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Appendix

A Experimental Details

A.1 Synthetic data experiments

We use data drawn from a distribution D over (X = R10) × {±1} that satisfies Assumption B
(and therefore assumption A); recall that our plug-in consistency results for the F1 and G-TP/PR
measures apply to distributions that satisfy Assumption A (see Section 4), and the consistency result
for G-Mean holds for distributions that satisfy Assumption B (see Section 5). The specifics of
our experiments mirror those used in [16] and are listed here for completeness: positive examples
(y = 1) are drawn from N (µ,Σ) with probability p ∈ (0, 1) and negative examples (y = −1)
drawn from N (−µ,Σ) with probability (1− p); µ is drawn uniformly at random from {±1}10 and
Σ ∈ R10×10 is drawn from a Wishart distribution with 20 degrees of freedom and a randomly drawn
invertible positive semidefinite scale matrix. As pointed out earlier, the optimal classifier for each
performance measure considered here under this distribution is linear, making it sufficient to learn a
linear model (see Section A.4).

We evaluate the statistical regret of the empirical plug-in method (Algorithm 1 with α = 0.5) and
compare it against SVMperf with linear kernel (SVMPerf) adapted to optimize the performance mea-
sures considered here5, and the Plug-in algorithm with a default threshold 0.5 (Plug-in (0-1)). The
empirical plug-in algorithm (denoted for the three performance measures respectively as Plug-in
(F1), Plug-in (G-TP/PR) and Plug-in (GM)) randomly splits the input data S (drawn from D) into
samples S1 and S2 for the purposes of learning a class probability estimate and choosing an ap-
propriate threshold respectively; we use regularized (linear) logistic regression for learning a class
probability estimate from S1, with the regularization parameter set to 1/

√
|S1|, in order to satisfy

the L1-consistency requirement in Theorem 1 (see [16, 20] for details). The Plug-in (0-1) method
learns a class probability estimate using the entire input data (S1, S2), with the regularization pa-
rameter set to 1/

√
|S|. The SVMperf algorithm also uses the entire input data (S1, S2), with the

regularization parameter selected from the range {10−3, 10−2, . . . , 101} via 5-fold cross-validation
over the training sample6.

A.2 Real data experiments

For experiments with real data sets, we report the performance of the learned classifiers on sepa-
rately held test data (we perform a random 2:1 train-test split of the original data, preserving class
proportions). For the empirical plug-in algorithm, the parameter α in Algorithm 1 was set to 0.8.
The regularization parameter for SVMperf was chosen from the range {10−7, 10−2, . . . , 104} and
that for logistic regression was chosen from the range {10−3, 10−2, . . . , 101} using 5-fold cross
validation over the corresponding training sample.

A.3 Additional results on real data

Table 2 summarizes all the real data sets that have been used in our experiments (both in Section 6
and this section). Figure 4 shows the test performances of the plug-in (with both the empirically
chosen threshold and default threshold) and SVMperf methods w.r.t. F1, G-TP/PR and G-Mean
measures over data sets included in Table 2 that were not already covered in Figure 3. Table 3 lists
experiment outputs for all datasets, all algorithms and all performance measures. Once again, it

5We used the SVMperf routine provided in http://www.cs.cornell.edu/people/tj/svm_
light/svm_perf.html for the F1-measure; we made necessary modifications to this code (as prescribed
in [12]) to optimize G-TP/PR and G-Mean.

6Here, we cannot set the regularization parameter to 1/
√
|S| since the theoretical prescriptions of [20] are

not applicable to multivariate extension of hinge loss optimized by SVMperf.
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Figure 4: Experiments on real data: results for empirical Plug-in, SVMperf and Plug-in (0-1) methods
(with linear models) on several UCI data sets in terms of F1, G-TP/PR and G-Mean performance
measures. HereN, d, p refer to the number of instances, number of features and fraction of positives
in the data set respectively.

can be observed that the empirical Plug-in is competitive with SVMperf and outperforms the Plug-in
(0-1) method in most cases.

