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Abstract

Bipartite ranking aims to learn a real-valued ranking function that orders positive
instances before negative instances. Recent efforts of bipartite ranking are fo-
cused on optimizing ranking accuracy at the top of the ranked list. Most existing
approaches are either to optimize task specific metrics or to extend the rank loss by
emphasizing more on the error associated with the top ranked instances, leading to
a high computational cost that is super-linear in the number of training instances.
We propose a highly efficient approach, titled TopPush, for optimizing accuracy
at the top that has computational complexity linear in the number of training in-
stances. We present a novel analysis that bounds the generalization error for the
top ranked instances for the proposed approach. Empirical study shows that the
proposed approach is highly competitive to the state-of-the-art approaches and is
10-100 times faster.

1 Introduction

Bipartite ranking aims to learn a real-valued ranking function that places positive instances above
negative instances. It has attracted much attention because of its applications in several areas such
as information retrieval and recommender systems [32, 25]. Many ranking methods have been
developed for bipartite ranking, and most of them are essentially based on pairwise ranking. These
algorithms reduce the ranking problem into a binary classification problem by treating each positive-
negative instance pair as a single object to be classified [16, 12, 5, 39, 38, 33, 1, 3]. Since the number
of instance pairs can grow quadratically in the number of training instances, one limitation of these
methods is their high computational costs, making them not scalable to large datasets.

Considering that for applications such as document retrieval and recommender systems, only the top
ranked instances will be examined by users, there has been a growing interest in learning ranking
functions that perform especially well at the top of the ranked list [7, 39, 38, 33, 1, 3, 27, 40]. Most
of these approaches can be categorized into two groups. The first group maximizes the ranking
accuracy at the top of the ranked list by optimizing task specific metrics [17, 21, 23, 40], such
as average precision (AP) [42], NDCG [39] and partial AUC [27, 28]. The main limitation of
these methods is that they often result in non-convex optimization problems that are difficult to
solve efficiently. Structural SVM [37] addresses this issue by translating the non-convexity into
an exponential number of constraints. It can still be computationally challenging because it usually
requires to search for the most violated constraint at each iteration of optimization. In addition, these
methods are statistically inconsistent [36, 21], leading to suboptimal solutions. The second group of
methods are based on pairwise ranking. They design special convex loss functions that place more
penalties on the ranking errors related to the top ranked instances [38, 33, 1]. Since these methods
are based on pairwise ranking, their computational costs are usually proportional to the number of
positive-negative instance pairs, making them unattractive for large datasets.



In this paper, we address the computational challenge of bipartite ranking by designing a ranking
algorithm, named TopPush, that can efficiently optimize the ranking accuracy at the top. The key
feature of the proposed TopPush algorithm is that its time complexity is only linear in the number
of training instances. This is in contrast to most existing methods for bipartite ranking whose com-
putational costs depend on the number of instance pairs. Moreover, we develop novel analysis for
bipartite ranking. One deficiency of the existing theoretical studies [33, 1] on bipartite ranking is that
they try to bound the probability for a positive instance to be ranked before any negative instance,
leading to relatively pessimistic bounds. We overcome this limitation by bounding the probability
of ranking a positive instance before most negative instances, and show that TopPush is effective in
placing positive instances at the top of a ranked list. Extensive empirical study shows that TopPush
is computationally more efficient than most ranking algorithms, and yields comparable performance
as the state-of-the-art approaches that maximize the ranking accuracy at the top.

The rest of this paper is organized as follows. Section 2 introduces the preliminaries of bipartite
ranking, and addresses the difference between AUC optimization and maximizing accuracy at the
top. Section 3 presents the proposed TopPush algorithm and its key theoretical properties. Section 4
summarizes the empirical study, and Section 5 concludes this work with future directions.

2 Bipartite Ranking: AUC vs. Accuracy at the Top

Let X = {x € R? : ||x|| < 1} be the instance space. Let S = S, U S_ be a set of training
instances, where S; = {xj € X}, and S_ = {x; € X}, include m positive instances
and n negative instances independently sampled from distributions P, and P_, respectively. The
goal of bipartite ranking is to learn a ranking function f : X — R that is likely to place a positive
instance before most negative ones. In the literature, bipartite ranking has found applications in many
domains [32, 25], and its theoretical properties have been examined by several studies [2, 6, 20, 26].

