,w∗) +
η

2
‖w∗‖22

Proof. Let L0(w) := η
2 ‖w‖

2
2. Thus, we can equivalently write the FTRL update in (FTRL) as

wt+1 = arg min
w∈W

t∑
τ=0

Lτ (w).

Now, using the optimality of wt+1 at time t, we get

t∑
τ=0

Lτ (wt+1) ≤
t∑

τ=0

Lτ (w∗) (9)

10

Combining this with the optimality of wt at time t− 1, we get
t−1∑
τ=0

Lτ (wt) + Lt(wt+1) ≤
t∑

τ=0

Lτ (wt+1) ≤
t∑

τ=0

Lτ (w∗) (10)

Repeating this argument gives us
t∑

τ=0

Lτ (wτ+1) ≤
t∑

τ=0

Lτ (w∗),

which proves the result.

B Proof of Lemma 2

We consider the following four exhaustive cases in turn:

Case 1. zik ≥ zjk and z′jk ≥ z
′
ik

We have the following set of inequalities

g(zik) = g(〈w,xik〉 − ci)
≤ g(〈w′,xik〉 − ci) + |〈w −w′,xik〉|
≤ g(〈w′,xik〉 − ci) + ‖w −w′‖2
= g(z′ik) + ‖w −w′‖2
≤ g(z′jk) + ‖w −w′‖2 ,

where the first inequality follows by the Lipschitz assumption, the second follows by
Cauchy-Schwartz inequality and the last follows by the case assumption z′jk ≥ z′ik and
the fact that g is an increasing function. By renaming i ↔ j and w ↔ w′, we also have
g(z′jk) ≤ g(zik) + ‖w −w′‖2. This establishes the result for the specific case.

Case 2. zik ≤ zjk and z′jk ≤ z
′
ik

This case follows similar to the case above.
Case 3. zik ≥ zjk and z′jk ≤ z

′
ik

Using the above conditions zjk does not belong to the top k elements of z1, . . . , zt, but
both z′ik and z′jk belong to the top k elements of z′1, . . . , z

′
t. Using the pigeonhole principle,

there exists an index s such that zs ≥ zik but zs ≤ z′jk . Hence, using arguments similar to
Case 1, we get the following two bounds:

|g(z′ik)− g(zs)| ≤ ‖w −w′‖2,
|g(zs)− g(z′jk)| ≤ ‖w −w′‖2.

We also have
∣∣g(z′ik)− g(zik)

∣∣ ≤ |〈w −w′,xik〉| ≤ ‖w −w′‖2. Adding these three
inequalities gives us the desired result.

Case 4. zik ≤ zjk and z′jk ≥ z
′
ik

This case follows similar to the case above.

These cases are exhaustive and we thus conclude the proof.

C Stability result for Prec@k

Lemma 10. Let `Prec@k be the surrogate for Prec@k as defined in (3), ‖xt‖2 ≤ 1,∀t and Lt be
defined as in (6). Then ∀w,w′ ∈ W , |Lt(w)− Lt(w′)| ≤ 8‖w −w′‖2.

Proof. Recall that, the loss function corresponding to Prec@k is defined as:

`Prec@k(x1:t, y1:t,w) = max
q∈{−1,1}t∑
i(qi+1)=2dkte

t∑
i=1

(qi − yi)xTi w −
t∑
i=1

qiyi (11)

11

= max
q∈{−1,1}t∑
i(qi+1)=2dkte

t∑
i=1

qix
T
i w −

t∑
i=1

qiyi

︸ ︷︷ ︸
A(x1:t,y1:t,w)

−
t∑
i=1

yix
T
i w︸ ︷︷ ︸

B(x1:t,y1:t,w)

(12)

Since B(x1:t, y1:t,w) is a decomposable loss function, it can at most add a constant (because of the
assumptions made by us, that constant can be shown to be no bigger than 1) to the Lipschitz constant
of Lt. Hence we concentrate on bounding the contribution of A(x1:t, y1:t,w) to the Lipschitz
constant of Lt. Define zi = 〈w,xi〉 − yi and z′i = 〈w′,xi〉 − yi. It will be useful to rewrite
A(x1:t, y1:t,w) as follows (and drop mentioning the dependence on x1:t for notational simplicity):

pt(w) = 2 max
q∈{1,0}t∑
i qi=dkte

t∑
i=1

qizi −
t∑
i=1

zi. (13)