Table 2: Summary of real data sets used in this study
Data sets #examples #features p = P(y = 1)

car 1728 21 0.038

chemo-a1a 2111 1021 0.024

nursery 12960 27 0.026

pendigits 10992 17 0.096

letter 18668 16 0.034

optdigits 5620 64 0.901

segment 2086 19 0.143

spambase 4210 57 0.398

splice 3005 240 0.226

thyroid 7129 21 0.977

A.4 Regret calculation for synthetic data

As mentioned in Section A.1, the distribution D over R10×{±1} that we consider consists of mul-
tivariate Gaussian class conditional distributions, with positive instances being drawn fromN (µ,Σ)
and negative instances being drawn from N (−µ,Σ). We denote the probability density functions
(pdfs) corresponding to x|y = 1 and x|y = −1 as f+ and f− respectively.

We first show that any classifier obtained by thresholding the the class probability function η under
the above distribution is linear. For any x ∈ R10, we have

η(x) = P(y = 1|x) =
P(x|y = 1).P(y = 1)

P(x|y = 1).P(y = 1) + P(x|y = −1).P(y = −1)

=
p.f+(x)

p.f+(x) + (1− p)f−(x)

=
1

1 + e−f(x)
,

where f(x) = ln
( p.f+(x)

(1−p)f−(x)

)
= 2µTΣ−1x + ln

(
p

1−p
)

turns out to be a linear function of x. As
a result, any thresholded classifier of the form sign ◦

(
η(x)− c), for some c ∈ (0, 1), can be written

as a linear classifier: sign ◦
(
f(x)− ln(c/(1− c))

)
.
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Table 3: Results from experiments on all real datasets. For each dataset and performance measure,
the algorithm outputs with the highest and second-highest mean performance are highlighted in
boldface and italics respectively.

Data sets Algorithm F1 G-TP/PR G-Mean
Emp. Plug-in 0 .8053 ± 0 .0777 0 .8231 ± 0 .0691 0 .9738 ± 0 .0164

car SVM-Perf 0.8442± 0.0327 0.8426± 0.0367 0.9797± 0.0179
Plug-in (0-1) 0.7550± 0.0643 0.7679± 0.0598 0.8027± 0.0517

Emp. Plug-in 0 .7182 ± 0 .1286 0.7393± 0.1044 0 .8640 ± 0 .0997
chemo-a1a SVMperf 0.7256± 0.0541 0 .7044 ± 0 .0560 0.9172± 0.0801

Plug-in (0-1) 0.6945± 0.0659 0.7214± 0.0557 0.7202± 0.0382

Emp. Plug-in 0.7545± 0.0319 0 .7542 ± 0 .0302 0.9668± 0.0162
nursery SVMperf 0 .7479 ± 0 .0138 0.7549± 0.0120 0 .9609 ± 0 .0084

Plug-in (0-1) 0.4478± 0.0425 0.5287± 0.0335 0.5406± 0.0334

Emp. Plug-in 0.9770± 0.0073 0.9772± 0.0072 0 .9944 ± 0 .0037
pendigits SVMperf 0.9991± 0.0009 0.9984± 0.0018 0.9986± 0.0010

Plug-in (0-1) 0 .9795 ± 0 .0063 0 .9795 ± 0 .0063 0.9873± 0.0068

Emp. Plug-in 0 .6685 ± 0 .0239 0 .6668 ± 0 .0240 0.9093± 0.0104
letter SVMperf 0.7143± 0.0324 0.7144± 0.0304 0 .9017 ± 0 .0138

Plug-in (0-1) 0.0876± 0.0268 0.2117± 0.0359 0.2117± 0.0359

Emp. Plug-in 0 .9986 ± 0 .0005 0 .9912 ± 0 .0034 0 .9986 ± 0 .0005
optdigits SVMperf 0.9985± 0.0005 0.9925± 0.0020 0.9985± 0.0006

