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A Proof of Theorem 1

We start our proof from showing the legitimacy and feasibility of the algorithm at the tolerance
claimed in the theorem. We first provide a quick proof of Lemma 1.

Lemma 1 (in the main paper) Evaluating relation U v x and meanwhile determining IUvx is
feasible in time O(|x|).

Proof The evalution can be done recursively. The base case is U = λ , where U v x holds and
IUvx = 0. If U = U1U

′ where U1 ∈ Σ∪, we search for the leftmost occurrence of U1 in x. If there
is no such occurrence, then U 6v x and IUvx = ∞. Otherwise, x = yU1x

′, where U1 6v y. Then
U v x if and only if U ′ v x′ and IUvx = IU1vx + IU ′vx′ . We continue recursively with U ′ and
x′. The total running time of this procedure is O(|x|). �

Lemma 5 Under element-wise independent and identical distributions over instance space I =
Σn, the conditional statistical query χV,a is legitimate and feasible at tolerance

τ =
ε2

40sn2 + 4ε

Proof First of all, the function χV,a computes a binary mapping from labeled examples (x, y) to
{0, 1} and satisfies the definition of a statistical query. Given θV,a(x) = a, that is, given V 6v
x[1, n − 1] or xIVvx+1 = a if V v x[1, n − 1], the query χV,a(x, y) returns 0 if x is a negative
example (y = −1) or returns 1 if x is a positive example (y = +1).

From Lemma 1, evaluating the relation V v x and meanwhile determining IVvx is feasible in time
O(n). Thus, θV,a(x) and then χV,a(x, y) can be efficiently evaluated.

For
Pr[θV,a(x) = a] = Pr[V 6v x[1, n− 1]]+

Pr[V v x[1, n− 1]] · Pr[xIVvx+1 = a | V v x[1, n− 1]]

in order to prove Pr[θV,a(x) = a] not too small, we only need to show one of the two items in the
sum is at least polynomially large.

We make an initial statistical query with tolerance τ = ε2/(40sn2 + 4ε) to estimate Pr[y = +1]. If
the answer is≤ ε−τ , then Pr[y = +1] ≤ ε and the algorithm outputs a hypothesis that all examples
are negative. Otherwise, Pr[y = +1] is at least ε − 2τ , and the statistical query χV,a is used. As
V v x[1, n− 1] = U [1, `] v x[1, n− 1] is a necessary condition of y = +1, we have

Pr[V v x[1, n− 1]] ≥ Pr[y = +1] ≥ ε− ε2

20sn2 + 2ε
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Since xIVvx+1 and x[1, IVvx] are independent,

Pr[xIVvx+1 = a | V v x[1, n− 1]] = Pr[xIVvx+1 = a]

Because we don’t have any knowledge of the distribution, we can’t guarantee Pr[xIVvx+1 = a] is
large enough for every a ∈ Σ. However, we notice that there is no need to consider symbols with
small probabilities of occurrence. Now we show why and how. For each a ∈ Σ, execute a statistical
query

χ′a(x, y) = 1{xi=a} (1)
at tolerance τ , where 1{π} represents the 0-1 truth value of the predicate π. Since the strings are
element-wise i.i.d., the index i can be any integer between 1 and n. If the answer from oracle STAT
is ≤ ε/(2sn) − τ , then Pr[xi = a] ≤ ε/(2sn). For such an a, the probability that it shows up in
a string is at most ε/(2s). Because there are at most s − 1 such symbols in Σ, the probability that
any of them shows up in a string is at most ε/2. Otherwise, Pr[xi = a] ≥ ε/(2sn) − 2τ . Thus we
only need to consider the symbols a ∈ Σ such that Pr[xi = a] ≥ ε/(2sn) − 2τ and learn the ideal
with error parameter ε/2 so that the total error will be bounded within ε. For algebra succinctness,
we use a concise lower bound for Pr[xi = a]:

Pr[xi = a] ≥ ε

2sn
− 2τ =

ε

2sn
− ε2

20sn2 + 2ε
≥ ε

4sn
(2)

Eventually we have
Pr[θV,a(x) = a] ≥Pr[V v x[1, n− 1]] · Pr[xIVvx+1 = a | V v x[1, n− 1]]

≥
(

1− ε

20sn2 + 2ε

)
ε2

4sn

(3)

is polynomially large. Query χV,a is legitimate and feasible. �

The correctness of the algorithm is based on the intuition that the query result IEχV,a+ of a+ ∈ U`+1

should be greater than that of a− 6∈ U`+1 and the difference is large enough to tolerate the noise
from the oracle. To prove this, we first consider the exact learning case. Define an infinite string
U ′ = U [1, `]U [` + 2, L]U∞`+1 and let x′ = xΣ∞ be the extension of x obtained by padding it
on the right with an infinite string generated from the same distribution as x. Let Q(j, i) be the
probability that the largest g such that U ′[1, g] v x′[1, i] is j, or formally, Q(j, i) = Pr[U ′[1, j] v
x′[1, i] ∧ U ′[1, j + 1] 6v x′[1, i]].
Lemma 2 (in the main paper) Under element-wise independent and identical distributions over
instance space I = Σn, concept class X is exactly identifiable with O(sn) conditional statistical
queries from STAT(X,D) at tolerance

τ ′ =
1

5
Q(L− 1, n− 1)

Proof If the algorithm doesn’t halt, U has not been completely recovered and ` < L. By assump-
tion, V = U [1, `]. If V 6v x[1, n− 1] then x must be a negative example and χV,a(x, y) = 0. Hence
χV,a(x, y) = 1 if and only if V v x[1, n− 1] and y = +1.

Let random variable J be the largest value for which U ′[1, J ] is a subsequence of x[1, n − 1].
Consequently, Pr[J = j] = Q(j, n− 1).

If a ∈ U`+1, then y = +1 if and only if J ≥ L− 1. Thus we have

IEχV,a =

n−1∑
j=L−1

Q(j, n− 1)

If a 6∈ U`+1, then y = +1 if and only if U v x[1, IVvx]x[IVvx + 2, n]. Since elements in a
string are i.i.d., Pr[U v x[1, IVvx]x[IVvx + 2, n]] = Pr[U ′[1, L] v x[1, n − 1]], which is exactly
Pr[J ≥ L]. Thus we have

IEχV,a =

n−1∑
j=L

Q(j, n− 1)
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The difference between these two values is Q(L− 1, n− 1). In order to distinguish the target U`+1

from other symbols, the query tolerance can be set to one fifth of the difference. The alphabet Σ will
be separated into two clusters by the results of IEχV,a: U`+1 and the other symbols. The maximum
difference (variance) inside a cluster is smaller than the minimum difference (gap) between the two
clusters, making them distinguishable. As a consequence s statistical queries for each prefix of U
suffice to learn U exactly. �

Lemma 2 indicates bounding the quantity Q(L − 1, n − 1) is the key to the tolerance for PAC
learning. Unfortunately, the distribution {Q(j, i)} doesn’t seem of any strong properties we know
of providing a polynomial lower bound. Instead we introduce new quantity R(j, i) = Pr[U ′[1, j] v
x′[1, i]∧U ′[1, j] 6v x′[1, i−1]] being the probability that the smallest g such that U ′[1, j] v x′[1, g]
is i. Now we show the strong unimodality of distribution {R(j, i)}. Denote pj = Pr[xi ∈ U ′j ].