Similarly, we can define pt−1(w) as well. Now we have

Lt(w)− Lt(w′) = pt(w)− pt−1(w)− pt(w′) + pt−1(w′) + ytxt(w
′ −w)

≤ pt(w)− pt−1(w)− pt(w′) + pt−1(w′)︸ ︷︷ ︸
∆t(w,w′)

+ ‖w −w′‖2

Our mail goal in the sequel will be to show that ∆t(w,w
′) ≤ O (‖w −w′‖2) which shall establish

the desired Lipschitz continuity result. Now for both vectors w,w′ and time instances t − 1, t, let
us denote the optimal assignments as follows:

at = arg max
q∈{1,0}t∑
i qi=dkte

t∑
i=1

qizi, bt = arg max
q∈{1,0}t∑
i qi=dkte

t∑
i=1

qiz
′
i,

at−1 = arg max
q∈{1,0}(t−1)∑
i qi=dk(t−1)e

t−1∑
i=1

qizi, bt−1 = arg max
q∈{1,0}(t−1)∑
i qi=dk(t−1)e

t−1∑
i=1

qiz
′
i.

Also, define indices 1 ≤ ir ≤ t− 1 and 1 ≤ js ≤ t− 1 as:

zi1 ≥ zi2 · · · ≥ zit−1
,

z′j1 ≥ z
′
j2 · · · ≥ z

′
jt−1

.

Now, note that (13) involves maximization of a linear function, hence the optimizing assignment q
will always lie on the boundary of the Boolean hypercube with the cardinality constraint. Hence, at
can be obtained by setting atir = 1, ∀1 ≤ r ≤ dkte and atir = 0, ∀r > dkte, similarly for bt. We
consider the following two cases and within each, four subcases which establish the result.

In the rest of the proof, all invocations of Lemma 2 shall use the identity function for g(·) and
ci = yi. Clearly this satisfies the prerequisites of Lemma 2 since the identity function is 1-Lipschitz
and increasing.

Case 1 dkte = dk(t− 1)e = α
Within this, we have the following four exhaustive subcases:

Case 1.1 zt ≤ ziα and z′t ≤ z′jα
The above condition implies that both att = 0 and btt = 0. Furthermore, at1:(t−1) =

at−1 and bt1:(t−1) = bt−1. As a result we have

∆t(w,w
′) = −zt + z′t = −〈w,xt〉+ 〈w′,xt〉 ≤ ‖w −w′‖2.

Case 1.2 zt > ziα and z′t ≤ z′jα
The above condition implies that att = 1 and btt = 0. Hence, bt1:(t−1) = bt−1. Also,
as att is turned on, the cardinality constraint dictates that one previously positive index
should be turned off. That is, atiα = 0, but at−1

iα
= 1. Finally, atir = at−1

ir
, r 6=

12

α and r < t. Using the above observations, we have the following sequence of
inequalities:

∆t(w,w
′) = (2(zt − ziα)− zt)− (0− z′t)

= (zt − ziα) + (z′t − ziα)

= (zt − z′t) + 2(z′t − ziα)

≤ (zt − z′t) + 2(z′jα − ziα)

≤ 7 ‖w −w′‖2 ,

where the third inequality follows from the case assumptions and the final inequality
follows from an application of Cauchy Schwartz inequality and Lemma 2.

Case 1.3 zt ≤ ziα and z′t > z′jα
In this case, we can analyze similarly to get

∆t(w,w
′) = (0− zt)− (2(z′t − z′jα)− z′t)

= (z′jα − zt) + (z′jα − z
′
t)

= (z′t − zt) + 2(z′jα − z
′
t)

≤ (z′t − zt)
≤ 3 ‖w −w′‖2 .

Case 1.4 zt > ziα and z′t > z′jα
In this case, both att = 1 and btt = 1. Hence, both atiα = 0 and btjα = 0. The remaining
terms of at and at−1 (similarly for bt and bt−1) remain the same. That is, we have

∆t(w,w
′) = (2(zt − ziα)− zt)− (2(z′t − z′jα)− z′t)

= (zt − z′t)− 2(ziα − z′jα)

≤ 7 ‖w −w′‖2 .