Plug-in (0-1) 0.9987± 0.0002 0.9888± 0.0023 0.9987± 0.0002

Emp. Plug-in 0.9911± 0.0114 0.9911± 0.0113 0.9899± 0.0082
segment SVMperf 0.9964± 0.0034 0.9964± 0.0033 0.9961± 0.0034

Plug-in (0-1) 0 .9959 ± 0 .0031 0 .9959 ± 0 .0031 0 .9959 ± 0 .0031

Emp. Plug-in 0 .8489 ± 0 .0145 0 .8749 ± 0 .0101 0 .8493 ± 0 .0143
spambase SVMperf 0.9078± 0.0082 0.9250± 0.0068 0.9077± 0.0088

Plug-in (0-1) 0.8076± 0.0129 0.8317± 0.0105 0.8126± 0.0126

Emp. Plug-in 0 .9391 ± 0 .0100 0 .9393 ± 0 .0099 0 .9615 ± 0 .0097
splice SVMperf 0.9264± 0.0133 0.9268± 0.0142 0.9570± 0.0060

Plug-in (0-1) 0.9465± 0.0093 0.9466± 0.0093 0.9636± 0.0058

Emp. Plug-in 0 .9941 ± 0 .0008 0 .9941 ± 0 .0008 0 .9293 ± 0 .0240
thyroid SVMperf 0.9950± 0.0009 0.9952± 0.0008 0.9784± 0.0100

Plug-in (0-1) 0.9887± 0.0002 0.9887± 0.0002 0.1769± 0.0749

We next describe how one can compute the Ψ-regret of a linear classifier h : R10→{±1} under the
given distribution:

regretΨD[h] = PΨ,∗
D − PΨ

D [h].

In particular, we shall describe how the values of PΨ
D [h] and PΨ,∗

D in the above expression can be
computed for the given distribution D.

We start with the procedure outlined in [16] for calculating the performance measure PΨ
D for any

linear classifier h(x) = sign ◦
(
w>x + b

)
, where (for our purpose) w ∈ R10 and b ∈ R. The TPR

of h is given by:

TPRD[h] = P
(
h(x) = 1|y = 1

)
=

∫
x |w>x+b≥0

f+(x) dx.

It can be seen that w>x | y = 1 follows the normal distribution N (w>x, w>Σw), and therefore by
change of variables, we have

TPRD[h] =

∫ ∞
−b

g+(x) dx,

12



where g+ is the pdf corresponding to N (w>x,w>Σw). Likewise, the TNR for h is given by:

TNRD[h] =

∫ −b
−∞

g−(x) dx,

where g− is the pdf corresponding to N (−w>x, w>Σw). This way, given w and b, both TPR and
TNR are straightforward to determine, and consequently so is any performance measure that is a
function Ψ of these quantities.

We next describe how the optimal value of the given performance measure PΨ,∗
D can be computed.

Since the given distribution satisfies Assumptions A and B, the optimal classifier for all performance
measures considered in this work is obtained by suitably thresholding the class probability function
η; hence the optimal value PΨ,∗

D for the given measure can be computed by performing a line search
over (0, 1) and picking the threshold c∗ ∈ (0, 1) for which the linear classifier sign ◦

(
f(x) − c∗

)
maximizes the performance measure.

B Complete Proofs for Lemmas

B.1 Complete proof for Lemma 2

Proof. First, we simplify what we need to prove. We need to show that for a fixed c ∈ (0, 1),

TPRD[sign ◦ (η̂S(x) − c)]
P−→ TPRD[sign ◦ (η(x) − c)] and

TNRD[sign ◦ (η̂S(x) − c)]
P−→ TNRD[sign ◦ (η(x) − c)]