Lemma 6 The convolution of two strongly unimodal discrete distributions is strongly unimodal.

Proof The proof is obvious from the definition of strong unimodality and the associativity of con-
volution. Let H3 = H2 ∗H1 be the convolution of two strongly unimodal distributions H1 and H2.
For any unimodal distribution P1, let P2 = H1 ∗ P1 be the convolution of H1 and P1. Because of
the strong unimodality of distribution H1, P2 is a unimodal distribution. Also because of the strong
unimodality of distribution H2, the convolution of H3 and P1, H3 ∗ P1 = H2 ∗H1 ∗ P1 = H2 ∗ P2

is a unimodal distribution. Since P1 can be an arbitrary unimodal distribution, H3 is strongly
unimodal according to the definition of strong unimodality. �

Previous work [10] provided a useful equivalent statement on strong unimodality of a distribution.

Lemma 7 ([10]) Distribution {H(i)} is strongly unimodal if and only if H(i) is log-concave. That
is,

H(i)2 ≥ H(i+ 1) ·H(i− 1)

for all i.

Since a distribution with all mass at zero is unimodal, an immediate consequence is

Corollary 3 A strongly unimodal distribution is unimodal.

We now prove the strong unimodality of distribution {R(j, i)}.

Lemma 8 For any fixed j, distribution {R(j, i)} is strongly unimodal with respect to i.

Proof This proof can be done by induction on j as follows.

Basis: For j = 1, it is obvious that {R(1, i)} = {(1− p1)i−1p1} is a geometric distribution, which
is strongly unimodal. According to Lemma 7, this is due to R2(1, i) = R(1, i− 1) ·R(1, i+ 1) for
all i > 1.

Inductive step: For j > 1, assume by induction {R(j − 1, i)} is strongly unimodal. Based on the
definition of R(j, i), we have

R(j, i) =

i−1∑
k=j−1

(
R(j − 1, k) · (1− pj)i−k−1pj

)
(4)

Thus R(j, i) is the convolution of distribution {R(j − 1, i)} and distribution {(1 − pj)
i−1pj}, a

geometric distribution just proved to be strongly unimodal. By assumption, {R(j−1, i)} is strongly
unimodal. From Lemma 6, distribution {R(j, i)} is also strongly unimodal.

Conclusion: For any fixed j, distribution {R(j, i)} is strongly unimodal with respect to i. �

Combining Lemma 8 with Corollary 3, we have

Corollary 4 For any fixed j, distribution {R(j, i)} is unimodal with respect to i.
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Lemma 9 Denote by N(j) the mode of {R(j, i)}, then N(j) is strictly increasing with respect to j.
That is, for any j > 1, N(j) > N(j − 1).

Proof According to Equation 4, R(j, i) is the convolution of distribution {R(j − 1, i)} and distri-
bution {(1− pj)i−1pj} so

R(j, i) =

i−1∑
k=j−1

(
R(j − 1, k) · (1− pj)i−k−1pj

)
and

R(j, i+ 1) =

i∑
k=j−1

(
R(j − 1, k) · (1− pj)i−kpj

)
Hence, we get

R(j, i+ 1) = pjR(j − 1, i) + (1− pj)R(j, i) (5)
Denote by ∆R(j, i) the difference R(j, i)−R(j, i− 1). From Equation 5, we have

∆R(j, i+ 1) = pj∆R(j − 1, i) + (1− pj)∆R(j, i) (6)

For any j ≥ 1, we have R(j, 1) ≥ R(j, 0) = 0 or ∆R(j, 1) ≥ 0. From the definition of N(j), N(j)
must be at least j and for any i ≤ N(j − 1), the difference ∆R(j − 1, i) is non-negative. Hence, if
∆R(j, i) is non-negative, then ∆R(j, i+ 1) is non-negative for Equation 6. So inductively, for any
i ≤ N(j − 1) + 1, we always have ∆R(j, i) ≥ 0. Recall that we define the mode of a distribution
with multiple modes as the one with the largest index, thus N(j) > N(j − 1). �

With the strong unimodality of distribution {R(j, i)}, we are able to present the PAC learnability of
concept class X in the statistical query model.

Theorem 1 (in the main paper) Under element-wise independent and identical distributions over
instance space I = Σn, concept class X is approximately identifiable with O(sn) conditional
statistical queries from STAT(X,D) at tolerance

τ =
ε2

40sn2 + 4ε

or with O(sn) statistical queries from STAT(X,D) at tolerance

τ̄ =

(
1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

Proof From Lemma 5, statistical query χV,a is legitimate and feasible at tolerance τ = ε2/(40sn2+
4ε) and our error parameter must be set to ε/2 in order to have Inequality 2.

We modify the statistical query algorithm to make an initial statistical query with tolerance τ =
ε2/(40sn2 + 4ε) to estimate Pr[y = +1]. If the answer is ≤ ε/2 − τ , then Pr[y = +1] ≤ ε/2 and
the algorithm outputs a hypothesis that all examples are negative. If the answer is ≥ 1 − ε/2 + τ ,
then Pr[y = +1] ≥ 1− ε/2 and the algorithm outputs a hypothesis that all examples are positive.

Otherwise, Pr[y = +1] and Pr[y = −1] are both at least ε/2 − 2τ . We then do another statistical
query at tolerance τ to estimate Pr[y = +1 | V v x]. Since V v x is a necessary condition of
positivity, Pr[V v x] must be at least Pr[y = +1] ≥ ε/2− 2τ and this statistical query is legitimate
and feasible. If the answer is ≥ 1 − ε/2 + τ , then Pr[y = +1 | V v x] ≥ 1 − ε/2. The algorithm
outputs a hypothesis that all strings x such that V v x are positive and all strings x such that V 6v x
are negative because Pr[y = −1 | V 6v x] = 1. If ` = L, Pr[y = +1 | V v x] must be 1 and the
algorithm halts. Otherwise, ` < L and the first statistical query algorithm is used. We now show
that Q(L− 1, n− 1) ≥ 5τ , establishing the bound on the query tolerance.