Case 2 dkte = dk(t− 1)e+ 1 = α
Here again, we consider the following four exhaustive subcases:

Case 2.1 zt ≤ ziα and z′t ≤ z′jα
The above condition implies that att = 0 and btt = 0. Also, one new positive is included
in both at and bt, i.e., atiα = 1 and btjα = 1. The remaining entries of at and bt remains
the same. Hence,

∆t(w,w
′) = (2ziα − zt)− (2z′jα − z

′
t) = 2(ziα − z′jα)− (zt − z′t) ≤ 9 ‖w −w′‖2 .

Case 2.2 zt > ziα and z′t ≤ z′jα
The above condition implies that att = 1 and btt = 0. Also, btjα = 1. The remaining
entries of at and bt remains the same. Hence we have

∆t(w,w
′) = (2zt − zt)− (2z′jα − z

′
t)

= (zt − z′jα) + (z′t − z′jα)

= (zt − z′t) + 2(z′t − z′jα)

≤ 3 ‖w −w′‖2 .

Case 2.3 zt ≤ ziα and z′t > z′jα
In this case we have

∆t(w,w
′) = (2ziα − zt)− (2z′t − z′t)

= (ziα − zt) + (ziα − z′t)
= (z′t − zt) + 2(ziα − z′t)
≤ (z′t − zt) + 2(ziα − z′jα)

≤ 7 ‖w −w′‖2 .

13

Case 2.4 zt > ziα and z′t > z′jα
The above condition implies that att = 1 and btt = 1. The remaining entries of at and
bt remains the same. Hence,

∆t(w,w
′) = (2zt − zt)− (2z′t − z′t) = zt − z′t ≤ 3 ‖w −w′‖2 .

Taking the worst case Lipschitz constants from these 8 subcases and adding the contribution of
B(x1:t, y1:t,w) concludes the proof.

D Extension to Precision-Recall Break Even Point (PRBEP)

We note that the above discussion can easily be extended to prove stability results for the structural
surrogate loss for the PRBEP performance measure [3]. Recall that the PRBEP measure essentially
measures the precision (equivalently recall) of a predictor when thresholded at a point that equates
the precision and recall. Since we have Prec = TP

TP+FP and Rec = TP
TP+FN , the break even point is

reached at a threshold where TP + FP = TP + FN. Notice that the left hand side equals the number
of points that are predicted as positive whereas the right hand side equals the number of points that
are actual positives.

Thus, the PRBEP is achieved at a threshold that predicts as many points as positive as there are
actual positives which gives us the formal definition of this performance measure

PRBEP(w) :=
∑

j:T(t+
t
,t

)(xj ,w)=1

I [yj = 1] . (14)

Note that this is equivalent to the definition of Prec@k with k = t+
t . Correspondingly, we can also

define the structural SVM surrogate for this performance measure as

`PRBEP(w) = max
ȳ∈{−1,+1}t∑
i(ȳi+1)=2t+

t∑
i=1

(ȳi − yi)xTi w −
t∑
i=1

yiȳi. (15)

Given this, it is easy to see that the proof of Lemma 10 would apply to this case as well. The only
difference in applying the analysis would be that Case 1 and its subcases would apply when yt < 0
which is when the incoming point is negative and hence the number of actual positives in the stream
does not go up. Case 2 and its subcases would apply when yt > 0 in which case the number of
points to be considered while calculating precision would have to be increased by 1.

E Online-to-batch Conversion

This section presents a proof of the regret bound in the batch model considered in Theorem 4 and a
proof sketch of the online-to-batch conversion result. The full proof shall appear in the full version of
the paper. We will consider in this section, the pAUC measure in the 2PMB setting wherein positives
are assumed to reside in the buffer and negatives are streaming in. The case of the Prec@k measure in
the usual 1PMB setting can be handled similarly. Additionally, we will show in Appendix G that for
the case of pAUC, the contributions from a large enough buffer of randomly chosen positive points
mimics the contributions of the entire population of positive points. Thus, for pAUC, it suffices to
show the online-to-batch conversion bounds just with respect to the negatives. We clarify this further
in the discussion.

E.1 Regret Bounds in the Modified Framework

We prove the following lemma which will help us in instantiating our online-to-batch conversion
proofs.

