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1. Proof of Theorem 1
Continue to use the notations from the main paper.

Proof. Let’s focus on variable X:
Let

A = C̃xyC̃
>
xy = UDV>VDU> = UD2U>

and B = C
1
2
xxG. So the columns of U are eigenvectors

of A. Let At1B = Qt1Rt1 be the QR decomposition of
At1B. Easy to check

Xt1 = (HXHY)t1XG = XC
− 1

2
xx At1B = XC

− 1
2

xx Qt1Rt1

Note that XC
− 1

2
xx Qt1 is an orthonormal matrix, so

(XC
− 1

2
xx Qt1)Rt1 actually gives the QR decomposition of

Xt1 , i.e. Xkcca = XC
− 1

2
xx Qt1 .

By theorem 28.1 in (Trefethen & Bau, 1997), the columns
of Qt1 will converge to U1 as long as the two regularity
condition hold which can be implied by our assumptions
(see equation 28.4 and 28.5 in (Trefethen & Bau, 1997)
for details). Therefore Xkcca = XC

− 1
2

xx Qt1 converges to

XC
− 1

2
xx U1 which are the top canonical variables of X. The

argument for Y is the same.

2. Randomized Algorithm for Finding Top
Singular Vectors

Here we briefly describe a fast randomized algorithm
which finds the top singular vectors of the data matrices
as mentioned in section 2 of the main paper. In fact our re-
gression based algorithms only need an orthonormal basis
of the subspace spanned by the top left singular vectors of
X and Y instead of the singular vectors themselves. We
stick with top singular vectors in the statements and proofs
of the main paper since its mathematically cleaner. All the
mathematical properties of the algorithms mentioned in our
paper carry through if we replace the top singular vectors
with any orthonormal basis of the same subspace which
is computationally more convenient because regression is
a projection onto a certain subspace. Algorithm 1 is an
randomized algorithm for finding this orthonormal basis,
based on the idea of random subspace finder introduced by
(Halko et al., 2011).

Algorithm 1 Random Subspace Finder
Input : Matrix X ∈ n× p1, target dimension kpc, num-
ber of power iterations i.
Output : U1 ∈ n × kpc, an orthonormal basis of the
span of the top kpc left singular vectors of X, Q2, an
orthonormal basis of the span of the top kpc right singular
vectors of X
1.Generate random matrices R2 ∈ p1 × kpc with i.i.d
standard Gaussian entries.
2.Estimate the span of top kpc right singular vectors of X
by A2 = (X>X)iR2.
3.Use QR decomposition to compute Q2 ∈ p1 × kpc
which is an orthonormal basis of the column space of
A2.
4.Compute the span of top kpc left singular vectors of X
by A1 = XQ2.
5. Use QR decomposition ofA1 to compute an orthonor-
mal basis U1

Remark 1. For numerical stability reasons, in step 2 we
perform QR decomposition every time after multiply with
(X>X) as suggested by (Halko et al., 2011). More intu-
itions and theoretical details of the algorithm can be found
in (Halko et al., 2011).

3. Gradient Descent with Optimal Step Size
Algorithm 2 gives a detailed description of the Gradient
Descent algorithm we used in LING in section 3.1 of the
main paper which is explained in detail by (A.Epelman,
2007).

Remark 2. An implementation detail that worth mention-
ing is that after every iteration of GD (Algorithm 2), we ac-
tually project the coefficient β2,t onto the orthogonal com-
plement of V1 the columns of which consists top kpc right
singular vector of X (it’s obtained by the randomized al-
gorithm while computing U1 as described in Algorithm 1
above), i.e. we set βr,t+1 = βr,t+1 − V1V >1 βr,t+1 at the
end of every iteration. The projection step significantly in-
creases the performance of LING and our CCA algorithm.
The intuition of projection step can be easily seen from
the the proof of Theorem 2 (see next section) which is ad-
dressed in remark 3 of this appendix.