Let random variable I be the smallest value for which U ′[1, L] is a subsequence of x′[1, I]. Based
on the definition of R(j, i), we have Pr[I = i] = R(L, i). String x is a positive example if and only
if U ′[1, L] v x′[1, n], which is exactly I ≤ n. As a consequence,

Pr[y = +1] =

n∑
i=L

R(L, i) (7)
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From Corollary 4, distribution {R(L, i)} is unimodal and assume its mode is N(L). If n ≤ N(L)
then R(L, n) is at least as large as every term in the sum Pr[y = +1] =

∑n
i=LR(L, i). Hence we

get

R(L, n) ≥ ε− 4τ

2(n− L+ 1)
≥ ε− 4τ

2n
≥ 5ε2

40sn2 + 4ε
= 5τ

If n > N(L), according to Lemma 9, for any j ≤ L we have n > N(j). That is, for any j ≤ L, we
have R(j, n) ≥ R(j, n+ 1).

From Equation 5,
R(j, n+ 1) = pjR(j − 1, n) + (1− pj)R(j, n)

so
pjR(j − 1, n) + (1− pj)R(j, n) ≤R(j, n)

=pjR(j, n) + (1− pj)R(j, n)

We then have
R(j − 1, n) ≤ R(j, n)

This holds for any j ≤ L soR(j, n) is non-decreasing with respect to j when n > N(L). Inductively
we get R(L, n) ≥ R(j, n) for any j ≤ L.

Because U ′[1, L] 6v x[1, n− 1] is a necessary condition of y = −1 and

Pr[U ′[1, L] 6v x[1, n− 1]] =

L−1∑
j=0

Q(j, n− 1)

we get
L−1∑
j=0

Q(j, n− 1) ≥ Pr[y = −1] ≥ ε− 4τ

2

Note that R(j, n) = pjQ(j − 1, n− 1), then

L∑
j=1

R(j, n)

pj
≥ ε− 4τ

2

Since
Pr[y = +1] ≥ ε− 4τ

2
> 0

from Inequality 2, we must have pj ≥ ε/(4sn) for all j. Then we have

4sn

ε

L∑
j=1

R(j, n) ≥
L∑
j=1

R(j, n)

pj
≥ ε− 4τ

2

Because R(L, n) ≥ R(j, n) for any j ≤ L, we get

4sn

ε
LR(L, n) ≥ ε− 4τ

2

and

R(L, n) ≥ (ε− 4τ)ε

8sn2
=

5ε2

40sn2 + 4ε
= 5τ

Finally, we have

Q(L, n) = (1− pL+1)Q(L, n− 1) + pLQ(L− 1, n− 1)

≥ pLQ(L− 1, n− 1) = R(L, n) ≥ 5ε2

40sn2 + 4ε

That is, Q(L− 1, n− 1) ≥ 5τ . For Lemma 2, we have τ = ε2/(40sn2 + 4ε). Inferring τ̄ from τ is
trivial. Define general statistical query

χ̄V,a(x, y) =

{
(y + 1)/2 if θV,a(x) = a
0 if θV,a(x) 6= a

(8)
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Then for any a, the expected query result

IEχ̄V,a = Pr[θV,a(x) = a] · IEχV,a + 0

and the difference between IEχ̄V,a | a ∈ U`+1 and IEχ̄V,a | a 6∈ U`+1 is 5τ · Pr[θV,a(x) = a].
Hence, from Inequality 3,

τ̄ =

(
1− ε

20sn2 + 2ε

)
ε4

16sn(10sn2 + ε)

This completes the proof. �

B Proof of Theorem 2

To calculate the tolerance for PAC learning, we first consider the exact learning tolerance. Let x′ be
an infinite string generated by the Markov chain defined in Section 4. For any 0 ≤ ` ≤ L, we define
quantity R`(j, i) by

R`(j, i) = Pr[u[`+1, `+ j] v x′[m+1,m+ i]∧u[`+1, `+ j] 6v x′[m+1,m+ i−1] | x′m = u`]

Intuitively, R`(j, i) is the probability that the smallest g such that u[`+ 1, `+ j] v x′[m+ 1,m+ g]
is i, given x′m = u`. We have the following conclusion on the exact learning tolerance.

Lemma 3 (in the main paper) Under Markovian string distributions over instance space I = Σ≤n,
given Pr[|x| = k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, the concept class
is exactly identifiable with O(sn2) conditional statistical queries from STAT( ,D) at tolerance

τ ′ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}
Proof If the algorithm doesn’t halt, u has not been completely recovered and ` < L. Again, we
calculate the difference of Ψv,a between the cases a+ = u`+1 and a− 6= u`+1.

For a− 6= u`+1, let pj denote the probability that the first passage time from a− to u`+1 is equal to
j. Notice that

IEχv,a−,k =

k−h−1∑
j=1

(
pj

k−h−1−j∑
i=0

R`+1(L− `− 1, i)

)

≤
k−h−1∑
j=1

(
pj

k−h−2∑
i=0

R`+1(L− `− 1, i)

)
We get

IEχv,a−,k ≤
k−h−2∑
i=0

R`+1(L− `− 1, i)

For a+ = u`+1, we have

IEχv,a+,k =

k−h−1∑
i=0

R`+1(L− `− 1, i)

Summing up all the items, we can get the difference

Ψv,a+ −Ψv,a− =

n∑
k=h+1

(
IEχv,a+,k − IEχv,a−,k

)
≥

n∑
k=h+1

(
k−h−1∑
i=0

R`+1(L− `− 1, i)−
k−h−2∑
i=0

R`+1(L− `− 1, i)

)

=

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)
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In order to distinguish the target u`+1 from other symbols, the query tolerance can be set to one
third of the difference so that the symbol with largest query result must be u`+1. Thus the overall
tolerance for Ψv,a is

∑n
k=h+1R`+1(L− `− 1, k − h− 1)/3. Since Ψv,a is the expectation sum of

(n−h) statistical queries, we can evenly distribute the overall tolerance on each χv,a,k. So the final
tolerance on each statistical query is

τ ′ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}
Taking minimum over 0 ≤ ` < L is because h depends on ` and the tolerance needs to be
independent of h. As a consequence sn statistical queries for each prefix of U suffice to learn U
exactly. �

We then show how to choose a proper h from [0, n− 1].

Lemma 10 Under Markovian string distributions over instance space I = Σ≤n, given Pr[|x| =
k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, the conditional statistical query
χv,a,k is legitimate and feasible at tolerance

τ =
ε

3n2 + 2n+ 2

Proof First of all, the function χv,a,k computes a binary mapping from labeled examples (x, y) to
{0, 1} and satisfies the definition of a statistical query. Under the given conditions, χv,a,k returns 0
if x is a negative example (y = −1) or returns 1 if x is a positive example (y = +1).