Lemma 11. For the surrogate losses of Prec@k and pAUC, we have R(T, s) ≤
√
s ·R(T)

14

Proof. The only thing we need to do is analyze one time step for changes in the Lip-
schitz constant. Fix a time step t and let Zt = {xt,1,xt,2, . . . ,xt,s}. Also, let
gt(w, i) := `P(Z1, . . . ,Zt−1,xt,1:i,w) for any i = 1 . . . s (note that this gives us gt(w, s) =
`P(Z1, . . . ,Zt,w)). Also let us abuse notation to denote gt(w, 0) := `P(Z1, . . . ,Zt−1,w) =
gt−1(w, s). Let the Lipschitz constant in the model with batch size s be denoted as Gst . Thus, we
have G1

t = Gt, the Lipschitz constant for the problem in the original model (i.e. for s = 1). Then
we have, for any w,w′ ∈ W ,

|Lt(w)− Lt(w′)| = |`P(Z1:t,w)− `P(Z1:t−1,w)− `P(Z1:t,w
′) + `P(Z1:t−1,w

′)|
= |gt(w, s)− gt(w, 0)− gt(w′, s) + gt(w

′, 0)|

=

∣∣∣∣∣
s∑
i=1

gt(w, i)− gt(w, i− 1)− gt(w′, i) + gt(w
′, i− 1)

∣∣∣∣∣
≤

s∑
i=1

|gt(w, i)− gt(w, i− 1)− gt(w′, i) + gt(w
′, i− 1)|

≤
s∑
i=1

Gt ‖w −w′‖ = Gt · s ‖w −w′‖ ,

where the first inequality follows by triangle inequality and the second inequality follows by a re-
peated application of the Lipschitz property of these loss functions in the original online model (i.e.
with batch size s = 1). This establishes the Lipschitz constant in this model as Gst ≤ s · Gt. Now,
the usual FTRL analysis gives us the following (note that there are only T/s time steps now)

T/s∑
t=1

Lt(wt) ≤ `P(x1:T , y1:T ,w∗)+
η

2
‖w∗‖22+

∑T/s
t=1(Gst)

2

η
≤ `P(x1:T , y1:T ,w∗)+2s‖w∗‖2

√√√√T/s∑
t=1

G2
t ,

by setting η appropriately. Now, for Prec@k, Gt ≤ 8. Thus, we have

1

T

T/s∑
t=1

Lt(wt) ≤
1

T
`P(x1:T , y1:T ,w∗) + 6‖w∗‖2

√
s

T
,

which establishes the result for Prec@k. Similarly, for pAUC, we can show that the regret in the
batch model does not worsen by more than a factor of

√
s.

E.2 Online-to-batch Conversion for pAUC

We will consider the 2PMB setting where negative points come as a stream and positive points
reside in an in-memory buffer. At each trial t, the learner receives a batch of s negative points
Z−t = {x−t,1, . . . ,x

−
t,s} (we shall assume throughout, for simplicity, that sβ is an integer). Let us

denote the loss w.r.t all the positive points in the buffer by φ+ : W × R → [0, B]. φ+ is defined
using a loss function g(·) such as hinge loss or logistic loss as

φ+(w, c) =
1

B

B∑
i=1

g(w>x+
i − c)

For sake of brevity, we will abbreviate φ+(w, c) as φ+(c), the reference to w being clear from
context. We assume that φ+ is monotonically increasing (as is the case for hinge loss and logistic
regression) and bounded i.e. for some fixedB > 0, we have, for all w ∈ W, c ∈ R, 0 ≤ φ+(w, c) ≤
B. The empirical (unnormalized) partial AUC loss for a model w ∈ W ⊆ Rd over the negative
points received in t trials is then given by

˜̀pAUC(Z−1:t,w) =

t∑
τ=1

s∑
q=1

T−β,t(x
−
τ,q,w)φ+(w>x−τ,q),

where T−β,t(x−,w) is the (empirical) indicator function that is turned on whenever x− appears in
the top-β fraction of all the negatives seen till now, ordered by w, i.e. T−β,t(x−,w) = 1 whenever

