
8 Appendix

Lemma 2. The function g : γ 7→ log 1
γ

1−γ is decreasing over the interval (0, 1).

Proof. This can be straightforwardly established:

g′(γ) =
− 1−γ

γ + log 1
γ

(1− γ)2
=
γ log

(
1−

[
1− 1

γ

])
− (1− γ)

γ(1− γ)2
<

(1− γ)− (1− γ)
γ(1− γ)2

= 0,

using the inequality log(1− x) < −x valid for all x < 0.

Lemma 3. Let a ≥ 0 and let g : D ⊂ R → [a,∞) be a decreasing and differentiable function.
Then, the function F : R→ R defined by

F (γ) = g(γ)−
√
g(γ)2 − b

is increasing for all values of b ∈ [0, a].

Proof. We will show that F ′(γ) ≥ 0 for all γ ∈ D. Since F ′ = g′[1 − g(g2 − b)−1/2] and g′ ≤ 0
by hypothesis, the previous statement is equivalent to showing that

√
g2 − b ≤ g which is trivially

verified since b ≥ 0.

Theorem 1. Let 1/2 < γ < γ0 < 1 and r∗ =
⌈

argminr≥1 r + γr0T
(1−γ0)(1−γr0 )

⌉
. For any v ∈ [0, 1],

if T > 4, the regret of PFSr∗ satisfies

Reg(PFSr∗ , v) ≤ (2vγ0Tγ0 log cT + 1 + v)(log2 log2 T + 1) + 4Tγ0 ,

where c = 4 log 2.

Proof. It is not hard to verify that the function r 7→ r + γr0T
(1−γ0)(1−γr0 ) is convex and approaches

infinity as r → ∞. Thus, it admits a minimizer r̄∗ whose explicit expression can be found by
solving the following equation

0 =
d

dr

(
r +

γr0T

(1− γ0)(1− γr0)

)
= 1 +

γr0T log γ0

(1− γ0)(1− γr0)2
.

Solving the corresponding second-degree equation yields

γr̄
∗

0 =
2 + T log(1/γ0)

1−γ0 −
√(

2 + T log(1/γ0)
1−γ0

)2

− 4

2
=: F (γ0).

By Lemmas 2 and 3, the function F thereby defined is increasing. Therefore, γr̄
∗

0 ≤ limγ0→1 F (γ0)
and

γr̄
∗

0 ≤
2 + T −

√
(2 + T )2 − 4
2

=
4

2(2 + T +
√

(2 + T )2 − 4)
≤ 2
T
. (8)

By the same argument, we must have γr̄
∗

0 ≥ F (1/2), that is

γr̄
∗

0 ≥ F (1/2) =
2 + 2T log 2−

√
(2 + 2T log 2)2 − 4
2

=
4

2(2 + 2T log 2 +
√

(2 + 2T log 2)2 − 4)

≥ 2
4 + 4T log 2

≥ 1
4T log 2

.

Thus,

r∗ = dr̄∗e ≤ log(1/F (1/2))
log(1/γ0)

+ 1 ≤ log(4T log 2)
log 1/γ0

+ 1. (9)
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Combining inequalities (8) and (9) with (7) gives

Reg(PFSr∗ , v) ≤
(
v

log(4T log 2)
log 1/γ0

+ 1 + v

)
(dlog2 log2 T e+ 1) +

(1 + γ0)T
(1− γ0)(T − 2)

≤ (2vγ0Tγ0 log(cT ) + 1 + v)(dlog2 log2 T e+ 1) + 4Tγ0 ,

using the inequality log( 1
γ ) ≥ 1−γ

2γ valid for all γ ∈ (1/2, 1).

8.1 Lower bound for monotone algorithms

Lemma 4. Let (pt)Tt=1 be a decreasing sequence of prices. Assume that the seller faces a truthful
buyer. Then, if v is sampled uniformly at random in the interval [ 1

2 , 1], the following inequality
holds:

E[κ∗] ≥ 1
32E[v − pκ∗ ]

.

Proof. Since the buyer is truthful, κ∗(v) = κ if and only if v ∈ [pκ, pκ−1]. Thus, we can write

E[v − pκ∗ ] =
κmax∑
κ=2

E
[
1v∈[pκ,pκ−1](v − pκ)

]
=
κmax∑
κ=2

∫ pκ−1

pκ

(v − pκ) dv =
κmax∑
κ=2

(pκ−1 − pκ)2

2
,

where κmax = κ∗( 1
2 ). Thus, by the Cauchy-Schwarz inequality, we can write

E

[
κ∗∑
κ=2

pκ−1 − pκ

]
≤ E


√√√√κ∗

κ∗∑
κ=2

(pκ−1 − pκ)2


≤ E

√√√√κ∗
κmax∑
κ=2

(pκ−1 − pκ)2


= E

[√
2κ∗E[v − pκ∗ ]

]
≤
√

E[κ∗]
√

2E[v − p∗κ],

where the last step holds by Jensen’s inequality. In view of that, since v > pκ∗ , it follows that:

3
4

= E[v] ≥ E[pκ∗ ] = E

[
κ∗∑
κ=2

pκ − pκ−1

]
+ p1 ≥ −

√
E[κ∗]

√
2E[v − pκ∗ ] + 1.