From Lemma 1, evaluating the relation v v x and meanwhile determining Ivvx is feasible in time
O(n). Since |x| ≤ n, determining |x| also takes O(n) time. Thus, χv,a,k(x, y) and then Ψv,a(x, y)
can be efficiently evaluated.

According to the Markov property and the independence between string length and symbols in a
string, we have

Pr[Ivvx = h, xh+1 = a and |x| = k]

= Pr[Ivvx = h] · Pr[xh+1 = a | Ivvx = h] · Pr[|x| = k]

≥Pr[Ivvx = h] · c · t
The only problem left is to make sure Pr[Ivvx = h] is polynomially large. Obviously this can’t be
guaranteed for all h between ` and n − 1 so h must be chosen carefully. We now show there must
be such an h.

We make an initial statistical query with tolerance ε/(3n2 + 2n+ 2) to estimate Pr[y = +1]. If the
answer is ≤ (3n2 + 2n + 1)ε/(3n2 + 2n + 2), then Pr[y = +1] ≤ ε and the algorithm outputs a
hypothesis that all examples are negative. Otherwise, Pr[y = +1] is at least (3n2 + 2n)ε/(3n2 +
2n+ 2), and the statistical queries {χv,a,k} are used. Since

Pr[y = +1] =

n−1∑
h=`

Pr[y = +1 ∧ Ivvx = h] (9)

There must be at least one h so that

Pr[y = +1 ∧ Ivvx = h] ≥ 1

n− h
Pr[y = +1]

≥ 1

n
Pr[y = +1]

≥ 1

n
· (3n2 + 2n)ε

3n2 + 2n+ 2

=
(3n+ 2)ε

3n2 + 2n+ 2
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As
Pr[y = +1 ∧ Ivvx = h] = Pr[y = +1 | Ivvx = h] · Pr[Ivvx = h]

both Pr[y = +1 | Ivvx = h] and Pr[Ivvx = h] must be at least (3n + 2)ε/(3n2 + 2n + 2). This
means there must be some h making our statistical queries legitimate.

We now show how to determine a proper value of h. We can do a statistical query

χ′h(x, y) =
1

2
(y + 1) · 1{Ivvx=h} (10)

for each h from ` to n − 1, where 1{π} represents the 0-1 truth value of the predicate π. It is easy
to see IEχ′h = Pr[y = +1 ∧ Ivvx = h]. According to our analysis above and due to the noise of the
statistical query, there must be at least one h such that the answer is ≥ (3n + 1)ε/(3n2 + 2n + 2).
If we choose such an h, it is guaranteed to have

Pr[y = +1 ∧ Ivvx = h] ≥ 3nε

3n2 + 2n+ 2

so that
Pr[Ivvx = h] ≥ 3nε

3n2 + 2n+ 2
and

Pr[y = +1 | Ivvx = h] ≥ 3nε

3n2 + 2n+ 2
(11)

After at most n statistical queries {χ′h}, we can determine the value of h in query χv,a,k. Thus
statistical queries {χv,a,k} and Ψv,a are legitimate and feasible. �

Below is the proof of Theorem 2.

Theorem 2 (in the main paper) Under Markovian string distributions over instance space I =
Σ≤n, given Pr[|x| = k] ≥ t > 0 for ∀1 ≤ k ≤ n and min{M(·, ·), π0(·)} ≥ c > 0, concept
class is approximately identifiable with O(sn2) conditional statistical queries from STAT( ,D)
at tolerance

τ =
ε

3n2 + 2n+ 2

or with O(sn2) statistical queries from STAT( ,D) at tolerance

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2

Proof From Lemma 10, statistical queries {χv,a,k} and Ψv,a are legitimate and feasible at tolerance
ε/(3n2 + 2n+ 2).

We modify the statistical query algorithm to make an initial statistical query with tolerance ε/(3n2 +
2n + 2) to estimate Pr[y = +1]. If the answer is ≤ (3n2 + 2n + 1)ε/(3n2 + 2n + 2), then
Pr[y = +1] ≤ ε and the algorithm outputs a hypothesis that all examples are negative. Otherwise,
Pr[y = +1] is at least (3n2 + 2n)ε/(3n2 + 2n+ 2).

We then do another statistical query with tolerance ε/(3n2+2n+2) to estimate Pr[y = +1 | v v x].
Since v v x is a necessary condition of positivity, Pr[v v x] must be at least Pr[y = +1] ≥
(3n2 + 2n)ε/(3n2 + 2n + 2) and this statistical query is legitimate and feasible. If the answer is
≥ 1 − (3n2 + 2n)ε/(3n2 + 2n + 2), then Pr[y = +1 | v v x] ≥ 1 − ε. The algorithm outputs
a hypothesis that all strings x such that v v x are positive and all strings x such that v 6v x are
negative because Pr[y = −1 | v 6v x] = 1. If ` = L, Pr[y = +1 | v v x] must be 1 and the
algorithm halts. Otherwise, ` < L and the first statistical query algorithm is used.

From the proof for Lemma 10, we then use O(n) statistical queries

χ′h(x, y) =
1

2
(y + 1) · 1{Ivvx=h}

to find an h such that Inequality 11 holds:

Pr[y = +1 | Ivvx = h] ≥ 3nε

3n2 + 2n+ 2

8



Similarly, let qj denote the probability that the first passage time from u` to u`+1 is equal to j.
Notice that

Pr[y = +1 | Ivvx = h] ≤
n−h∑
j=1

(
qj

n−h−j∑
i=0

R`+1(L− `− 1, i)

)
We have

3nε

3n2 + 2n+ 2
≤Pr[y = +1 | Ivvx = h]

≤
n−h∑
j=1

(
qj

n−h−j∑
i=0

R`+1(L− `− 1, i)

)

≤
n−h∑
j=1

(
qj

n−h−1∑
i=0

R`+1(L− `− 1, i)

)

≤
n−h−1∑
i=0

R`+1(L− `− 1, i)

=

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

From Lemma 3, the conditional tolerance is

τ = min
0≤`<L

{
1

3(n− h)

n∑
k=h+1

R`+1(L− `− 1, k − h− 1)

}
≥ ε

3n2 + 2n+ 2

Similar to the proof of Theorem 1, define general statistical query

χ̄v,a,k(x, y) =

{
(y + 1)/2 if Ivvx = h, xh+1 = a and |x| = k
0 otherwise (12)

and

Ψ̄v,a =

n∑
k=h+1

IEχ̄v,a,k(x, y) (13)