⇐⇒ P
(
sign ◦ (η̂S(x) − c) = 1 | y = 1

) P−→ P
(
sign ◦ (η(x) − c) = 1 | y = 1

)
and

P
(
sign ◦ (η̂S(x) − c) = −1 | y = −1

) P−→ P
(
sign ◦ (η(x) − c) = −1 | y = −1

)
⇐⇒ P

(
η̂S(x) > c | y = 1

) P−→ P
(
η(x) > c | y = 1

)
and

P
(
η̂S(x) ≤ c | y = −1

) P−→ P
(
η(x) ≤ c | y = −1

)
⇐⇒ P

(
η̂S(x) ≤ c | y = 1

) P−→ P
(
η(x) ≤ c | y = 1

)
and

P
(
η̂S(x) ≤ c | y = −1

) P−→ P
(
η(x) ≤ c | y = −1

)
⇐⇒ Px|y=1

(
η̂S(x) ≤ c

) P−→ Px|y=1

(
η(x) ≤ c

)
and

Px|y=−1

(
η̂S(x) ≤ c

) P−→ Px|y=−1

(
η(x) ≤ c

)
. (3)

We now analyze the L1-consistency guarantee assumed in the statement of Lemma 2, namely
Ex
[
|η̂S(x)− η(x)|

] P−→ 0. We begin by expanding this term.

Ex
[
|η̂S(x)− η(x)|

]
= p.Ex

[
|η̂S(x)− η(x)| | y = 1

]
+ (1− p).Ex

[
|η̂S(x)− η(x)| | y = −1

]
= p.Ex|y=1

[
|η̂S(x)− η(x)|

]
+ (1− p).Ex|y=−1

[
|η̂S(x)− η(x)|

]
.

Using the above expansion and the given guarantee on η̂S (along with p ∈ (0, 1)), we obtain
Ex|y=1

[
|η̂S(x) − η(x)|

] P−→ 0 and Ex|y=−1

[
|η̂S(x) − η(x)|

] P−→ 07. Applying Markov inequality
for the random variable |η̂S(x)− η(x)| for a fixed S, we have for any ε1 > 0,

Px|y=1

(
|η̂S(x)− η(x)| ≥ ε1

)
≤

Ex|y=1

[
|η̂S(x)− η(x)|

]
ε1

and Px|y=−1

(
|η̂S(x)− η(x)| ≥ ε1

)
≤

Ex|y=−1

[
|η̂S(x)− η(x)|

]
ε1

,

which in turn yields for a fixed ε1 > 0,

Px|y=1

(
|η̂S(x)− η(x)| ≥ ε1

) P−→ 0; (4)

7Here, we make use of the fact that for any two sequences of non-negative random variables Xn and Yn for
which Xn + Yn

P−→ 0, we have Xn
P−→ 0 and Yn

P−→ 0.
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Px|y=−1

(
|η̂S(x)− η(x)| ≥ ε1

) P−→ 0, (5)

where recall that the convergence in probability is w.r.t. to a random draw of S according to Dn.

In the rest of the proof, we shall make use of (a) the fact that Eq. (4) and (5) hold for arbitrarily
small values of ε1 and (b) our assumption that P(η(x) ≥ c | y = 1) and P(η(x) ≥ c | y = −1) are
continuous at c ∈ (0, 1) to establish the desired result. We start proving the result w.r.t. x|y = 1.
For a fixed S and a fixed ε2 > 0, we have

Px|y=1

(
η̂S(x) ≤ c

)
= Px|y=1

(
η̂S(x) ≤ c, η(x) ≤ c+ ε2

)
+ Px|y=1

(
η̂S(x) ≤ c, η(x) > c+ ε2

)
≤ Px|y=1

(
η(x) ≤ c+ ε2

)
+ Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
, (6)

and

Px|y=1

(
η(x) ≤ c− ε2

)
= Px|y=1

(
η̂S(x) ≤ c, η(x) ≤ c− ε2

)
+ Px|y=1

(
η̂S(x) > c, η(x) ≤ c− ε2

)
≤ Px|y=1

(
η̂S(x) ≤ c

)
+ Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
. (7)

Consequently from Eq. (6) and (7), we get

Px|y=1

(
η(x) ≤ c− ε2

)
− Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
≤ Px|y=1

(
η̂S(x) ≤ c

)
and Px|y=1

(
η̂S(x) ≤ c

)
≤ Px|y=1

(
η(x) ≤ c+ ε2

)
+ Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
.