15

∣∣{τ ∈ [t], q ∈ [s] : w>x− > w>x−τ,q
}∣∣ ≤ tsβ. We similarly define a population version of this

empirical loss function as

R̃pAUC(w) = Ex−

r
T−β (x−,w)φ+(w>x−)

z
,

where T−β (x−,w) is the population indicator function with T−β (x−,w) = 1 whenever
Px̃−

(
w>x̃− > w>x−

)
≤ β. Also, we define Lt(w) = `pAUC(Z−1:t,w) − `pAUC(Z−1:t−1,w),

with the regret of a learning algorithm that generates an ensemble of models w1,w2, . . . ,wT/s ∈
W ⊆ Rd upon receiving T/s batches of negative points Z−1:T/s defined as:

R(T, s) =
1

T

T/s∑
t=1

Lt(wt)− arg min
w∈W

1

T
˜̀pAUC(Z−1:T/s,w).

Define βt = Ex−

r
T−β,t−1(x−,wt)

z
as the fraction of the population that can appear in the top β

fraction of the set of points seen till now, i.e. the fraction of the population for which the empirical
indicator function is turned on, and

Qt(w) = Ex−

r
T−β,t−1(x−,w)φ+(w>x−)

z

as the population partial AUC computed with respect to the empirical indicator function T−β,t−1

(note that the population risk functional R̃pAUC(w) is computed with respect to T−β (x−,w), the
population indicator function instead). We will also find it useful to define the following conditional
expectation.

L̃t(w) = EZ−t

q
Lt(w) |Z−1:t−1

y
.

We now present a proof sketch of the online-to-batch conversion result in Theorem 4 for pAUC.
Theorem 12 (Online-to-batch Conversion for pAUC). Suppose the sequence of negative points
x−1 , . . . ,x

−
T is generated i.i.d.. Let us partition this sequence into T/s batches of size s and let

w1,w2, . . . ,wT/s be an ensemble of models generated by an online learning algorithm upon re-
ceiving these T/s batches. Suppose the online learning algorithm has a guaranteed regret bound
R(T, s). Then for w = 1

T/s

∑T/s
t=1 wt, any w∗ ∈ W ⊆ Rd, ε ∈ (0, 1] and δ > 0, with probability at

least 1− δ,

R̃pAUC(w) ≤ (1 + ε)R̃pAUC(w∗) +
1

β
R(T, s) + e−Ω(sε2) + Õ

(√
s ln(1/δ)

T

)
.

In particular, setting s = Õ(
√
T) and ε = 4

√
1/T gives us, with probability at least 1− δ,

R̃pAUC(w) ≤ R̃pAUC(w∗) +
1

β
R(T,

√
T) + Õ

(
4

√
ln(1/δ)

T

)
.

Proof (Sketch). Fix ε ∈ (0, 0.5]. We wish to bound the difference

(1− ε)sβ
T/s∑
t=1

R̃pAUC(wt) − TβR̃pAUC(w∗) (16)

and do so by decomposing (16) into four terms as shown below.

(16) ≤
T/s∑
t=1

REt(wt) + MC(w1:T/s) + R(w1:T/s) + UC(w∗),

where we have

UC(w∗) = ˜̀pAUC(Z−1:T/s,w∗) − TβR̃pAUC(w∗) (Uniform Convergence Term)

R(w1:T/s) =

T/s∑
t=1

Lt(wt) −
T/s∑
t=1

Lt(w∗) (Regret Term)

16

MC(w1:T/s) =

T/s∑
t=1

L̃t(wt) −
T/s∑
t=1

Lt(wt) (Martingale Convergence Terms)

REt(wt) = (1− ε)sβR̃pAUC(wt) − L̃t(wt) (Residual Error Terms)

Note that the above has used the fact that ˜̀pAUC(Z−1:T/s,w∗) =
∑T/s
t=1 Lt(w∗). We will bound these

terms in order below. First we look at the term UC(w∗). Bounding this simply requires a batch
generalization bound of the form we prove in Theorem 7. Thus, we can show, that with probability
1− δ/3, we have

UC(w∗) ≤ O
(√

T log(1/δ)
)
.

We now move on the termR(w1:T/s). This is simply bounded by the regret of the ensemble w1:T/s.
This gives us

R(w1:T/s) ≤ T ·R(T, s).