Then the general tolerance τ̄ can be easily inferred from the conditional tolerance τ :

τ̄ =
3ctnε2

(3n2 + 2n+ 2)2

Considering we have used n statistical queries to determine h, (s + 1)n statistical queries for each
prefix of u suffice to PAC learn u. This completes the proof. �

C A constrained generalization to learning shuffle ideals under product
distributions

In this section we generalize the idea in Section 3 to learning the extended class of shuffle ide-
als when example strings are drawn from a product distribution. For any augmented string
V ∈ (Σ∪)

≤n, any symbol a ∈ Σ and any integer h ∈ [0, n− 1], define

χ̃V,a,h(x, y) =
1

2
(y + 1) given IVvx = h and xh+1 = a

where y = c(x) is the label of x. Again the algorithm uses query Pr[y = +1 | V v x] to tell
whether it is time to halt. As before, let V be the partial pattern we have learned and the algorithm
starts with V = λ. For 1 ≤ i ≤ n and 1 ≤ j ≤ L, define probability Q̃(j, i) as below.

Q̃(j, i) =

{
Pr[U [L− j + 1, L] v x[n− i+ 1, n] ∧ U [L− j, L] 6v x[n− i+ 1, n]] if 1 ≤ j < L
Pr[U v x[n− i+ 1, n]] if j = L

9



Lemma 11 Under product distributions over instance space I = Σn, given Pr[xi = a] ≥ t > 0 for
∀1 ≤ i ≤ n and ∀a ∈ Σ, concept class X is exactly identifiable with O(sn) conditional statistical
queries from STAT(X,D) at tolerance

τ ′ =
1

5
min

{
Q̃(L− 1, n− 1), min

1≤`≤L
max

`≤h≤n−1
Q̃(L− `− 1, n− h− 1)

}

Proof If the algorithm doesn’t halt, U has not been completely recovered and ` < L. As before, we
calculate the difference of IEχ̃V,a,h between the cases a+ ∈ U`+1 and a− 6∈ U`+1.

When ` = 0 and V = λ, the value of IVvx must be 0 so h is fixed to be 0 in the query. For symbol
a+ ∈ U1, we have

IEχ̃λ,a+,0 = Q̃(L− 1, n− 1) + Q̃(L, n− 1)

and for symbol a− 6∈ U1,
IEχ̃λ,a−,0 = Q̃(L, n− 1)

Taking one fifth of the difference gives the tolerance Q̃(L− 1, n− 1)/5 for ` = 0.

When 1 ≤ ` < L and V = U [1, `], we have for symbol a+ ∈ U`+1,

IEχ̃V,a+,h =

L∑
j=L−`−1

Q̃(j, n− h− 1)

and for symbol a− 6∈ U`+1,

IEχ̃V,a−,h =

L∑
j=L−`

Q̃(j, n− h− 1)

Again taking one fifth of the difference gives the tolerance Q̃(L− `− 1, n− h− 1)/5. For a fixed
1 ≤ ` < L, tolerance max`≤h≤n−1 Q̃(L − ` − 1, n − h − 1)/5 is enough to learn U`+1 exactly.
Taking the minimum tolerance among all 0 ≤ ` < L gives the overall tolerance in the statement.
As a consequence s statistical queries for each prefix of U suffice to learn U exactly. �

A more complicated algorithm is needed to PAC learn shuffle ideals under product distributions. We
first define two additional simple queries:

χ′V,a,h,i(x, y) = 1{xh+i=a} given IVvx = h

χ+
V,a,h,i(x, y) = 1{xh+i=a} given IVvx = h and y = +1

whose expectations serve as empirical estimators for the distributions of the symbol at the next i-th
position over all strings (χ′V,a,i) and over all positive strings (χ+

V,a,i), both conditioned on IVvx = h.
Below is how the algorithm works, with ε̄g+1 and ε′ to be decided later in the proof.

First an initial query to estimate probability Pr[y = +1 | V v x] is made. The algorithm will
classify all strings such that V v x negative if the answer is close to 0, or positive if the answer is
close to 1. To ensure the legitimacy and feasibility of the algorithm, we make another initial query to
estimate the probability Pr[IVvx = h] for each h. The algorithm then excludes the low-probability
cases such that any of the excluded ones happens with probability lower than ε/2. Thus we only
need to consider the cases with polynomially large Pr[IVvx = h] and learn the target ideal within
error ε/2. Otherwise, let P (+|a, h) denote IEχ̃V,a,h and we make a statistical query to estimate
P (+|a, h) for each a ∈ Σ. If the difference P (+|a+, h) − P (+|a−, h), where a+ is in the next
element of U and a− is not, is large enough for some h, then the results of queries for P (+|a, h)
will form two distinguishable clusters, where the maximum difference inside one cluster is smaller
than the minimum gap between them, so that we are able to learn the next element in U .

Otherwise, for all h with nonnegligible Pr[IVvx = h], the difference P (+|a+, h)− P (+|a−, h) is
very small and we will show that there is an interval starting from index h+1 which we can skip with
little risk for each case when IVvx = h. Problematic cases leading to misclassification will happen
with very small probability within this interval. We are safe to skip the whole interval and move on.
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1. Estimate probability Pr[y = +1 | V v x] at tolerance ε′/3. If the answer is ≤ 2ε′/3,
classify all strings x such that V v x as negative and backtrack on the classification
tree. If the answer is ≥ 1 − 2ε′/3, classify all strings x such that V v x as positive and
backtrack. If the number of intervals skipped on the current path exceeds C, classify all
strings x such that V v x as positive and backtrack. Otherwise go to Step 2

2. For each h with nonnegligible Pr[IVvx = h], estimate IEχV,a,h at tolerance τ1 =
ε̄2g+1/384 for each a ∈ Σ. Go to Step 3.

3. If the results for some h produce two distinguishable clusters, where the maximum differ-
ence inside one cluster is ≤ 4τ1 while the minimum gap between two clusters is > 4τ1,
then the set of all the symbols that belong to the cluster with larger query results is the
next element in U . Update V and go to Step 1. Otherwise, branch the classification tree.
For each h, let k ← 1 and T ← 1. Go to Step 4.

4. For each a ∈ Σ, estimate IEχ′V,a,h,k and IEχ+
V,a,h,k at tolerance τ2 = ε̄g+1/(8sn) so that

we will have estimators D̂k(h) and D̂+
k (h). Go to Step 5.

5. T ← (1− ‖D̂k(h)− D̂+
k (h)‖TV ) · T . If 1− T ≤ 3ε̄g+1/4, k ← k + 1 and go to Step 4.

Otherwise, skip the interval from xh+1 to xh+k−1. Update V and go to Step 1.