AUC is a commonly used evaluation metric for bipartite ranking [15, 9]. By exploring its equiva-
lence to Wilcoxon-Mann-Whitney statistic [15], many ranking algorithms have been developed to
optimize AUC by minimizing the ranking loss defined as

rank f S mn Zz IZ;L 1 f( )) (l)

where [(+) is the indicator function. Other than a few special loss functions (e.g., exponential and
logistic loss) [33, 20], most of these methods need to enumerate all the positive-negative instance
pairs, making them unattractive for large datasets. Various methods have been developed to address
this computational challenge [43, 13].

Recently, there is a growing interest on optimizing ranking accuracy at the top [7, 3]. Maximizing
AUC is not suitable for this goal as indicated by the analysis in [7]. To address this challenge,
we propose to maximize the number of positive instances that are ranked before the first negative
instance, which is known as positives at the top [33, 1, 3]. We can translate this objective into the
minimization of the following loss

L(f;S) = %Z; (£ < max f(x7)) - )

1<j<n

which computes the fraction of positive instances ranked below the top-ranked negative instance. By
minimizing the loss in (2), we essentially push negative instances away from the top of the ranked
list, leading to more positive ones placed at the top. We note that (2) is fundamentally different from
AUC optimization as AUC does not focus on the ranking accuracy at the top. More discussion about
the relationship between (1) and (2) can be found in the longer version of the paper [22].

To design practical learning algorithms, we replace the indicator function in (2) with its convex
surrogate, leading to the following loss function

(528 = S o mas £ - F6) G)

1<j<n

where £(-) is a convex loss function that is non-decreasing' and differentiable. Examples of such
loss functions include truncated quadratic loss £(z) = [1 + z]%, exponential loss £(z) = €7, or

'In this paper, we let £(z) to be non-decreasing for the simplicity of formulating dual problem.



logistic loss ¢(z) = log(1 + e*). In the discussion below, we restrict ourselves to the truncated
quadratic loss, though most of our analysis applies to others.

It is easy to verify that the loss £(f; S) in (3) is equivalent to the loss used in InfinitePush [1] (a
special case of P-norm Push [33]), i.e.,
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Loa(fi8) = max % " L(f0x7) = F(x)) - “)
The apparent advantage of employing £*(f; S) instead of £_(f; S) is that it only needs to evaluate
on m positive-negative instance pairs, whereas the later needs to enumerate all the mn instance
pairs. As a result, the number of dual variables induced by £*(f;S) is n + m, linear in the number
of training instances, which is significantly smaller than mn, the number of dual variables induced
by £ (f;S) [1, 31]. Itis this difference that makes the proposed algorithm achieve a computational
complexity linear in the number of training instances and therefore be more efficiently than the
existing algorithms for most state-of-the-art algorithms for bipartite ranking.

3 TopPush for Optimizing Top Accuracy

We first present a learning algorithm to minimize the loss function in (3), and then the computational
complexity and performance guarantee for the proposed algorithm.

3.1 Dual Formulation

We consider linear ranking function?, i.e., f(x) = w'x, where w € R is the weight vector to be
learned. As a result, the learning problem is given by the following optimization problem
A 1 m
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where \ > 0 is a regularization parameter. Directly minimizing the objective in (5) can be challeng-
ing because of the max operator in the loss function. We address this challenge by developing a dual
formulation for (5). Specifically, given a convex and differentiable function ¢(z), we can rewrite it
in its convex conjugate form as £(z) = max,ecq @z — £, («) , where £, («) is the convex conjugate
of £(z) and 2 is the domain of dual variable [4]. For example, the convex conjugate of truncated
quadratic loss is £, () = —a + o? /4 with 2 = R,. We note that dual form has been widely used
to improve computational efficiency [35] and connect different styles of learning algorithms [19].
Here we exploit it to overcome the difficulty caused by max operator. The dual form of (5) is given
in the following theorem, whose detailed proof can be found in the longer version [22].