The next term we bound is MC(w1:T/s). Note that by definition of L̃t(w), if we define

vt = L̃t(wt)− Lt(wt),

then the terms {vt} form a martingale difference sequence. Since
∣∣L̃t(wt)− Lt(wt)

∣∣ ≤ O (s), we
get, by an application of the Azuma-Hoefding inequality, with probability at least 1− δ/3,

MC(w1:T/s) ≤ O

(
s

√
T

s
ln

1

δ

)
= O

(√
sT ln(1/δ)

)
.

The last step requires us to bound the residual term REt(wt) which will again require uniform
convergence techniques. We shall show, that with probability, at least 1− (δ · s/3T), we have

βt ≥ β − Õ

√ log 1
δ

s(t− 1)

 .

This shall allow us to show that with the same probability, we have

Qt(wt)− R̃pAUC(wt) ≤ Õ

√ log 1
δ

s(t− 1)

 .

The last ingredient in the proof shall involve showing that the following holds for any ε > 0

L̃t(wt) ≥ (1− ε)sβtQt(wt)− Ω
(
s exp(−sβ2

t ε
2)
)

Combining the above with a union bound will show us that, with probability at least 1− δ/3,

T/s∑
i=1

REt(wt) ≤ O
(
T exp(−sε2)

)
+ Õ

(√
sT log(1/δ)

)
A final union bound and some manipulations would then establish the claimed result.

F Proof of Theorem 6

The proof proceeds in two parts: the first part uses the fact that the 1PMB method essentially
simulates the GIGA method of [24] with the non-decomposable loss function and the second part
uses the uniform convergence properties of the loss function to establish the error bound. To proceed,
let us set up some notation. Consider the eth epoch of the 1PMB algorithm. Let us denote the set of
points considered in this epoch by Xe = {xe1, . . . , xes}. With this notation it is clear that the 1PMB
algorithm can be said to be performing online gradient descent with respect to the instantaneous loss
functions Le(w) = L(Xe,w) := `P(xe1:s, y

e
1:s,w).

17

Since the loss function Le(w) is convex, the standard analysis for online convex optimization would
apply under mild boundedness assumptions on the domain and the (sub)gradients of the loss func-
tion. Since there are n/s epochs (assuming for simplicity that n is a multiple of s), this allows us to
use the standard regret bounds [24] to state the following:

s

n

n/s∑
e=1

Le(we) ≤
s

n

n/s∑
e=1

Le(w∗) +O
(√

s

n

)
.

Now we will invoke uniform convergence properties of the loss function. However, doing so re-
quires clarifying certain aspects of the problem setting. The statement of Theorem 6 assumes only
a random ordering of training data points whereas uniform convergence properties typically require
i.i.d. samples. We reconcile this by noticing that all our uniform convergence proofs use the Ho-
effding’s lemma to establish statistical convergence and that the Hoeffding’s lemma holds when
random variables are sampled without replacement as well (e.g. see [25]). Since a random ordering
of the data provides, for each epoch, a uniformly random sample without replacement, we are able
to invoke the uniform convergence proofs.

Thus, if we denote L(w) := `P(x1:n, y1:n,w), then by using the uniform convergence properties of
the loss function, for every e, with probability at least 1− sδ

n , we have Le(we) ≥ L(we)−α
(
s, sδn

)
as well as Le(w∗) ≤ L(w∗) + α

(
s, sδn

)
. Applying the union bound and Jensen’s inequality gives

us, with probability at least 1− δ, the desired result:

L(w) ≤ s

n

n/s∑
e=1

L(we) ≤ L(w∗) + 2α

(
s,
sδ

n

)
+O

(√
s

n

)
.

We note that we can use similar arguments as above to give error bounds for the 2PMB procedure as
well. Suppose x̄+

1:s+
and x̄−1:s−

are the positive and negative points sampled in the process (note that
here the number of positive and negatives points (i.e. s+ and s− respectively) are random quantities
as well). Also suppose x+

1:n+
and x−1:n−

are the positive and negative points in the population. Then
recall that Definition 5 requires, for a uniform (but possibly without replacement) sample,

sup
w∈W

∣∣∣`P(x+
1:n+

,x−1:n−
,w)− `P(x̄+

1:s+
, x̄−1:s−

,w)
∣∣∣ ≤ Õ (α(s, δ)) .