Figure 2: Approximately learning X under product distributions

The remaining problem is to identify the length of this interval, that is, to estimate the probability
that an error happens if we skip an interval. LetD1:k(h) be the distribution of x[h+1, h+k] over all
strings given IVvx = h andD+

1:k(h) be the corresponding distribution over all positive strings given
IVvx = h. The probability that an error happens due to skipping the next k elements is the total
variation distance between D1:k(h) and D+

1:k(h). Thanks to the independence between the elements
in a string, it can be proved that ‖D1:k(h) − D+

1:k(h)‖TV can be estimated within polynomially
bounded error.

Because the lengths of skipped intervals in cases with different IVvx could be different, the algo-
rithm branches the classification tree to determine the skipped interval according to the value of
IVvx. The algorithm runs the procedure above recursively on each branch. Figure 2 demonstrates
this skipping strategy of the algorithm, where parameter C is the maximum allowed number of
skipped intervals on each path. Notice that the algorithm might not recover the complete pattern
string U . Instead the hypothesis pattern string returned by the algorithm for one classification path
is a subsequence of U with skipped intervals. We provide a toy example to explain the skipping
logic. Let n = 4, Σ ={a, b, c} and U = ‘ab’. Strings are drawn from a product distribution such
that x1, x2 and x4 are uniformly distributed over Σ but x2 is almost surely ‘a’. The algorithm first
estimates Pr[y = +1 | x1 = a] for each a ∈ Σ and finds the value of x1 matters little to the pos-
itivity. It then estimates the distance between the distribution of x1x2 over all positive strings and
that over all strings and finds the two distributions are close. However, when it moves on to estimate
the distance between the distribution of x1x2x3 over all positive strings and that over all strings, it
gets a nonnegligible total variation distance. Therefore, the skipped interval is x1x2. The algorithm
finally outputs the hypothesis pattern string ‘ΣΣb’ which means skipping the first two symbols and
matching symbol ‘b’ in the rest of the string.

Theorem 4 Under product distributions over instance space I = Σn, given Pr[xi = a] ≥ t > 0
for ∀1 ≤ i ≤ n and ∀a ∈ Σ, the algorithm PAC classifies any string that skips C = O(1) intervals
during the classification procedure withO(snC+2) conditional statistical queries from STAT(X,D)
at tolerance

τ = min

{
ε̄21

384
,
ε̄1

8sn

}
or with O(snC+2) statistical queries from STAT(X,D) at tolerance

τ̄ = (ε′ − 2τ) ·min

{
tε̄21
384

,
ε̄1

8sn

}
where ε̄1 = (ε′/3C+2)2C

and ε′ = ε/(2nC).
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Proof For the sake of the legitimacy and feasibility of the algorithm, we make an initial query to
estimate the probability Pr[IVvx = h] for each h at tolerance τ . Denote ε′ = ε/(2nC). If the
answer is ≤ ε′− τ , then Pr[IVvx = h] ≤ ε′ is negligible and we won’t consider such cases because
any of them happens with probability ≤ ε/2. Otherwise we have Pr[IVvx = h] ≥ ε′ − 2τ . With
the lower bound assumption that Pr[xi = a] ≥ t > 0 for ∀1 ≤ i ≤ n and ∀a ∈ Σ, the legitimacy
and feasibility are assured. Thus bounding the classification error in the nonnegligible cases within
ε/2 establishes a total error bound ε. Because there are at most nC nonnegligible cases, the problem
reduces to bounding the classification error for each within ε′.

In the learning procedure, the algorithm skips an interval x[i1, i2] given IVvx = h based on the
assumption that the interval x[i1, i2] matches some segment next to V in the pattern string U . Let ιg
be the indicator for the event that the assumption is false in the first g skipped intervals and denote
probability εg = IEιg . Let ε0 = 0. Note that εg serves as an upper bound for the probability of
misclassification due to skipping the first g intervals, because there are some lucky cases where the
assumption doesn’t hold but the algorithm still makes correct classifications. To ensure the accuracy
of the algorithm, it suffices to prove εg is small. Let ε̄g+1 = 8

√
3εg for g ≥ 1 and ε̄1 as defined

in the theorem. We will prove εg+1 ≤ ε̄g+1 so that by induction and taking the minimum tolerance
among all g ≤ C we then have the overall tolerances τ and τ̄ as claimed in the statement.

Let a+, a
′
+ be two (not necessarily distinct) symbols in the next element ofU and a−, a′− be two (not

necessarily distinct) symbols not in the next element of U . We have |P (+|a+, h)− P (+|a′+, h)| ≤
εg and likewise |P (+|a−, h)− P (+|a′−, h)| ≤ εg . Let Pi(+|a, h) = P (+|a, h, ιg = i) and denote
∆ = P (+|a+, h) − P (+|a−, h) and ∆i = Pi(+|a+, h) − Pi(+|a−, h) for i ∈ {0, 1}. As a
consequence, ∆ = εg∆1 + (1 − εg)∆0 and ∆0 =

∆−εg∆1

1−εg ≥ ∆−εg
1−εg . Therefore, ∆ > εg implies

∆0 > 0. In the other direction, ∆0 =
∆−εg∆1

1−εg ≤ 2(∆ + εg).

For each h we make a statistical query to estimate P (+|a, h) for each a ∈ Σ at tolerance τ1 =
ε̄2g+1/384. If the minimum ∆ among all pairs of (a+, a−), denoted by ∆min, is > 6τ1, the results of
queries for P (+|a, h) must form two distinguishable clusters, where the maximum difference inside
one cluster is ≤ 4τ1 while the minimum gap between two clusters is > 4τ1. According to Lemma
11, the set of symbols with larger query answers is the next element in U because ∆ > εg holds for
all pairs of (a+, a−).

Otherwise, the difference ∆0 ≤ 2(∆min + 2εg + εg) ≤ ε̄2g+1/16 for all h. Let x′ = xz where
z is an infinite string under the uniform distribution. Let Eh(1, i) be the event that matching the
next element in U consumes exactly i symbols in string x′ given IVvx′ = h and ιg = 0. Define
probability Rh(1, i) = Pr[Eh(1, i)]. Let conditional probability P0(+|Eh(1, i)) be the probability
of positivity conditioned on event Eh(1, i). For example, P0(+|a+, h) is indeed P0(+|Eh(1, 1)).