Subtracting the term Px|y=1

(
η(x) ≤ c

)
from both sides in each of the above inequalities and

combining the resulting inequalities then gives us∣∣Px|y=1

(
η̂S(x) ≤ c

)
−Px|y=1

(
η(x) ≤ c

)∣∣ ≤
max

{
Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
+ Px|y=1

(
η(x) ≤ c+ ε2

)
−Px|y=1

(
η(x) ≤ c

)︸ ︷︷ ︸
term1

,

Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
−Px|y=1

(
η(x) ≤ c− ε2

)
+ Px|y=1

(
η(x) ≤ c

)︸ ︷︷ ︸
term2

}
. (8)

Keeping S fixed, we now allow ε2→ 0. In particular, by our assumption that Px|y=1

(
η(x) ≤ c

)
is

continuous at c, for the terms inside the above ‘max’, we have:

lim
ε2→0

term1 = lim
ε2→0

Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
;

lim
ε2→0

term2 = lim
ε2→0

Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
.

Thus for a fixed S, the following holds from Eq. (8):

0 ≤
∣∣Px|y=1

(
η̂S(x) ≤ c

)
−Px|y=1

(
η(x) ≤ c

)∣∣ ≤ lim
ε2→0

Px|y=1

(
|η̂S(x)− η(x)| ≥ ε2

)
.

Now, from an application of Eq. (4) (which holds for arbitrarily small ε1), we obtain the following
convergence in probability over a random draw of S from Dn:∣∣Px|y=1

(
η̂S(x) ≤ c

)
−Px|y=1

(
η(x) ≤ c

)∣∣ P−→ 0,

which in turn, implies

Px|y=1

(
η̂S(x) ≤ c

) P−→ Px|y=1

(
η(x) ≤ c

)
.

This is the desired relation w.r.t x|y = 1 (as seen in Eq. (3)). The desired result w.r.t. x|y = −1
follows likewise.
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B.2 Complete proof for Lemma 4

Proof. Define for i, j ∈ {−1, 1}:

p̂i,j,n[h] =

n∑
k=1

1(yk = i, h(xk) = j)/n and pij [h] = ED
[
1(y = i, h(x) = j)

]
.

For a fixed h ∈ Tf , by the weak law of large numbers (WLLN), we have ∀i, j:

p̂i,j,n[h]
P−→ pi,j [h],

where the convergence in probability is over draw of S ∼ Dn. Also, p̂S
P−→ p (again by WLLN).

Given that

T̂PRS [h] =
1

p̂S
p̂1,1,n[h] and T̂NRS [h] =

1

(1− p̂S)
p̂−1,−1,n[h],

we thus have

T̂PRS [h]
P−→ p1,1[h]

p
= TPRD[h] and T̂NRS [h]

P−→ p−1,−1[h]

1− p
= TNRD[h].

In turn, by continuity of Ψ, we obtain

P̂Ψ
S [h]

P−→ PΨ
D [h].

B.3 Complete proof for Lemma 5

Proof. Recall that any fixed h ∈ Tf is of the form sign ◦ (f(x) − c) for some constant c ∈
(0, 1). Let pi,j [h] and pi,j,n[h] be as defined in the proof of Lemma 4 (Section B.2). Since
VC-dimension(Tf ) = 1, by standard VC-dimension based uniform convergence arguments, we
can argue that for all i, j ∈ {±1}, given any ε′ > 0,

PS∼Dn

( ⋃
h∈Tf

∣∣p̂i,j,n[h]− pi,j [h]
∣∣ ≥ ε′)→ 0.

We also have p̂S
P−→ p (by WLLN).

