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Abstract

This supplementary material contains additional information on the experiments
in the main paper [Naesseth et al., 2014] as well as a simple and direct proof
of the unbiasedness of the partition function estimator ẐNk , stated in the main
manuscript. It should be noted, however, that this result is not new. It has previ-
ously been established in a general setting by Del Moral [2004, Proposition 7.4.1]
and, additionally, by Pitt et al. [2012] who provide a more accessible proof for the
special case of state-space models. Our proof is similar to that of Pitt et al. [2012],
but generalized to the PGM setting that we consider.

1 Experiments

1.1 Classical XY model

The classical XY model, see e.g. [Kosterlitz and Thouless, 1973] and references therein, is a member
in the family of n-vector models used in statistical mechanics. It can be seen as a generalization
of the well known Ising model with a two-dimensional electromagnetic spin. The spin vector is
described by its angle x ∈ (−π, π]. We will consider a square lattice with periodic boundary
conditions, i.e. the first and last row/columns are connected. The individual sites are described by
their spin angle.

The full joint PDF of the classical XY model is given by

p(XV) ∝ e−βH(XV), (1)

where β is the inverse temperature andH(XV)—the Hamiltonian—is a sum of pair-wise interaction
described by

H(XV) = −
∑

(i,j)∈E

Jij cos (xi − xj), (2)

where the Jij’s are parameters describing interactions between the different sites. For simplicity we
set Jij = J = 1 and estimate the partition function for several sizes and β.

In our sequence of target distributions we add one variable at a time and all associated factors. A
simple example where we alternate left-right, right-left, can be seen in Figure 3. To be specific we
choose our sequence of intermediate target distributions as

γk(XLk) ∝ γk−1(XLk−1
)
∏
i∈Nk

eβJki cos (xk−xi)

∝ γk−1(XLk−1
)eκ(XLk−1

) cos (xk−µ(XLk−1
)), (3)
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Figure 1: Illustration of some of the different orderings considered in the XY model.

whereNk = {i : (k, i) ∈ E}∩Lk−1 denotes the set of neighbours to variable k in Lk−1. The quan-
tities µ(XLk−1

) and κ(XLk−1
) follow from elementary trigonometric operations (sum of cosines).

From the above expression we note that, conditionally on XLk−1
, the variable xk is von Mises dis-

tributed under γ̄k, withXLk−1
-dependent mean µ and dispersion κ. This implies that we can employ

full adaption of the proposed SMC sampler. This is accomplished by choosing the aforementioned
von Mises distribution as proposal distribution rk(xk|XLk−1

) and by choosing the corresponding
normalizing constants ν(XLk−1

) = 2πI0(κ(XLk−1
)) (where I0 is the modified Bessel function of

order 0) as adjustment weights. We use the fully adapted SMC sampler to estimate the partition
function of the classical XY model.

We consider four different orderings of the nodes:

Random neighbour The first node is selected randomly among all nodes, concurrent nodes are
then selected randomly from the set of nodes with a neighbour in XLk−1

.
Diagonal The nodes are added by traversing from left to right with 45◦, see Figure 1a.
Spiral The nodes are added spiralling in towards the middle from the edges, see Figure 1b.
Left-Right The nodes are added by traversing the graph from left to right, from top to bottom, see

Figure 1c.

See illustrations of the node orderings displayed in Figure 1 for a 3 × 3 example, numbers display
at what iteration the node is added.

1.2 Evaluation of topic models

Here we present some additional results (Figure 2) on the synthetic example for various settings of
the number of topics (T ) and words (W ). LRS 1 and LRS 2 has 10 and 20 samples, respectively.
The number of particles where set to give comparable computational complexity.

1.3 Gaussian Markov random field

Consider a square lattice Gaussian Markov random field (MRF) of size 10×10, given by the relation

p(XV , YV) ∝
∏
i∈V

e
1

2σ2
i

(xi−yi)2 ∏
(i,j)∈E

e
1

2σ2
ij

(xi−xj)2
, (4)

with latent variables XV = {x1, . . . , x100} and measurements YV = {y1, . . . , y100}. The graphi-
cal representation of the latent variables in this model is shown in Figure 3.