Denote by P0(+|h) = Pr[y = +1 | IVvx = h ∧ ιg = 0]. Because P0(+|h) ≥ P0(+|a−, h), we
have

P0(+|a+, h)− P0(+|h) ≤ P0(+|a+, h)− P0(+|a−, h) <
ε̄2g+1

16
while

P0(+|a+, h)− P0(+|h) =

+∞∑
i=1

Rh(1, i) · (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

Notice that probability P0(+|Eh(1, i)) is monotonically non-increasing with respect to i. Then there
must exist an integer k ∈ [1,+∞] such that P0(+|Eh(1, 1))−P0(+|Eh(1, i)) ≤ ε̄g+1/4 for ∀i ≤ k
and P0(+|Eh(1, 1))− P0(+|Eh(1, i)) ≥ ε̄g+1/4 for ∀i > k. This implies∑
i≤k

Rh(1, i) (P0(+|Eh(1, 1))− P0(+|Eh(1, i))) +
∑
i>k

Rh(1, i) (P0(+|Eh(1, 1))− P0(+|Eh(1, i)))

<
ε̄2g+1

16

and
ε̄g+1

4

∑
i>k

Rh(1, i) <
ε̄2g+1

16
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Then we have
∑
i>k Rh(1, i) < ε̄g+1/4. This means the next element in U almost surely shows up

in this k-length interval. In addition, the difference P0(+|Eh(1, 1))−P0(+|Eh(1, i)) ≤ ε̄g+1/4 for
∀i ≤ k means whether the next element in U first shows up at xh+1 or xh+k has little effect on the
probability of positivity. There are two cases where an error happens due to skipping the interval.
The first case is that the next element in U doesn’t occur within the interval, whose probability is∑
i>k Rh(1, i). The second case is that after matching the next element in U at xh+i for some

1 ≤ i < k, the value of x[h+ i+1, h+k] flips the class of the string. This happens with probability
≤ P0(+|Eh(1, 1)) − P0(+|Eh(1, k)). By union bound, the probability of the errors because of
skipping the interval x[h+ 1, h+ k] is at most ε̄g+1/2.

It is worth pointing out that k is an integer from 1 to +∞ because when i = 1 the difference
P0(+|Eh(1, 1)) − P0(+|Eh(1, i)) is 0 ≤ ε̄g+1/4 and surely k ≥ 1. This means this interval is
not empty and ensures the existence of the interval we want. On the other hand, the value k can
be positive infinity but this makes no difference because the algorithm will skip everything until the
end of a string.

After showing the existence of such an interval, we need to determine k and locate the interval.
Let Dk(h) be the distribution of xh+k and D1:k(h) be the distribution of the x[h + 1, h + k] over
all strings, both conditioned on IVvx = h. Also, let D+

k (h) and D+
1:k(h) be the corresponding

distributions over all positive strings. We use ·̂ as estimators for probabilities or distributions. The
probability that an error happens due to skipping the next k letters is the total variation distance
between D1:k(h) and D+

1:k(h). Recall that the total variation distance between two distributions µ1

and µ2 is

‖µ1 − µ2‖TV =
1

2
‖µ1 − µ2‖1 = min

(Y,Z)
Pr[Y 6= Z]

where Y ∼ µ1 and Z ∼ µ2 are random variables over µ1 and µ2 respectively. The minimum is
taken over all joint distributions (Y,Z) such that the marginal distributions are still µ1 and µ2, i.e.,
Y ∼ µ1 and Z ∼ µ2.

Now let Y ∼ D1:k(h) and Z ∼ D+
1:k(h) be random strings over D1:k(h) and D+

1:k(h) respectively.
Then

‖D1:k(h)−D+
1:k(h)‖TV = min

(Y,Z)
Pr[Y 6= Z]

=1− max
(Y,Z)

Pr[Y = Z]

=1− max
(Y,Z)

k∏
i=1

Pr[Yi = Zi]

=1−
k∏
i=1

max
(Y,Z)

Pr[Yi = Zi]

=1−
k∏
i=1

(
1− min

(Y,Z)
Pr[Yi 6= Zi]

)

=1−
k∏
i=1

(
1− ‖Di(h)−D+

i (h)‖TV
)

because of the independence between the symbols in a string and the fact that all minimums and
maximums are taken over all joint distributions (Y,Z) such that the marginal distributions are still
product distributions.

Thus we could estimate the global total variation distance ‖D1:k(h)−D+
1:k(h)‖TV through estimat-

ing the local variation distance ‖Di(h) − D+
i (h)‖TV for each 1 ≤ i ≤ k. Assume p̂1 and p̂2 are

estimates of two probabilities p1 and p2 from a statistical query at some tolerance τ0. We have

|p1p2 − p̂1p̂2| = |p1p2 − p1p̂2 + p1p̂2 − p̂1p̂2|
= |p1(p2 − p̂2) + (p1 − p̂1)p̂2|
≤ p1|p2 − p̂2|+ |p1 − p̂1|p̂2

≤ (p1 + p̂2)τ0 ≤ 2τ0

13



By induction it can be proved that
∣∣∣∏k

i=1 pi −
∏k
i=1 p̂i

∣∣∣ ≤ kτ0, which is a polynomial bound. For a
probability q, let qi be the corresponding probability conditioned on ιg = i for i ∈ {0, 1}. We have
q = εgq1 + (1− εg)q0 and

q0 =
q − εgq1

1− εg
≥ q − εgq1 ≥ q − εg

In the other direction,

q0 =
q − εgq1

1− εg
=
q + εg − ε2g − εgq − εg + ε2g + εgq − εgq1

1− εg

=
(q + εg)(1− εg)− εg(1 + q1 − εg − q)

1− εg
≤ q + εg

Note that here without loss of generality, we assume ε ≤ min{(n− 1)t, 24/(sn)} so that 1 + q1 −
εg − q ≥ (n − 1)t − εg + q1 > 0 and εg ≤ ε̄2g+1/192 < ε̄g+1/(8sn). In PAC learning model a
polynomial upper bound for error parameter ε is trivial. Because if a learning algorithm works with a
small error bound, it automatically guarantees larger error bounds. As a consequence, |q− q0| ≤ εg .
In addition, using the definition of ‖ · ‖TV ,

| ‖Di(h)−D+
i (h)‖TV − ‖D̂i(h)− D̂+

i (h)‖TV |=
1

2
| ‖Di(h)−D+

i (h)‖1 − ‖D̂i(h)− D̂+
i (h)‖1 |

≤1

2
| ‖Di(h)−D+

i (h)− D̂i(h) + D̂+
i (h)‖1 |

≤1

2

(
‖Di(h)− D̂i(h)‖1 + ‖D+

i (h)− D̂+
i (h)‖1

)
≤s

2

(
‖Di(h)− D̂i(h)‖∞ + ‖D+

i (h)− D̂+
i (h)‖∞

)
Hence, if we make statistical queries χ′V,a,h,i and χ+

V,a,h,i at tolerance τ2 = ε̄g+1/(8sn) and be-
cause ε̄g+1/(8sn)+ εg < ε̄g+1/(4sn), the noise on ‖Di(h)−D+

i (h)‖TV will be at most ε̄g+1/(4n)
and we will be able to estimate ‖D1:k(h) − D+

1:k(h)‖TV within error kε̄g+1/(4n) ≤ ε̄g+1/4.
If ‖D̂1:k(h) − D̂+

1:k(h)‖TV ≥ 3ε̄g+1/4, then ‖D1:k(h) − D+
1:k(h)‖TV ≥ ε̄g+1/2. Otherwise,

‖D1:k(h)−D+
1:k(h)‖TV < ε̄g+1 and we are still safe to increase k.

