On the Statistical Consistency of Plug-in Classifiers for Non-decomposable Performance Measures

Appendix

A Experimental Details

A.1 Synthetic data experiments

We use data drawn from a distribution D over $(X = \mathbb{R}^{10}) \times \{\pm 1\}$ that satisfies Assumption B (and therefore assumption A); recall that our plug-in consistency results for the F_1 and G-TP/PR measures apply to distributions that satisfy Assumption A (see Section 4), and the consistency result for G-Mean holds for distributions that satisfy Assumption B (see Section 5). The specifics of our experiments mirror those used in [16] and are listed here for completeness: positive examples $(y = 1)$ are drawn from $\mathcal{N}(\mu, \Sigma)$ with probability $p \in (0, 1)$ and negative examples $(y = -1)$ drawn from $\mathcal{N}(-\mu, \Sigma)$ with probability $(1 - p)$; μ is drawn uniformly at random from $\{\pm 1\}^{10}$ and $\Sigma \in \mathbb{R}^{10 \times 10}$ is drawn from a Wishart distribution with 20 degrees of freedom and a randomly drawn invertible positive semidefinite scale matrix. As pointed out earlier, the optimal classifier for each performance measure considered here under this distribution is linear, making it sufficient to learn a linear model (see Section A.4).

We evaluate the statistical regret of the empirical plug-in method (Algorithm 1 with $\alpha = 0.5$) and compare it against SVM^{perf} with linear kernel (SVMPerf) adapted to optimize the performance measures considered here⁵, and the Plug-in algorithm with a default threshold 0.5 (Plug-in $(0-1)$). The empirical plug-in algorithm (denoted for the three performance measures respectively as Plug-in (F1), Plug-in (G-TP/PR) and Plug-in (GM)) randomly splits the input data S (drawn from D) into samples S_1 and S_2 for the purposes of learning a class probability estimate and choosing an appropriate threshold respectively; we use regularized (linear) logistic regression for learning a class probability estimate from S_1 , with the regularization parameter set to $1/\sqrt{|S_1|}$, in order to satisfy the L_1 -consistency requirement in Theorem 1 (see [16, 20] for details). The Plug-in (0-1) method learns a class probability estimate using the entire input data (S_1, S_2) , with the regularization parameter set to $1/\sqrt{|S|}$. The SVM^{perf} algorithm also uses the entire input data (S_1, S_2) , with the regularization parameter selected from the range $\{10^{-3}, 10^{-2}, \ldots, 10^{1}\}$ via 5-fold cross-validation over the training sample⁶.

A.2 Real data experiments

For experiments with real data sets, we report the performance of the learned classifiers on separately held test data (we perform a random 2:1 train-test split of the original data, preserving class proportions). For the empirical plug-in algorithm, the parameter α in Algorithm 1 was set to 0.8. The regularization parameter for SVM^{perf} was chosen from the range $\{10^{-7}, 10^{-2}, \ldots, 10^{4}\}$ and that for logistic regression was chosen from the range $\{10^{-3}, 10^{-2}, \ldots, 10^{1}\}\$ using 5-fold cross validation over the corresponding training sample.

A.3 Additional results on real data

Table 2 summarizes all the real data sets that have been used in our experiments (both in Section 6 and this section). Figure 4 shows the test performances of the plug-in (with both the empirically chosen threshold and default threshold) and SVM^{perf} methods w.r.t. F_1 , G-TP/PR and G-Mean measures over data sets included in Table 2 that were not already covered in Figure 3. Table 3 lists experiment outputs for all datasets, all algorithms and all performance measures. Once again, it

⁵We used the SVM^{perf} routine provided in [http://www.cs.cornell.edu/people/tj/svm_](http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html) [light/svm_perf.html](http://www.cs.cornell.edu/people/tj/svm_light/svm_perf.html) for the F₁-measure; we made necessary modifications to this code (as prescribed in [12]) to optimize G-TP/PR and G-Mean.

⁶Here, we cannot set the regularization parameter to $1/\sqrt{|S|}$ since the theoretical prescriptions of [20] are not applicable to multivariate extension of hinge loss optimized by SVM^{perf}.

Figure 4: Experiments on real data: results for empirical Plug-in, SVM^{perf} and Plug-in (0-1) methods (with linear models) on several UCI data sets in terms of \overline{F}_1 , G-TP/PR and G-Mean performance measures. Here N, d, p refer to the number of instances, number of features and fraction of positives in the data set respectively.

can be observed that the empirical Plug-in is competitive with SVM^{perf} and outperforms the Plug-in (0-1) method in most cases.

Data sets	#examples	#features	$p = P(y = 1)$
car	1728	21	0.038
chemo-ala	2111	1021	0.024
nursery	12960	27	0.026
pendigits	10992	17	0.096
letter	18668	16	0.034
optdigits	5620	64	0.901
segment	2086	19	0.143
spambase	4210	57	0.398
splice	3005	240	0.226
thyroid	7129	21	0.977

Table 2: Summary of real data sets used in this study

A.4 Regret calculation for synthetic data

As mentioned in Section A.1, the distribution D over $\mathbb{R}^{10} \times {\pm 1}$ that we consider consists of multivariate Gaussian class conditional distributions, with positive instances being drawn from $\mathcal{N}(\mu, \Sigma)$ and negative instances being drawn from $\mathcal{N}(-\mu, \Sigma)$. We denote the probability density functions (pdfs) corresponding to $x|y = 1$ and $x|y = -1$ as f_+ and f_- respectively.