Now, as in the proof of Lemma 4, observing that TPR and TNR are continuous functions of the
above quantities, it can be shown using an appropriate choice of ε′ > 0 in the above expressions,
and by an application of union bound, that for any given ε > 0,

PS∼Dn

( ⋃
h∈Tf

{∣∣TPRD[h]− T̂PRS [h]
∣∣ ≥ ε})→ 0

and PS∼Dn

( ⋃
h∈Tf

{∣∣TNRD[h]− T̂NRS [h]
∣∣ ≥ ε})→ 0.

Once again, by continuity of Ψ, we have:

PS∼Dn

( ⋃
h∈Tf

{∣∣PΨ
D [h]− P̂Ψ

S [h]
∣∣ ≥ ε}) → 0 as n→∞,

as desired.
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B.4 Complete proof for Lemma 9

Proof. Our proof is similar to that of Theorem 4 in [15]. Recall Tη = {sign ◦ (η − t) | t ∈ [0, 1]}
and let h∗ = suph∈Tη P

G-TP/PR
D [h] (the existence of this classifier is guaranteed by Assumption A).

We shall show that for any h /∈ Tη , ∃h̃ ∈ Tη such that PG-TP/PR
D [h̃] ≥ PG-TP/PR

D [h], thus giving us
PG-TP/PR
D [h∗] ≥ PG-TP/PR

D [h̃] ≥ PG-TP/PR
D [h]; this would imply that the optimal predictor for G-TP/PR

is indeed of the desired threshold form.

For any h /∈ Tη , upon arranging all instances x ∈ X in non-increasing order of η, we can find
disjoint subsets A,B,C ⊆ X , with supx∈A η(x) ≤ infx∈B η(x) ≤ supx∈B η(x) ≤ infx∈C η(x),
such that: A ∪ C = {x ∈ X |h(x) = 1} and B ⊆ {x ∈ X |h(x) = −1}. We now define two new
classifiers:

hA(x) =

{
−1 if x ∈ A
h(x) o/w

and hB(x) =

{
1 if x ∈ B
h(x) o/w

.

We now claim that one of these newly defined classifiers must be at least as good as hw.r.t. G-TP/PR
(this claim is proved below).

Claim. Either PG-TP/PR
D [hA] ≥ PG-TP/PR

D [h] or PG-TP/PR
D [hB ] ≥ PG-TP/PR

D [h].

According to the above claim, any classifier that is not of the form sign ◦ (η(x)− c) is only as good
as one of hB or hA w.r.t. G-TP/PR. We could now imagine one of hA or hB as the new h and
make repeated use of the above exchange argument to eventually arrive at a classifier h̃ in Tη with
PG-TP/PR
D [h̃] ≥ PG-TP/PR

D [h], as desired.

It remains to be shown that the above claim is true.

Proof of Claim. Let us assume the contrary, that PG-TP/PR
D [h] > PG-TP/PR

D [hA] and PG-TP/PR
D [h] >

PG-TP/PR
D [hB ], and arrive at a contradiction. Let a = P(x ∈ A), b = P(x ∈ B) and c = P(x ∈ C),

and assume without loss of generality that a, b > 0. Let α = Ex
[
η(x)

∣∣x ∈ A], β = Ex
[
η(x)

∣∣x ∈
B
]

and γ = Ex
[
η(x)

∣∣x ∈ C]. It is clearly seen that 0 ≤ α ≤ β ≤ γ. With the above definitions,

we have, TPRD(h) = aα+cγ
p and PrecD(h) = aα+cγ

a+c , and in turn, PG-TP/PR(h) =
√

(aα+cγ)2

p(a+c) ,

while PG-TP/PR(hB) =
√

(aα+bβ+cγ)2

p(a+b+c) and PG-TP/PR(hA) =
√

(cγ)2

p(c) .