Title Suppressed Due to Excessive Size

Algorithm 2 Gradient Descent with Optimal Step Size
(GD)

Goal : Solve the LS problem minβr∈Rp ‖Xβr − Yr‖2.
Input : X ∈ n × p, Yr ∈ n × 1, number of gradient
iterations t2, an initial vector βr,0 (We always initialize
with 0 vector)
Output : βr,t2 , regression coefficients after t2 iterations.
for t = 0 to t2 − 1 do
Q = 2X>X
wt = 2X>Yr −Qβr,t
st =

w>t wt

w>t Qwt
. st is the step size which makes the

target function decrease the most in direction wt.
βr,t+1 = βr,t + st · wt.

end for

4. Error Analysis of LING
This section gives a detailed proof of theorem 2 in the main
paper. Here we continue to use the definition and other
notations in the main paper and above sections.

Lemma 1. Sub-optimality Bound for GD
Assume X is full rank with singular values λ1, λ2..λp. Let

f(βr) =
1

2
β>r Qβr − 2Y >r Xβr + Y >r Yr

be the target function value we want to minimize in regres-
sion. Assume f∗ is the minimum value of the target func-
tion. Let βr,t be the coefficient after t iterations when ini-
tializing with 0 vector. The sub-optimality of βr,t which is
defined as f(βr,t)− f∗ satisfies:

f(βr,t+1)− f∗

f(βr,t)− f∗
≤

(
λ2kpc+1 − λ2p
λ2kpc+1 + λ2p

)2

Proof. Let X have the singular value decomposition

X = [U1, U2]

(
Λ1 0
0 Λ2

)
[V1, V2]>

where U1, V1 are top kpc singular vectors.

First we claim that if initialize with 0 vector, βr,t, wt will
always be in the span of V2. This is easy to see by recur-
sion. Assume βr,t is in the span of V2, by Algorithm 2,
wt = 2X>Yr − 2X>Xβr,t. Note that Yr is orthogonal to
U1 since it’s the residual of Y after projecting onto U1. So
both X>Yr and X>Xβr,t lives in the span of V2 and also
wt lives in the span of V2. Therefore βr,t+1 = βr,t + stwt
also lives in the span of V2. If we start with 0 which is
in the span of V2, βr,t, wt will stay in the span of V2 forever.

By taking derivatives of the target function we have

f∗ = −2Y >r XQ
−1X>Yr + Y >r Yr

So we have

f(βr,t)− f∗

=
1

2
β>r,tQβr,t − 2Y >r Xβr,t + 2Y >r XQ

−1X>Yr

= (Qβr,t − 2X>Yr)
> 1

2
Q−1(Qβr,t − 2X>Yr)

=
1

2
w>t Q

−1wt (1)

f(βr,t+1)− f(βr,t)

=
1

2
(βr,t + stwt)

>Q(βr,t + stwt)

− 2Y >r X(βr,t + stwt)

− 1

2
β>r,tQβr,t + 2Y >r Xβr,t

=
1

2
s2tw

>
t Qwt

+ stw
>
t Qβ2,t − 2stw

>
t X

>Yr

=
1

2
s2tw

>
t Qwt − stw>t wt

= − (w>t wt)
2

2w>t Qwt
(2)

With above equation we have

f(βr,t+1)− f∗

f(βr,t)− f∗

= 1− f(βr,t)− f(βr,t+1)

f(βr,t)− f∗

= 1−
(w>t wt)

2

2w>t Qwt

1
2w
>
t Q
−1wt

= 1− (w>t wt)
2

(w>t Qwt)(w
>
t Q
−1wt)

(3)

Since wt always lives in the span of V2, let zt = V >2 wt, we
have

(w>t wt)
2

(w>t Qwt)(w
>
t Q
−1wt)

=
(z>t zt)

2

(z>t Λ2
2zt)(z

>
t Λ−22 zt)

By Kantorovich Inequality (A.Epelman, 2007),
(z>t zt)

2

(z>t D
2
2zt)(z

>
t D
−2
2 zt)

≥ 4(λkpc+1λp)
2

(λ2
kpc+1+λ

2
p)

2 . Plug into equa-

tion 3 we have

f(β2,t+1)− f∗

f(β2,t)− f∗
≤

(
λ2kpc+1 − λ2p
λ2kpc+1 + λ2p

)2
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Remark 3. From the proof it’s clear that keeping the gra-
dient wt and coefficient β2,t in the span of V2 is curtail to
the fast convergence to the GD algorithm. When U1 con-
sists exactly the top left singular vectors, we proved above
that wt, β2,t will always stay in the span of V2. However,
in practice U1 in computed by Algorithm 1 which is only
an approximate of the top left singular vectors. In order
to compensate the error of the randomized algorithm, we
project the coefficient β2,t back to the span of V2 after ev-
ery iteration of GD, as illustrated in remark 2 of the sup-
plementary materials.