Theorem 1. Define Xt = (x|,...,x}t)T and X~ = (x],...,x;,)", the dual problem of (5) is

. _ 1 T~ + T~c—112 m }
Jnin 9(a,f) = 5 —lla X7 =8 X7 +Zi:1 (o) (6)
where o and 3 are dual variables, and the domain E is defined as

= = {aeRm,BeRﬁ: 1;a:1jﬁ}.

3

Let o and B* be the optimal solution to the dual problem (6). Then, the optimal solution w* to the
primal problem in (5) is given by
* 1 * T 5+ * T - —

W—)\m(a X B X). @)
Remark The key feature of the dual problem in (6) is that the number of dual variables is m + n,
leading to a linear time ranking algorithm. This is in contrast to the InfinitPush algorithm in [1] that
introduces mn dual variables and a higher computational cost. In addition, the objective function in
(6) is smooth if the convex conjugate £, (+) is smooth, which is true for many common loss functions
(e.g., truncated quadratic loss and logistic loss). It is well known in the literature of optimization [4]
that an O(1/T?) convergence rate can be achieved if the objective function is smooth, where 7 is
the number of iterations; this also helps in designing efficient learning algorithm.

Nonlinear function can be trained by kernel methods, and Nystrém method and random Fourier features
can transform the kernelized problem into a linear one. See [41] for more discussions.



3.2 Linear Time Bipartite Ranking

According to Theorem 1, to learn a ranking function f(w), it is sufficient to learn the dual variables
« and 3 by solving the problem in (6). For this purpose, we adopt the accelerated gradient method
due to its light computation per iteration, and refer the obtained algorithm as TopPush. Specifically,
we choose the Nesterov’s method [30, 29] that achieves an optimal convergence rate O(1/T?) for

smooth objective function. One of the key features of the Nesterov’s method is that it maintains
two sequences of solutions: {(cv, Bx)} and {(s; sf )}, where the sequence of auxiliary solutions

{(s%; sg )} is introduced to exploit the smoothness of the objective to achieve a faster convergence
rate. Algorithm 1 shows the key steps® of the Nesterov’s method for solving the problem in (6),
where the gradients of the objective function g(cx, 3) can be efficiently computed as

Vag(a,B) =X v /Am+ L (a), Vag(a,B)=-X"v'/Am. ()

where v = o' X+ — B3TX ™ and £, (-) is the derivative of £, (-).

Algorithm 1 The TopPush Algorithm

Input: X+ e R™*4 X~ e R™™4 ) ¢

Output: w
1: initialize a1 = @9 = 0y, B1 = Bo =0, andlett_1 =0,t0 =1, Lo =
2: repeatfork =1,2,...
3: compute sj; = o + wik(ax — ak—1) and sfj = Bk + wi(Br — Br—1), where wy, =

1
m+n

te—2—1
tr—1

4: compute go = Vag(sy, sg) and gg = Vgg(sy, sf) based on (8)

5. find Ly > Lyt such that glovesr, Besn) > (5852 + (lgal? + igsl?)/(2Lk), where

[oks1; Brs1] = m=([Athy1; Bhg 1)) With oy = sf — lega and B4, = Sf - L%«gﬁ

6: update ¢, = (1+ (/14 4¢t3_,)/2

7: until convergence (i.e., |g(art1, Br+1) — g(a, Br)| < €)

8: return w = = (o) Xt - 3/ X"7)

A-m

It should be noted that, (6) is a constrained problem, and therefore, at each step of gradient mapping,
we have to project the dual solution into the domain Z (i.e, [atr41; Bry1] = m=([e) 15 8),4,]) in
step 5) to keep them feasible. Below, we discuss how to solve this projection step efficiently.