The measurements YV where simulated from the model with σi = 1 and σij = 0.1. Given these
measurement, we seek the posterior distribution p(XV | YV). We run four different MCMC samplers
to simulate from this distribution; the proposed (fully blocked) PGAS, the proposed PGAS with
partial blocking, a standard one-at-a-time Gibbs sampler, and the tree-sampler proposed by Hamze
and de Freitas [2004]. For the PGAS algorithms we use N = 50 particles. The tree-sampler
exploits the fact that the model is Gaussian and it can thus not be used for arbitrary (non-Gaussian
or non-discrete) graphs. By partitioning the graph into disjoint trees (in our case, chains) for which
exact inference is possible, the tree-sampler implements an “ideal” partially blocked Gibbs sampler.
PGAS with partial blocking can thus be seen as an SMC-based version of the tree-sampler. See
Figure 3 for the ordering in the PGAS algorithm and the blocking used for tree-sampling and PGAS
with partial blocking, corresponding to a partition of the graph into two chains. The variables are
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(a) T = 100,W = 20. (b) T = 100,W = 50.

(c) T = 100,W = 100. (d) T = 200,W = 10.

Figure 2: Estimates of the log-likelihood of a synthetic LDA model.

numbered 1, . . . , 100 from top to bottom, left to right and Lk is taken as the k first indices of LK =
{1, . . . , 10, 20, 19, . . . , 11, 21, 22, . . . , 100, 99, . . . , 91}. This ordering gives results very similar to
that of the Left-Right ordering explained above.

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐⇓

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇓

⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐

Figure 3: Left: Ordering of factors in the PGAS algorithm. At each iteration all the factors connect-
ing the added node and the previous nodes are included in the target distribution. Right: The two
block structures used in the tree-sampler and PGAS with partial blocking. Nodes are added from
the edge spiralling in.

In Figure 4b we can see the empirical autocorrelation funtions (ACFs) centered around the true pos-
terior mean for variable x82 (selected randomly from XV ). Similar results hold for all the variables
of the model. Due to the strong interaction between the latent variables, the samples generated by
the standard Gibbs sampler are strongly correlated. Tree-sampling and PGAS with partial blocking
show nearly identical gains compared to Gibbs. This is interesting, since it suggest that simulat-
ing from the SMC-based PGAS kernel can be almost as efficient as exact simulation, even using
a moderate number of particles. We emphasize that the PGAS kernels leave their respective target
distributions invariant, i.e. the limiting distributions is the same for all MCMC schemes. The fully
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blocked PGAS algorithm achieves the best ACF, dropping off to zero considerably faster than for
the other methods. This is not surprising since this sampler simulates all the latent variables jointly
which reduces the autocorrelation, in particular when the latent variables are strongly dependent.
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(b) The empirical ACF for PGAS with par-
tial blocking for N = 5, 10, 20, 50. Based
on 10 000 data points with 10% burnin.

However, this improvement in autocorrelation comes at a cost. For the fully blocked PGAS kernel,
the maximal cardinality of the set Ak (see (9)) is 10 (one full row of variables). For the partially
blocked PGAS kernel, on the other hand, |Ak| ≡ 1 since the variables in each block form a chain.
This implies that the fully blocked PGAS sampler is an order of magnitude more computation-
ally involved than the partially blocked PGAS sampler. This trade-off between autocorrelation and
computational efficiency has to be taken into account when deciding which algorithm that is most
suitable for any given problem.

2 Proof of unbiasedness

Recall that we use the convention ξk = XIk\Lk−1
. Define recursively the functions fk(XLk) ≡ 1

and,

f`(XL`) =

∫
f`+1(XL`+1

)γ`(XL`+1
)dξ`+1

γ`(XL`)
(5)

for ` = k − 1, k − 2, . . . , 1. Let

Q` =

(
1

N

N∑
i=1

wi`f`(X
i
L`)

){
`−1∏
m=1

1

N

N∑
i=1

νimw
i
m

}
,

for ` ∈ {1, . . . , k}. Note that, by construction, Qk = ẐNk . Let F` be the filtration generated by the
particles simulated up to iteration `:

F` := σ({Xi
Lm , w

i
m}Ni=1,m = 1, . . . , `).

Lemma 1. The sequence {Q`, ` = 1, . . . , k} is an F`-martingale.