To prove bounds for 2PMB, we require that for arbitrary choice of s+, s− ≥ Ω (s), when x̄+
1:s+

and
x̄−1:s−

are chosen separately and uniformly (but yet again possibly without replacement) from x+
1:n+

and x−1:n−
respectively, we still obtain a similar result as above. Since the first pass and each epoch

of the second pass provide such a sample, we can use this result to prove error bounds for the 2PMB
procedure. We defer the detailed arguments for such results to the full version of the paper.

We however note that the proof of Theorem 7 below does indeed prove such a result for the pAUC
loss function by effectively proving (see Section G.1) the following two results

sup
w∈W

∣∣∣`P(x+
1:n+

, x̄−1:s−
,w)− `P(x̄+

1:s+
, x̄−1:s−

,w)
∣∣∣ ≤ Õ (α(s, δ))

sup
w∈W

∣∣∣`P(x+
1:n+

,x−1:n−
,w)− `P(x+

1:n+
, x̄−1:s−

,w)
∣∣∣ ≤ Õ (α(s, δ)) .

G Uniform Convergence Bounds for Partial Area under the ROC Curve

In this section we present a proof sketch of Theorem 7 which we restate below for convenience.
Theorem 13. Consider any convex, monotonic and Lipschitz classification surrogate φ : R→ R+.
Then the loss function for the (0, β)-partial AUC performance measure defined as follows exhibits
uniform convergence at the rate α(s) = Õ (1/

√
s):

`P(x1:n, y1:n,w) =
1

βn+n−

n∑
i=1

I [yi > 0]

n∑
j=1

I [yj < 0]T−β,n(xj ,w)φ
(
w>(xi − xj)

)
,

where n+ = |{i : yi > 0}| and n− = |{i : yi < 0}|.

18

Proof (Sketch). We shall use the notation T̂−β,s to denote the indicator function for the top β frac-
tion of the negative elements in the smaller sample of size s. Thus, over the smaller sample
(x̄1, ȳ1) . . . (x̄s, ȳs), the pAUC is calculated as

`P(x̄1:s, ȳ1:s,w) =
1

βs+s−

s∑
i=1

I [ȳi > 0]

s∑
j=1

I [ȳj < 0] T̂−β,s(x̄j ,w)φ
(
w>(x̄i − x̄j)

)
.

Our goal would be to show that with probability at least 1− δ, for all w ∈ W

|`P(x1:n, y1:n,w)− `P(x̄1:s, ȳ1:s,w)| ≤ Õ
(

1√
s

)
We shall demonstrate this by establishing the following three statements:

1. For any fixed w ∈ W , w.h.p., we have |`P(x1:n, y1:n,w)− `P(x̄1:s, ȳ1:s,w)| ≤ Õ
(

1√
s

)
2. For any two w,w′ ∈ W , we have |`P(x1:n, y1:n,w)− `P(x1:n, y1:n,w

′)| ≤
O (‖w −w′‖2)

3. For any two w,w′ ∈ W , we have |`P(x̄1:s, ȳ1:s,w)− `P(x̄1:s, ȳ1:s,w
′)| ≤

O (‖w −w′‖2)

With these three results established, we would be able to conclude the proof by an application of a
standard covering number argument. We now prove these three statements in parts.

G.1 Part 1: Pointwise Convergence for pAUC

Fix a predictor w ∈ W and S+ and S− denote the set of positive and negative samples. We shall
assume that s+, s− ≥ Ω (s) which holds with high probability. Denote, for any xi such that yi > 0,

`+(xi,w) =
1

βn−

n∑
j=1

I [yj < 0]T−β,n(xj ,w)φ
(
w>(xi − xj)

)
,

and for any x̄i ∈ S+,

`+S−(x̄i,w) =
1

βs−

s∑
j=1

I [ȳj < 0] T̂−β,s(x̄j ,w)φ
(
w>(x̄i − x̄j)

)
.

Notice that `P(x̄1:s, ȳ1:s,w) = 1
n+

∑n
i=1 I [yi > 0] `+(xi,w) and `P(x̄1:s, ȳ1:s,w) =

1
s+

∑s
i=1 I [ȳi > 0] `+S−(x̄i,w). We shall now show the following holds w.h.p. over S−:

1. For any xi such that yi > 0,
∣∣∣`+(xi,w)− `+S−(xi,w)

∣∣∣ ≤ Õ (1√
s

)
.