4.1. Proof of Theorem 2

With the above lemma we can proof theorem 2 in the main
paper

Proof. The optimality of Y ∗ implies that Y ∗ − Y is or-
thogonal to the span of X and in particular is orthogonal to
Ŷt2 − Y ∗. By pythagorean theorem

‖Ŷt2 − Y ‖2 − ‖Y ∗ − Y ‖2 = ‖Ŷt2 − Y ∗‖2

On the other hand

‖Ŷt2−Y ‖2 = ‖(Xβr,t2+Y1)−(Yr+Y1)‖2 = ‖Xβr,t2−Yr‖2

and

‖Y ∗ − Y ‖2 = ‖(Y1 + U2U
>
2 Yr)− (Y1 + Yr)‖2

= ‖U2U
>
2 Yr − Yr‖2

Easy to see ‖U2U
>
2 Yr − Yr‖2 = f∗

Put above equations and lemma 1 together,

‖Ŷt2 − Y ∗‖2 = ‖Ŷt2 − Y ‖2 − ‖Y ∗ − Y ‖2

= ‖Xβr,t2 − Yr‖2 − ‖U2U
>
2 Yr − Yr‖2

= f(βr,t2)− f∗

=

(
λ2kpc+1 − λ2p
λ2kpc+1 + λ2p

)2t2

(f(βr,t2)− f∗)

5. Error Analysis of L-CCA
This section gives detailed proof of Theorem 3 in the main
paper. The next lemma gives an easy way of computing
distance between subspaces the proof of which is in theo-
rem 2.6.1 (Golub & Van Loan, 1996).
Lemma 2. Let

W = [W1
k
,W2
n−k

] Z = [Z1
k
, Z2
n−k

]

are n × n orthonormal matrices, dist(W1,Z1) =
‖W>

1 Z2‖2 = ‖W>
2 Z1‖2

Now let’s state the key lemma for error analysis of L-CCA
(below we continue to use the notation used in the main
paper and supplementary):
Lemma 3. Let Xt, Yt be the LING output in every it-
eration defined in Algorithm 3 of the main paper. Let
Yt = HYX̂t−1 + ∆y,t, Xt = HXŶt + ∆x,t where
∆x,t,∆y,t denotes the error of LING compared with the
exact LS solution. Assume ‖∆x,t‖2, ‖∆y,t‖2 ≤ ε for every
t. Then the distance between subspace spanned top kcca

canonical variables and the subspace returned by L-CCA
is bounded by

dist(X̂t1 ,XC
− 1

2
xx U1) ≤ C1

(
dkcca+1

dkcca

)2t1

+C2

d2kcca

d2kcca
− d2kcca+1

ε

where C1, C2 are constants.

Proof. Let’s focus on the tth iteration. Note that QR de-
composition is essentially a change of basis, so we have
X̂t = XtRx,t and Ŷt = YtRy,t for some non-singular
matrix Rx,t,Ry,t.
First represent X̂t in terms of X̂t−1 and errors of LING :

X̂t = XtRx,t

= (HXŶt + ∆x,t)Rx,t

= (HXYtRy,t + ∆x,t)Rx,t

= (HX(HYX̂t−1 + ∆y,t)Ry,t + ∆x,t)Rx,t

= HXHYX̂t−1Ry,tRx,t + HX∆y,tRy,tRx,t

+∆x,tRx,t (4)

Let HX∆y,t + ∆x,tR
−1
y,t = ∆t, together with equation 4

we have

X̂t = (HXHYX̂t−1 + ∆t)Ry,tRx,t (5)

For simplicity assume there exist C0 > 1 s.t. ‖R−1y,t‖2 ≤
(C0 − 1) for all t, we have