Projection Step For clear notations, we expand the projection step into the problem

. 1 o2 , L 0)12 T T
aZH()l,l,CgZO 9 ||Ot o || + 2”16 /6 || s.L. lma - 1n,ﬁa (9)
where a® and 3° are the solutions obtained in the last iteration. We note that similar projection
problems have been studied in [34, 24] where they either have O((m + n) log(m + n)) time com-
plexity [34] or only provide approximate solutions [24]. Instead, based on the following proposition,
we provide a method which find the exact solution to (9) in O(n-+m) time. By using proof technique
similar to that for Theorem 2 in [24], we can prove the following proposition:

Proposition 1. The optimal solution to the projection problem in (9) is given by
at = [aO _’7*]+ and 13* _ [ﬂO +’7*]+ ,
where v* is the root of function p(y) = > [0 — ~]4 — > 169 + ]+ -

Based on Proposition 1, we provide a method which find the exact solution to (9) in O(m + n) time.
According to Proposition 1, the key to solving this problem is to find the root of p(v). Instead of
approximating the solution via bisection as in [24], we develop a divide-and-conquer method to find
the exact solution of v* in O(m + n) time, where a similar approach has been used in [10]. The
basic idea is to first identify the smallest interval that contains the root based on a modification of
the randomized median finding algorithm [8], and then solve the root exactly based on the interval.
The detailed projection procedure can be found in the longer version [22].

3The step size of the Nesterov’s method depends on the smoothness of the objective function. In current
work we adopt the Nemirovski’s line search scheme [29] to compute the smoothness parameter, and the detailed
algorithm can be found in [22].



Table 1: Comparison of computational complexities for ranking algorithms, where d is the number of dimen-
sions, € is the precision parameter, m and n are the number of positive and negative instances, respectively.

Algorithm Computational Complexity

SVMRank [18] O(((m +n)d + (m + n)log(m + n))/e
SVMMAP [42] O(((m+n)d+ (m+ n)log(m+n))/e
OWPC [38] E(m +n)d + (m + n) log(m + n ;/5
SVMPAUC 27 28] O nlogn + mlogm + (m +n)d) /e)
InfinitePush  [1] O((mnd + mnlog(mn))/€?)

LISVIP [31] O((mnd 4+ mnlog(mn))/e)

TopPush this paper ~ O((m + n)d/\/€)

3.3 Convergence and Computational Complexity

The theorem below states the convergence of the TopPush algorithm, which follows immediately
from the convergence result for the Nesterov’s method [29].

Theorem 2. Let avp and Bt be the solution output from TopPush after T iterations, we have
g(aTHBT)S minﬁg(a,,@)—!—e
(cv,8)€

B =

provided T > O(1/+/e).

Finally, since the computational cost of each iteration is dominated by the gradient evaluation and
the projection step, the time complexity of each iteration is O((m + n)d) since the complexity of
projection step is O(m +n) and the cost of computing the gradient is O ((m +n)d). Combining this
result with Theorem 2, we have, to find an e-suboptimal solution, the total computational complexity
of the TopPush algorithm is O((m + n)d/+/€), which is linear in the number of training instances.

Table 1 compares the computational complexity of TopPush with that of the state-of-the-art algo-
rithms. It is easy to see that TopPush is asymptotically more efficient than the state-of-the-art rank-
ing algorithms*. For instances, it is much more efficient than InfinitePush and its sparse extension
L1SVIP whose complexity depends on the number of positive-negative instance pairs; compared
with SVMRark  SyMMAP and SYMPAUC that handle specific performance metrics via structural-
SVM, the linear dependence on the number of training instances makes our TopPush approach more
appealing, especially for large datasets.

3.4 Theoretical Guarantee

We develop theoretical guarantee for the ranking performance of TopPush. In [33, 1], the authors
have developed margin-based generalization bounds for the loss function Ef;o . One limitation with
the analysis in [33, 1] is that they try to bound the probability for a positive instance to be ranked
before any negative instance, leading to relatively pessimistic bounds®. Our analysis avoids this
pitfall by considering the probability of ranking a positive instance before most negative instances.