2. 1
n+

∣∣∣∑n
i=1 I [yi > 0] `+(xi,w)− I [yi > 0] `+S−(xi,w)

∣∣∣ ≤ Õ (1√
s

)
.

3.
∣∣∣ 1
n+

∑n
i=1 I [yi > 0] `+S−(xi,w)− 1

s+

∑s
i=1 I [ȳi > 0] `+S−(x̄i,w)

∣∣∣ ≤ Õ (1√
s

)
.

The second part follows from the first part by an application of the triangle inequality. The third part
also can be shown to hold by an application of Hoeffding’s inequality and other arguments. This
leaves the first part for which we provide a proof in the full version of the paper.

G.2 Parts 2 and 3: Establishing an ε-net for pAUC

For simplicity, we assume that the domain is finite. This does not affect the proof in any way since
it still allows the domain to be approximated arbitrary closely by an ε-net of (arbitrarily) large size.

19

Dataset Data Points Features Positives
KDDCup08 102,294 117 0.61%

PPI 240,249 85 1.19%
Letter 20,000 16 3.92%
IJCNN 141,691 22 9.57%

Table 2: Statistics of datasets used.

However, we note that we can establish the same result for infinite domains as well, but choose not
to for sake of simplicity. We prove the second part, the proof of the first part being similar. We have

|`P(x1:n, y1:n,w)− `P(x1:n, y1:n,w
′)| =

1

s+

∣∣∣∣∣
s∑
i=1

I [ȳi > 0] `+S−(xi,w)− I [ȳi > 0] `+S−(xi,w
′)

∣∣∣∣∣
≤ 1

s+

s∑
i=1

∣∣∣I [ȳi > 0]
(
`+S−(xi,w)− `+S−(xi,w

′)
)∣∣∣

≤ O (‖w −w′‖2) ,

using Lemma 2 with g(a) = φ(w>xi − a) and ci = 0. This concludes the proof.

H Methodology for implementing 1PMB and 2PMB for pAUC tasks

In this section we clarify the mechanisms used to implement the 1PMB and 2PMB routines. Going
as per the dataset statistics (see Table 2), we will consider the variant of the 2PMB routine with the
positive class as the rare class. Recall the definition of the surrogate loss function for pAUC (5)

`pAUC(w) =
∑
i:yi>0

∑
j:yj<0

T−β,t(xj ,w) · h(x>i w − x>j w).

We now rewrite this in a slightly different manner. Define, for any i : yi > 0

`+S−(xi,w) =
∑
j:yj<0

T−β,t(xj ,w) · h(x>i w − x>j w),

so that we can write `pAUC(w) =
∑
i:yi>0 `

+
S−

(xi,w). This shows that a subgradient to `pAUC(w)

can be found by simply finding and summing up, subgradients for `+S−(xi,w). For now, fix an i
such that yi > 0 and define g(a) = h(x>i w − a). Using the properties of the hinge loss function, it
is clear that g(a) is an increasing function of a. Since `+S−(xi,w) is defined on the top ranked dβt−e
negatives, we can, using the monotonicity of g(·), equivalently write it as follows. LetZβ =

(S−
dβt−e

)
be the set of all sets of negative points of negative training points of size dβt−e. Then we can write

`+S−(xi,w) = max
S∈Zβ

∑
x−∈S

g(x−>w)

Since the maximum in the above formulation is achieved at S =
{
j : yj < 0,T−β,t(xj ,w) = 1

}
, by

Danskin’s theorem (see, for example [26]), we get the following result: let vij ∈ δh(x>i w− x>j w)
be a subgradient to the hinge loss function, then for the following vector

vi :=
∑
j:yj<0

T−β,t(xj ,w) · vij ,

we have vi ∈ δ`+S−(xi,w) and consequently, for v :=
∑
i:yi>0 vi, we have v ∈ δ`pAUC(w). This

gives us a straightforward way to implement 1PMB: for each epoch, we take all the negatives in that
epoch, filter out the top β fraction of them according to the scores assigned to them by the current
iterate we and then calculate the (sub)gradients between all the positives in that epoch and these
filtered negatives. This takes at most O (s log s) time per epoch.

20