By our contradiction hypothesis,√
(aα+ cγ)2

p(a+ c)
>

√
(aα+ bβ + cγ)2

p(a+ b+ c)
and

√
(aα+ cγ)2

p(a+ c)
>

√
(cγ)2

p(c)
,

which implies

(a+ b+ c)(aα+ cγ)2 > (a+ c)(aα+ bβ + cγ)2 (9)
and c(aα+ cγ)2 > (a+ c)(cγ)2. (10)

Now, from Eq. (10), we have

c(a2α2 + c2γ2 + 2aαcγ) > ac2γ2 + c3γ2 or acα2 + 2c2αγ > c2γ2, (11)

Next, from Eq. (9), we have

(a+ b+ c)(a2α2 + c2γ2 + 2acαγ) > (a+ c)(a2α2 + b2β2 + c2γ2 + 2abαβ + 2bcβγ + 2acαγ),

which can be simplified as

b(a2α2 + c2γ2 + 2acαγ) > (a+ c)(b2β2 + 2abαβ + 2bcβγ).

Using the upper bound for the term c2γ2 from Eq. (11) in the above inequality, we get

b(a2α2 + acα2 + 2c2αγ + 2acαγ) > (a+ c)(b2β2 + 2abαβ + 2bcβγ)

=⇒ b(a+ c)(aα2 + 2cαγ) > (a+ c)(b2β2 + 2abαβ + 2bcβγ)
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=⇒ aα2 + 2cαγ > bβ2 + 2aαβ + 2cβγ.

Using β ≥ α, we can now lower bound the right hand side in the above inequality to get
aα2 + 2cαγ > bβ2 + 2aα2 + 2cαγ =⇒ 0 > aα2 + bβ2,

which is a contradiction since a, b > 0 and α, β ≥ 0. This proves the claim.

B.5 Complete proof for Lemma 11

Proof. Recall Tη = {sign ◦ (η − t) | t ∈ [0, 1]} and let h∗ = suph∈Tη P
Ψ
D [h] (the existence of this

classifier is guaranteed by Assumption B). We shall now use an exchange argument (that makes use
of Assumption B) to show that for any h /∈ Tη , ∃ h̃ ∈ Tη such that PΨ

D [h̃] ≥ PΨ
D [h], thus implying

PΨ
D [h∗] ≥ PΨ

D [h̃] ≥ PΨ
D [h]; this would imply that the optimal predictor for PΨ is indeed of the

desired threshold form. In particular, we shall show that TPRD[h̃] ≥ TPRD[h] and TNRD[h̃] ≥
TNRD[h], which by the monotonicity assumption on Ψ yields PΨ

D [h̃] ≥ PΨ
D [h].

For any h /∈ Tη , upon arranging all instances x ∈ X in non-increasing order of η, we can find
disjoint subsets A ⊆ {x ∈ X |h(x) = 1} and B ⊆ {x ∈ X |h(x) = −1} such that supx∈A η(x) ≤
infx∈B η(x). Let a = P(x ∈ A) and b = P(x ∈ B); assume without loss of generality, a, b > 0.

Let us consider the case where a ≥ b; here we choose a set A′ ⊆ A with P(x ∈ A′) = b, and define
a classifier h′ as

h′(x) =


1 if x ∈ B
−1 if x ∈ A′
h(x) o/w

.

We shall now show that TPRD[h′] ≥ TPRD[h] and TNRD[h′] ≥ TNRD[h]. In particular,
TPRD[h′]− TPRD[h]

= P
(
h′(x) = 1 | y = 1

)
− P

(
h(x) = 1 | y = 1

)
=

1

p
Ex
[
η(x)1

(
h′(x) = 1

)]
− 1

p
Ex
[
η(x)1

(
h(x) = 1

)]
=

1

p

[
Ex
[
η(x)1

(
h′(x) = 1, h(x) = −1

)]
− Ex

[
η(x)1

(
h(x) = 1, h′(x) = −1

)]]
=

1

p

[
Ex
[
η(x)1

(
x ∈ B

)]
− Ex

[
η(x)1

(
x ∈ A′

)]]
(by definition of h′)

≥ 1

p

[(
inf
x∈B

η(x)
)
P(x ∈ B) −

(
sup
x∈A′

η(x)
)
P(x ∈ A′)

]
=

b

p

[
inf
x∈B

η(x) − sup
x∈A′

η(x)

]
(using P(x ∈ B) = P(x ∈ A′) = b)

≥ b

p

[
inf
x∈B

η(x) − sup
x∈A

η(x)

]
(using A′ ⊆ A)

≥ 0,

where the last step follows from the definition of sets A and B; in a similar manner, one can show
that TNRD[h′]− TNRD[h] ≥ 0.