‖∆t‖2 ≤ ‖HX∆y,t‖2 + ‖∆x,tR
−1
y,t‖2

≤ ‖∆y,t‖2 + (C0 − 1)‖∆x,t‖2
≤ C0ε (6)

Now define Ut = (XC
− 1

2
xx )>X̂t. Since XC

− 1
2

xx and X̂t

have orthonormal columns and X̂t lives in the column
space of X (follows from the definition of the LING algo-
rithm), the columns of matrix Ut is actually orthonormal.
It’s also easy to check from the definition that

dist(X̂t,XC
− 1

2
xx U1) = dist(Ut,U1) (7)

From now on we can bound dist(Ut,U1) instead. Let U =
[U1,U2], define

U>Ut =

(
U>1
U>2

)
Ut =

(
W1,t

W2,t

)
(8)
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From lemma 2, dist(Ut,U1) = ‖W2,t‖2. Now let’s track
the quantity ‖W2,t(W1,t)

−1‖2 which will eventually help
us bounding ‖W2,t‖2. Recall that A = C̃xyC̃

>
xy =

UDV>VDU> = UD2U>.

(
W1,t

W2,t

)
= U>Ut

= U>(XC
− 1

2
xx )>X̂t

= U>(XC
− 1

2
xx )>(HXHYX̂t−1 + ∆t)Ry,tRx,t

= U>A2(XC
− 1

2
xx )>X̂t−1Ry,tRx,t

+U>(XC
− 1

2
xx )>∆tRy,tRx,t

= U>(A2Ut−1 + (XC
− 1

2
xx )>∆t)Ry,tRx,t (9)

Note that

U>A2Ut−1 = D2U>Ut−1 =

(
D2

1W1,t−1
D2

2W2,t−1

)
(10)

and let (
∆1,t

∆2,t

)
=

(
U>1
U>2

)
(XC

− 1
2

xx )>∆t

=

(
U>1 (XC

− 1
2

xx )>∆t

U>2 (XC
− 1

2
xx )>∆t

)
(11)

Together with equation 6 we have the following norm
bound for i = 1, 2

‖∆i,t‖2 = ‖U>1 (XC
− 1

2
xx )>∆t‖2 ≤ ‖∆t‖2 ≤ C0ε (12)

because Ui, XC
− 1

2
xx both have orthonormal columns. plug

equation 10 11 into 9 we have(
W1,t

W2,t

)
=

(
D2

1W1,t−1 + ∆1,t

D2
2W2,t−1 + ∆2,t

)
Ry,tRx,t (13)

Equation 13 directly implies

‖W2,t(W1,t)
−1‖2

= ‖(D2
2W2,t−1 + ∆2,t)(D

2
1W1,t−1 + ∆1,t)

−1‖2
≤ ‖(D2

2W2,t−1)(D2
1W1,t−1)−1‖2

+C3(‖∆1,t‖2 + ‖∆2,t‖2)

≤ ‖D2
2‖2‖W2,t−1W

−1
1,t−1‖2‖D

−2
1 ‖2 + 2C3C0ε

=
d2kcca+1

d2kcca

‖W2,t−1W
−1
1,t−1‖2 + 2Cε (14)

where C = C0C3 are all constants independent of t. Note
that in the first inequality, we ignore the higher order error
term ‖∆1,t‖2 · ‖∆2,t‖2.

Recursively apply equation 14 t1 times leads to

‖W2,t1(W1,t1)−1‖2

≤ ‖W2,0(W1,0)−1‖2
(
dkcca+1

dkcca

)2t1

+

t1−1∑
j=0

(
dkcca+1

dkcca

)2j

2Cε

= ‖W2,0(W1,0)−1‖2
(
dkcca+1

dkcca

)2t1

+
d2kcca

d2kcca
− d2kcca+1

Cε (15)

From equation 7 we have

dist(X̂t1 ,XC
− 1

2
xx U1) = dist(Ut1 ,U1)

= ‖W2,t1‖2
≤ ‖W2,t1(W1,t1)−1‖2 (16)

The last inequality is because ‖W1,t1‖2 ≤ 1. Put equation
15 16 together completes the proof.

Finally, use results of Theorem 2 in the main paper to
bound ε in the above lemma directly proves Theorem 3 in
the main paper.
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