Proof. Consider,

E [Q` | F`−1] = E
[
w1
`f`(X

1
L`) | F`−1

]{ `−1∏
m=1

1

N

N∑
i=1

νimw
i
m

}
.
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Using the definition of the weight function (see the main document) we have,

E
[
W`(X

1
L`)f`(X

1
L`) | F`−1

]
=

N∑
i=1

∫
W`({Xi

L`−1
∪ ξ`})f`({Xi

L`−1
∪ ξ`})

νi`−1w
i
`−1∑

l ν
l
`−1w

l
`−1

r`(ξ`|Xi
L`−1

)dξ`

=
1∑

l ν
l
`−1w

l
`−1

N∑
i=1

(
νi`−1w

i
`−1

∫
γ`({Xi

L`−1
∪ ξ`})f`({Xi

L`−1
∪ ξ`})dξ`

γ`−1(Xi
L`−1

)ν`−1(Xi
L`−1

)

)

=
1∑

l ν
l
`−1w

l
`−1

N∑
i=1

(
wi`−1f`−1(Xi

L`−1
)
)
.

Hence, we get

E [Q` | F`−1] =
∑
i

(
wi`−1f`−1(Xi

L`−1
)
) 1

N

{
`−2∏
m=1

1

N

∑
i

νimw
i
m

}
= Q`−1.

It follows that

E[ẐNk ] = E[Qk] = E[Q1] =

∫
W1(XL1

)f1(XL1
)r1(XL1

)dXL1
=

∫
γ1(XL1

)f1(XL1
)dXL1

.

However, from the definition in (5) we have that∫
γ1(XL1

)f1(XL1
)dXL1

=

∫∫
γ2(XL2

)f2(XL2
)dXL2

= · · · =
∫
···
∫
γk(XLk)fk(XLk)dXLk = Zk.

3 Ancestor sampling

To implement the PGAS sampling procedure, it remains to detail the ancestor sampling step. At
each iteration k ≥ 2, this step amount to generating a value for the ancestor index aNk corresponding
to the reference particle. Implicitly, this assigns an artificial history for the “remaining” part of the
reference particle X ′LK\Lk−1

, by selecting one of the particles {Xi
Lk−1
}Ni=1 as its ancestor. This

results in a complete assignment for the collection of latent variables of the PGM

X̃i
LK := {Xi

Lk−1
∪X ′LK\Lk−1

} ∈ XV . (6)

As shown by Lindsten et al. [2014], the probability distribution from which aNk should be sampled
in order to ensure reversibility of the PGAS kernel w.r.t. γ̄K is given by,

P(aNk = i) ∝ wik−1
γK

(
X̃i
LK

)
γk−1(Xi

Lk−1
)
. (7)

This expression can be understood as an application of Bayes’ theorem, where wik−1 is the prior
probability of particle Xi

Lk−1
and the ratio between the target densities is the unnormalized likeli-

hood of X ′LK\Lk−1
conditionally on Xi

Lk−1
.

To derive an explicit expression for the ancestor sampling probabilities in our setting, note first that,

γK (XLK )

γk−1
(
XLk−1

) =

∏K
j=k ψj

(
XIj

)
qk−1(XLk−1

)
. (8)
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Now, let Ak be the index set of factors ψj , j ≥ k for which any of the variables XLk−1
is in the

domain of ψj ; formally

Ak := {j : k ≤ j ≤ K,Lk−1 ∩ Ij 6= ∅}. (9)

It follows that any factor ψj for which j 6∈ Ak is independent ofXLk−1
. Consequently, we can write

(7) as

P(aNk = i) ∝ wik−1

∏
j∈Ak ψj

(
X̃i
Ij

)
qk−1(Xi

Lk−1
)

, (10)

where X̃i
Ij is a subset of the variables in (6). In fact, the index set Ak corresponds exactly to

the factors ψj that depend, explicitly, both on the particle Xi
Lk−1

and on the reference particle
X ′LK\Lk−1

(through some of their respective components). Indeed, it is only these factors that hold
any information about the likelihood of X ′LK\Lk−1

given Xi
Lk−1

.

The expression (10) is interesting, since it shows that the computational complexity of the ancestor
sampling step will depend on the cardinality of the set Ak. While this will depend both on the
structure of the graph and on the ordering of the factors, it will for many models of interest be of a
lower order than the cardinality of V .
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