To this end, we first define h,(x, w), the probability for any negative instance to be ranked above x

using ranking function f(x) = w 'x, as

hy(x,w) = Ey— op- []I(WTX < WTX*)] .
Since we are interested in whether positive instances are ranked above most negative instances, we

will measure the quality of f(x) = w ' x by the probability for any positive instance to be ranked
below § percent of negative instances, i.e.,

Pb(wa 5) = PI‘X+~73+ (hb(X;_,W) > 5) .
Clearly, if a ranking function achieves a high ranking accuracy at the top, it should have a large
percentage of positive instances with ranking scores higher than most of the negative instances,

leading to a small value for P,(w,d) with little 6. The following theorem bounds P, (w,d) for
TopPush, and the detailed proof can be found in the longer version [22].

“In Table 1, we report the complexity of SVMP21 in [28], which is more efficient than SVMPAY< in [27].

In addition, SVMff;}?ﬁc is used in experiments and we do not distinguish between them in this paper.

>For instance, for the bounds in [33], the failure probability can be as large as 1 if the parameter p is large.



Theorem 3. Given training data S consisting of m independent samples from Pt and n indepen-
dent samples from P~, let w* be the optimal solution to the problem in (5). Assume m > 12 and
n > t, we have, with a probability at least 1 — 2e,

Py(w*,8) < LY(w*,S) + O(\/(t +1logm)/m)
where § = O(+/logm/n) and L*(w*,S) = - 3" f(maxi<j<, W' x; —w'x).

Remark Theorem 3 implies that if the empirical loss £/(w*, S) < O(logm/m), for most positive
instance x4 (i.e., 1 — O(logm/m)), the percentage of negative instances ranked above xy is upper

bounded by O(y/logm/n). We observe that m and n play different roles in the bound; that is,
because the empirical loss compares the positive instances to the negative instance with the largest
score, it usually grows significantly slower with increasing n. For instance, the largest absolute value
of Gaussian random samples grows in log n. Thus, we believe that the main effect of increasing n
in our bound is to reduce § (decrease at the rate of 1/y/n), especially when n is large. Meanwhile,
by increasing the number of positive instances m, we will reduce the bound for Py(w,J), and
consequently increase the chance of finding positive instances at the top.

4 Experiments

4.1 Settings

To evaluate the performance of the TopPush algorithm, we conduct a set of experiments on real-
world datasets. Table 2 (left column) summarizes the datasets used in our experiments. Some of
them were used in previous studies [1, 31, 3], and others are larger datasets from different domains.
We compare TopPush with state-of-the-art algorithms that focus on accuracy at the top, including
SVMMAP [42], SVMPAUC [28] with « = 0 and 8 = 1/n, AATP [3] and InfinitePush [1]. In
addition, for completeness, several state-of-the-art classification and ranking models are included
in the comparison: logistic regression (LR) for binary classification, cost-sensitive SVM (cs-SVM)
that addresses imbalance class distribution by introducing a different misclassification cost for each
class, and SVMRank [18] for AUC optimization. We implement TopPush and InfinitePush using
MATLAB, implement AATP using CVX [14], and use LIBLINEAR [11] for LR and cs-SVM, and
use the codes shared by the authors of the original works.

We measure the accuracy at the top by commonly used metrics®: (i) positives at the top
(Pos@Top) [1, 31, 3], which is defined as the fraction of positive instances ranked above the top-
ranked negative, (ii) average precision (AP) and (iii) normalized DCG scores (NDCG). On each
dataset, experiments are run for thirty trials. In each trial, the dataset is randomly divided into two
subsets: 2/3 for training and 1/3 for test. For all algorithms, we set the precision parameter € to
10~%, choose other parameters by 5-fold cross validation (based on the average value of Pos@Top)
on training set, and perform the evaluation on test set. Finally, averaged results over thirty trails are
reported. All experiments are run on a machine with two Intel Xeon E7 CPUs and 16GB memory.

4.2 Results

In table 2, we report the performance of the algorithms in comparison, where the statistics of testbeds
are included in the first column of the table. For better comparison between the performance of
TopPush and baselines, pairwise t-tests at significance level of 0.9 are performed and results are
marks “e / o” in table 2 when TopPush is statistically significantly better/worse.