Solving for E[κ∗] concludes the proof.

The following lemma characterizes the value of κ∗ when facing a strategic buyer.

Lemma 5. For any v ∈ [0, 1], κ∗ satisfies v − pκ∗ ≥ Cκ
∗

γ (pκ∗ − pκ∗+1) with Cκ
∗

γ = γ−γT−κ
∗+1

1−γ .

Furthermore, when κ∗ ≤ 1+
√
TγT and T ≥ Tγ + 2 log(2/γ)

log(1/γ) , Cκ
∗

γ can be replaced by the universal
constant Cγ = γ

2(1−γ) .

Proof. Since an optimal strategy is played by the buyer, the surplus obtained by accepting a price
at time κ∗ must be greater than the corresponding surplus obtained when accepting the first price at
time κ∗ + 1. It thus follows that:

T∑
t=κ∗

γt−1(v − pκ∗) ≥
T∑

t=κ∗+1

γt−1(v − pκ∗+1)

⇒ γκ
∗−1(v − pκ∗) ≥

T∑
t=κ∗+1

γt−1(pκ∗ − pκ∗+1) =
γκ
∗ − γT

1− γ
(pκ∗ − pκ∗+1).
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Dividing both sides of the inequality by γκ
∗−1 yields the first statement of the lemma. Let us

verify the second statement. A straightforward calculation shows that the conditions on T imply
T −

√
TTγ ≥ log(2/γ)

log(1/γ) , therefore

Cκ
∗

γ ≥
γ − γT−

√
TγT

1− γ
≥ γ − γ

log(2/γ)
log(1/γ)

1− γ
=
γ − γ

2

1− γ
=

γ

2(1− γ)
.

Proposition 5. For any convex decreasing sequence (pt)Tt=1, if T ≥ Tγ + 2 log(2/γ)
log(1/γ) , then there

exists a valuation v0 ∈ [ 1
2 , 1] for the buyer such that

Reg(Am, v0) ≥ max

1
8

√
T −
√
T ,

√√√√Cγ

(
T −

√
TγT

)(1
2
−
√
Cγ
T

) = Ω(
√
T +

√
CγT ).

Proof. In view of Proposition 1, we only need to verify that there exists v0 ∈ [ 1
2 , 1] such that

Reg(Am, v0) ≥

√√√√Cγ

(
T −

√
TγT

)(1
2
−
√
Cγ
T

)
.

Let κmin = κ∗(1), and κmax = κ∗( 1
2 ). If κmin > 1 +

√
TγT , then Reg(Am, 1) ≥ 1 +

√
TγT , from

which the statement of the proposition can be derived straightforwardly. Thus, in the following we
will only consider the case κmin ≤ 1+

√
TγT . Since, by definition, the inequality 1

2 ≥ pκmax holds,
we can write

1
2
≥ pκmax =

κmax∑
κ=κmin+1

(pκ − pκ−1) + pκmin ≥ κmax(pκmin+1 − pκmin) + pκmin ,

where the last inequality holds by the convexity of the sequence and the fact that pκmin − pκmin−1 ≤
0. The inequality is equivalent to pκmin − pκmin+1 ≥

pκmin−
1
2

κmax
. Furthermore, by Lemma 5, we have

max
v∈[ 12 ,1]

Reg(Am, v) ≥ max (κmax, (T − κmin)(pκmin − pκmin+1))

≥ max
(
κmax, Cγ

(T − κmin)(pκmin − 1
2 )

κmax

)
.

The right-hand side is minimized for κmax =
√
Cγ(T − κmin)(pκmin − 1

2 ). Thus, there exists a
valuation v0 for which the following inequality holds:

Reg(Am, v0) ≥
√
Cγ(T − κmin)

(
pκmin −

1
2

)
≥
√
Cγ

(
T −

√
TγT

)(
pκmin −

1
2

)
.

Furthermore, we can assume that pκmin ≥ 1 −
√

Cγ
T otherwise Reg(Am, 1) ≥ (T − 1)

√
Cγ/T ,

which is easily seen to imply the desired lower bound. Thus, there exists a valuation v0 such that

Reg(Am, v0) ≥

√√√√Cγ

(
T −

√
TγT

)(1
2
−
√
Cγ
T

)
,

which concludes the proof.

9 Simulations

Here, we present the results of more extensive simulations for PFSr and the monotone algorithm.
Again, we consider two different scenarios. Figure 3 shows the experimental results for an agnostic
scenario where the value of the parameter γ remains unknown to both algorithms and where the
parameter r of PFSr is set to log(T ). The results reported in Figure 4 correspond to the second
scenario where the discounting factor γ is known to the algorithms and where the parameter β for
the monotone algorithm is set to 1−1/

√
TTγ . The scale on the plots is logarithmic in the number

of rounds and in the regret.
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Figure 3: Regret curves for PFSr and monotone for different values of v and γ. The value of γ is
not known to the algorithms.
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Figure 4: Regret curves for PFSr and monotone for different values of v and γ. The value of γ is
known to both algorithms.
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