The algorithm does O(snC+2) queries χV,a,h at tolerance τ1 = ε̄2g+1/384, plus O(snC+2) queries
χ′V,a,h,i and χ+

V,a,h,i at tolerance τ2 = ε̄g+1/(8sn). Thus by induction and taking the minimum
tolerance among all g ≤ C we have the overall tolerances τ and τ̄ as claimed in the statement. �

D Proof and details from Section 5

D.1 Proof of Lemma 4

Here we provide omitted proof and discussion of Lemma 4.

Lemma 4 (in the main paper) Under general unrestricted string distributions, a concept class is
PAC learnable over instance space Σ≤n if and only if it is PAC learnable over instance space Σn.

Proof If direction. Assume concept class C is PAC learnable from fixed-length strings with al-
gorithm A under unrestricted general distributions. Because instance space Σ≤n =

⋃
i≤n Σi, we

divide the sample S into n subsets {Si} where Si = {x | |x| = i}. We make an initial statistical
query to estimate probability Pr[|x| = i] for each i ≤ n at tolerance ε/(8n). We discard all Si with
query answer ≤ 3ε/(8n), because we know Pr[|x| = i] ≤ ε/(2n). There are at most (n − 1) such
Si of low occurrence probabilities. The total probability that an instance comes from one of these
ignored sets is at most ε/2. Otherwise, Pr[|x| = i] ≥ ε/(4n) and we apply algorithm A on each Si
with query answer ≥ 3ε/(8n) with error parameter ε/2. Because the probability of the condition is
polynomially large, the algorithm is feasible. Finally, the error over the whole instance space will
be bounded by ε and concept class C is PAC learnable over instance space Σ≤n.
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Input: N labeled strings 〈xi, yi〉, string length n, alphabet Σ
Output: pattern string û
1. û← λ
2. for `← 0 to n
3. reward← 1× |Σ| all 0 vector
4. for each a ∈ Σ
5. for i← 1 to N
6. if û v xi
7. if yi = +1

8. reward[a]← reward[a] +
(
I
ûvxi −min{I

ûavxi , n+ 1}
)
r+

9. else
10. reward[a]← reward[a] +

(
min{I

ûavxi , n+ 1} − I
ûvxi

)
r−

11. endif
12. else
13. if yi = +1
14. return û[1, `− 1]
15. endif
16. endif
17. endfor
18. endforeach
19. û`+1 ← argmaxa∈Σ{reward[a]}
20. û← ûû`+1

21. endfor
22. return û

Figure 3: A greedy algorithm for learning ideal from example oracle EX( ,D)

Only-if direction. This is an immediate consequence of the fact Σn ⊆ Σ≤n. �

Notice that Lemma 4 requires algorithm A to be applicable to any Si | i ≤ n. But this requirement
can be weakened. There might not exist such a general algorithm A. Instead we could have an
algorithm Ai applicable to each subspace Si with non-negligible occurrence probability Pr[|x| =
i] ≥ ε/(4n), then it is easy to see that Lemma 4 still holds in this case. Moreover, Lemma 4 makes
no assumption on the string distribution. In the cases under restricted string distributions, here
are two conditions that suffice to keep Lemma 4 hold: First, there is no assumption on the string
length distribution; Second, we have an algorithm Ai applicable to instance space Si over marginal
distribution D|x|=i for each 1 ≤ i ≤ n such that Pr[|x| = i] is polynomially large.

D.2 A heuristic greedy method

Figure 3 provides detailed pseudocode of the greedy method discussed in Section 5.

D.3 Experiment settings and results

To make a comparison between the greedy method and kernel machines for empirical perfor-
mance, we conducted a series of experiments in MATLAB on a workstation built with Intel i5-2500
3.30GHz CPU and 8GB memory. As discussed in Section 5, the running time of the kernel machine
will be intolerable in practice when the sample size N and the string length n are large. Also, a
pattern string u of improper length will lead to a degenerate sample set which contains only posi-
tive or only negative example strings. To prevent this less interesting case from happening, we set
|u| = dns−1e. Intuitively, the sample set will be evenly partitioned into two classes in expectation
under the uniform distribution. However, in this case n not being large demands the alphabet size s
not being large either.
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Figure 4: Experiment results with NSF abstracts data set (training 1993; testing 1992)

Figure 5: Experiment results with NSF abstracts data set (training 1999; testing 1998)

Combining all these constraints together, the experiment settings are: alphabet size s = 8, size
of training set = size of testing set = 1024. We vary the string length n from 16 to 56 and let
|u| = dns−1e. The pattern string u is generated uniformly at random from Σ|u|. Our tests are run on
the NSF Research Award Abstracts data set [4]. We use the abstracts of year 1993 as the training set
and those of year 1992 as the testing set. The tests are case-insensitive and all the characters except
the subset from ‘a(A)’ to ‘h(H)’ are removed from the texts. The result texts are then partitioned into
a set of strings of length n, which serve as the example strings. To be more robust against fluctuation
from randomness, each test with a particular value of n is run for 10 times and the medians of error
rates and running times are taken as the final performance scores. Both lines climb as n increases.
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The experiment results are shown in Figure 4, with accuracy presented as line plot and efficiency
demonstrated as bar chart. The overwhelming advantage of the greedy algorithm on efficiency is
obvious. The kernel machine ran for hours in high dimensional cases, while the greedy method
achieved even better accuracy within only milliseconds. The error rate of the greedy algorithm is
always lower than that of the kernel machine as well.

It is worth noting that MATLAB started reporting no-convergence error of the kernel method when
the string length n reaches 56. Only successful runs of the kernel method were taken into account.
Therefore, the performance of the kernel method when n = 56 is very unstable over some datasets.
Figure 5 is an example where kernel method became unpredictable when no-convergence error
happened. In this plot when n = 56 the kernel machine seems to have better accuracy than the
greedy method, but considering that all the failed runs of the kernel machine were ruled out and
only successful ones were taken into account, the apparent accuracy of the kernel method is shaky.
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