When an evaluation task can not be completed in two weeks, it will be stopped automatically, and no
result will be reported. As a consequence, we observe that results for some algorithms are missing
in Table 2 for certain datasets, especially for large ones. We can see from Table 2 that TopPush,
LR and cs-SVM succeed to finish the evaluation on all datasets (even the largest datasets url). In
contrast, SVMRark gyMRank and SVMPAUC fail to complete the training in time for several large
datasets. InfinitePush and AATP have the worst scalability: they are only able to finish the smallest
dataset diabetes. We thus conclude that overall, TopPush scales well to large datasets.

81t is worth mentioning that we also measure the ranking performance by AUC, and the results can be found
in [22]. In addition, more details of the experimental setting can be found there.



Table 2: Data statistics (left column) and experimental results. For each dataset, the number of positive
and negative instances is below the data name as m/n, together with dimensionality d. For training time
comparison,”“A” (“¥”) are marked if TopPush is at least 10 (100) times faster than the compared algorithm.
For performance (mean-std) comparison, “e” (“o”) is marked if TopPush performs significantly better (worse)
than the baseline based on pairwise ¢-test at 0.9 significance level. On each dataset, if the evaluation of an
algorithm can not be completed in two weeks, it will be stopped and its results will be missing from the table.

Data Algorithm |  Time (s) | Pos@Top AP NDCG
diabetes TopPush 5.11 x 1073 123 +.056 872 +.023 .976 + .005
500,268 LR 2.30 x 10—2 .064 + .0758  .881 £ .022 .973 £ .008
d:34 cs-SVM 7.70 x 1072 077+ .088e 758 & .166e  .920 + .078e
SVMRank 6.11 x 10~2 .087 4 .082¢  .879 4 .022 .975 4 .006
SVMMAP 4.71 x 10° 077+ .072e¢ 879 4 .012 .969 + .009

SVMPAUC | 909 x 10~ 'A | .053+.096e .668+.123e .884 + .065e
InfinitePush | 2.63 x 1015 | .119 +.051 877+.035  .978 +.007

AATP 2.72 x 103 % 127 4+ .061 .881 +.035 979 + .010

news20-forsale TopPush 2.16 x 100 .191 £ .088 .843 £+ .018 .970 + .005

999/18, 929 LR 4.14 x 109 .086 £+ .067¢  .803 + .020e¢  .962 £ .005
d: 62,061 cs-SVM 1.89 x 10° 114 £+ .069¢  .766 + .021e  .955 £ .006e

SVMRank 2.96 x 10%2% 149 4 .056e  .850 & .016 .972 4 .003
SVMMAP 8.42 x 10%2% .184 4+ .092 .832 4 .022 .969 + .007
SVMPAUC | 395 x 102% .196 £ .087 8124 .019¢  .963 £ .005e

nslkdd TopPush 7.64 x 101 .633 £ .088 .978 +.001 .997 4 .001
71,463/77, 054 LR 3.63 x 10! .220 + .053e .981 + .002 998 £ .001
d:121 cs-SVM 1.86 x 10° .556 4+ .037e  .980 £ .001 .998 + .001

SVMPAUC | 179 x 102 .634 4 .059 .956 4+ .002¢  .996 + .001

real-sim TopPush 1.34 x 101 .186 £ .049 .986 + .001 .998 £+ .001
22, 238/50, 071 LR 7.67 x 100 .100 & .043e  .989 £ .001 .999 + .001
d: 20,958 cs-SVM 4.84 x 10° .146 + .031e  .979 £ .001 .998 + .001

SVMRank 1.83 x 103 % .090 & .045¢  .986 & .000 .999 4 .001

spambase TopPush 1.51 x 10~ 129 4+ .077 .922 + .006 .988 £+ .001
1,813/2,788 LR 3.11 x 10—2 071 +.053e  .920 £ .010 .987 4+ .003
d:57 cs-SVM 8.31 x 10~2 .069 + .059¢ 907 & .010e  .980 + .004e