For the case when a < b, we choose a set B′ ⊂ B with P(x ∈ B′) = a, and define h′ as

h′(x) =


1 if x ∈ B′
−1 if x ∈ A
h(x) o/w

.

Similar to the previous case, one can show that TPRD[h′] ≥ TPRD[h] and TNRD[h′] ≥ TNRD[h].

In both these cases, we have by monotonicity of Ψ that PΨ
D [h′] ≥ PΨ

D [h]. Note that unless a = b,
h′ /∈ Tη . Hence, when a 6= b, we can view h′ as the new h, and apply the above exchange argument
repeatedly to eventually arrive at h̃ ∈ Tη with PΨ

D [h̃] ≥ PΨ
D [h], as desired.
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C Example Distribution Where the Optimal Classifier for G-mean, H-mean
and Q-mean is Not Threshold-based

We now present an example of a distribution under which the optimal classifier for the G-Mean,
H-Mean and Q-Mean performance measures (see Table 1) is not of the requisite thresholded form,
i.e. not of the form sign ◦ (η(x)− c) for any c ∈ (0, 1).

Let X = {x1, x2, x3}. For some a constant ε ∈ (0, 1/2), consider the following distribution D over
X × {±1}:

P(x) η(x) = P(y = 1|x)
x1 0.25 1/2− ε
x2 0.5 1/2
x3 0.25 1/2 + ε

Table 4: Example distribution D over X × {±1}, where the optimal classifier for the G-mean,
H-mean and Q-mean performance measures is not threshold-based.

Consider the following binary classifiers defined on X :

h̃0(x) =

{
1 if x ∈ {x1, x2, x3}
−1 o/w

h̃1(x) =

{
1 if x ∈ {x1, x2}
−1 o/w

h̃2(x) =

{
1 if x ∈ {x1}
−1 o/w

h̃3(x) =

{
−1 if x ∈ {x1, x2, x3}
1 o/w

h4(x) =

{
1 if x ∈ {x2}
−1 o/w

,

where the first four classifiers constitute the set of all classifiers on X of the form sign ◦ (η − c) for
c ∈ (0, 1) (indicated by a ‘∼’), while the last one is not of a thresholded form. We next list out in
Table 5 the values of the G-mean, H-mean and Q-mean performance measures for these classifiers.
It can be seen that for distributions defined using a small value of ε ∈ (0, 0.5), for each of G-Mean,
H-Mean and Q-Mean, the classifier h4 offers a higher performance measure value than any of the
threshold-based classifiers. Clearly, threshold-based classifiers are not optimal under distributions
of the above form with small values of ε.

TPR TNR G-Mean H-Mean Q-Mean√
TPR · TNR 2/

(
1

TPR + 1
TNR

)
1−

(
(1− TPR)2 + (1− TNR)2

)
/2

h̃0 1 0 0 0 1/2

h̃1 3/4 + ε/2 1/4 + ε/2
√

3/4 +O(
√
ε) 3/8 +O(ε) 11/16 +O(ε2)

h̃2 1/4 + ε/2 3/4 + ε/2
√

3/4 +O(
√
ε) 3/8 +O(ε) 11/16 +O(ε2)

h̃3 0 1 0 0 1/2

h4 1/2 1/2 1/2 1/2 3/4

Table 5: Performance measures G-mean, H-mean and Q-mean evaluated for classifiers h̃0, h̃1, h̃2,
h̃3 and h4 under the example distribution D in Table 4. Here ε ∈ (0, 0.5). For small values of ε,
classifier h4 offers the best value w.r.t. all measures (highlighted in bold).
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