SVMRank 2.31 x 101 .069 + .076e  .931 £ .010 .990 £ .003
SVMMAP 1.92 x 10%% .097 4 .069¢  .935 4 .014 .984 4+ .005
SVMPAUC | 173 % 1004 073+ .058¢  .854 + .024e 975 + .007e
InfinitePush | 1.78 x 103% 1324.087  .920 £ .005 .987 +.002

url TopPush 5.11 x 103 A74 £+ .046 .986 4+ .001 .999 4+ .001
792,145/1, 603, 985 LR 8.98 x 103 .362 + .113e .993 £+ .0010 1999 + .001
d: 3,231,961 cs-SVM 3.78 x 103 1432 £ .069¢  .991 + .002 .998 4+ .001

w8a TopPush 7.35 x 100 .226 4+ .053 710 4+ .019 .938 4 .005
1,933/62, 767 LR 2.46 x 100 .107 &+ .093e 1450 £ .374e 775 £ .221e
d : 300 cs-SVM 3.87 x 100 118 +.105e 447 + .372e 774 4 .220e

SVMPAUC | 259 x 103 % .207 & .046 673 +£.021e  .929 £ .006e

Performance Comparison In terms of evaluation metric Pos@Top, we find that TopPush yields
similar performance as InfinitePush and AATP, and performs significantly better than the other base-
lines including LR and cs-SVM, SVMREank gyMRank and SVMPAYC This is consistent with the
design of TopPush that aims to maximize the accuracy at the top of the ranked list. Since the loss
function optimized by InfinitePush and AATP are similar as that for TopPush, it is not surprising
that they yield similar performance. The key advantage of using the proposed algorithm versus In-
finitePush and AATP is that it is computationally more efficient and scales well to large datasets.
In terms of AP and NDCG, we observe that TopPush yield similar, if not better, performance as
the state-of-the-art methods, such as SVMMAP and SVMPAUC  that are designed to optimize these
metrics. Overall, we conclude that the proposed algorithm is effective in optimizing the ranking
accuracy for the top ranked instances.

Training Efficiency To evaluate the computational efficiency, we set the parameters of different
algorithms to be the values that are selected by cross-validation, and run these algorithms on full
datasets that include both training and testing sets. Table 2 summarizes the training time of different
algorithms. From the results, we can see that TopPush is faster than state-of-the-art ranking meth-
ods on most datasets. In fact, the training time of TopPush is similar to that of LR and cs-SVM



implemented by LIBLINEAR. Since the time complexity of learning a binary classification model
is usually linear in the number of training instances, this result implicitly suggests a linear time
complexity for the proposed algorithm.

Scalability We study how TopPush scales to different url

number of training examples by using the largest dataset o

url. Figure 1 shows the log-log plot for the training time

of TopPush vs. the size of training data, where different 2 --2=100
lines correspond to different values of A. For the purpose ;ﬂ -8-A=10

of comparison, we also include a black dash-dot line that 2 :tél

tries to fit the training time by a linear function in the = 220,01
number of training instances (i.e., ©(m + n)). From the -0

3 4 5

plot, we can see that for different regularization parame- 10’ 10
ter ), the training time of TopPush increases even slower
than the number of training data. This is consistent with

our theoretical analysis given in Section 3.3.

10 data size 10

Figure 1: Training time of TopPush versus
training data size for different values of A.

5 Conclusion

In this paper, we focus on bipartite ranking algorithms that optimize accuracy at the top of the ranked
list. To this end, we consider to maximize the number of positive instances that are ranked above any
negative instances, and develop an efficient algorithm, named as TopPush to solve related optimiza-
tion problem. Compared with existing work on this topic, the proposed TopPush algorithm scales
linearly in the number of training instances, which is in contrast to most existing algorithms for
bipartite ranking whose time complexities dependents on the number of positive-negative instance
pairs. Moreover, our theoretical analysis clearly shows that it will lead to a ranking function that
places many positive instances the top of the ranked list. Empirical studies verify the theoretical
claims: the TopPush algorithm is effective in maximizing the accuracy at the top and is significantly
more efficient than the state-of-the-art algorithms for bipartite ranking. In the future, we plan to
develop appropriate univariate loss, instead of pairwise ranking loss, for efficient bipartite ranking
that maximize accuracy at the top.
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