We first show that any classifier obtained by thresholding the the class probability function η under the above distribution is linear. For any $x \in \mathbb{R}^{10}$, we have

$$
\eta(x) = \mathbf{P}(y=1|x) = \frac{\mathbf{P}(x|y=1).\mathbf{P}(y=1)}{\mathbf{P}(x|y=1).\mathbf{P}(y=1) + \mathbf{P}(x|y=-1).\mathbf{P}(y=-1)}
$$

=
$$
\frac{p.f_{+}(x)}{p.f_{+}(x) + (1-p)f_{-}(x)}
$$

=
$$
\frac{1}{1 + e^{-f(x)}},
$$

where $f(x) = \ln \left(\frac{p \cdot f_+(x)}{(1-p)f_-(x)} \right) = 2\mu^T \Sigma^{-1} x + \ln \left(\frac{p}{1-p} \right)$ turns out to be a linear function of x. As a result, any thresholded classifier of the form sign \circ $(\eta(x) - c)$, for some $c \in (0, 1)$, can be written as a linear classifier: sign $\circ (f(x) - \ln(c/(1-c)))$.

Data sets	Algorithm	F_{1}	G-TP/PR	G-Mean
car	Emp. Plug-in	0.8053 ± 0.0777	0.8231 ± 0.0691	0.9738 ± 0.0164
	SVM-Perf	0.8442 ± 0.0327	0.8426 ± 0.0367	0.9797 ± 0.0179
	Plug-in $(0-1)$	0.7550 ± 0.0643	0.7679 ± 0.0598	0.8027 ± 0.0517
chemo-a1a	Emp. Plug-in	0.7182 ± 0.1286	0.7393 ± 0.1044	0.8640 ± 0.0997
	SVM ^{perf}	0.7256 ± 0.0541	0.7044 ± 0.0560	0.9172 ± 0.0801
	Plug-in $(0-1)$	0.6945 ± 0.0659	0.7214 ± 0.0557	0.7202 ± 0.0382
nursery	Emp. Plug-in	0.7545 ± 0.0319	0.7542 ± 0.0302	0.9668 ± 0.0162
	SVM ^{perf}	0.7479 ± 0.0138	0.7549 ± 0.0120	0.9609 ± 0.0084
	Plug-in $(0-1)$	0.4478 ± 0.0425	0.5287 ± 0.0335	0.5406 ± 0.0334
pendigits	Emp. Plug-in	0.9770 ± 0.0073	0.9772 ± 0.0072	0.9944 ± 0.0037
	SVM ^{perf}	0.9991 ± 0.0009	0.9984 ± 0.0018	0.9986 ± 0.0010
	Plug-in $(0-1)$	0.9795 ± 0.0063	0.9795 ± 0.0063	0.9873 ± 0.0068
letter	Emp. Plug-in	0.6685 ± 0.0239	0.6668 ± 0.0240	0.9093 ± 0.0104
	SVM ^{perf}	0.7143 ± 0.0324	0.7144 ± 0.0304	0.9017 ± 0.0138
	Plug-in $(0-1)$	0.0876 ± 0.0268	0.2117 ± 0.0359	0.2117 ± 0.0359
optdigits	Emp. Plug-in	0.9986 ± 0.0005	0.9912 ± 0.0034	0.9986 ± 0.0005
	SVM ^{perf}	0.9985 ± 0.0005	0.9925 ± 0.0020	0.9985 ± 0.0006
	Plug-in $(0-1)$	0.9987 ± 0.0002	0.9888 ± 0.0023	0.9987 ± 0.0002
segment	Emp. Plug-in	0.9911 ± 0.0114	0.9911 ± 0.0113	0.9899 ± 0.0082
	SVM ^{perf}	0.9964 ± 0.0034	0.9964 ± 0.0033	0.9961 ± 0.0034
	Plug-in $(0-1)$	0.9959 ± 0.0031	0.9959 ± 0.0031	0.9959 ± 0.0031
spambase	Emp. Plug-in	0.8489 ± 0.0145	0.8749 ± 0.0101	0.8493 ± 0.0143
	SVM ^{perf}	0.9078 ± 0.0082	0.9250 ± 0.0068	0.9077 ± 0.0088
	Plug-in $(0-1)$	0.8076 ± 0.0129	0.8317 ± 0.0105	0.8126 ± 0.0126
splice	Emp. Plug-in	0.9391 ± 0.0100	0.9393 ± 0.0099	0.9615 ± 0.0097
	SVM ^{perf}	0.9264 ± 0.0133	0.9268 ± 0.0142	0.9570 ± 0.0060
	Plug-in $(0-1)$	0.9465 ± 0.0093	0.9466 ± 0.0093	0.9636 ± 0.0058
thyroid	Emp. Plug-in	0.9941 ± 0.0008	0.9941 ± 0.0008	0.9293 ± 0.0240
	SVM ^{perf}	0.9950 ± 0.0009	0.9952 ± 0.0008	0.9784 ± 0.0100
	Plug-in $(0-1)$	0.9887 ± 0.0002	0.9887 ± 0.0002	0.1769 ± 0.0749

Table 3: Results from experiments on all real datasets. For each dataset and performance measure, the algorithm outputs with the highest and second-highest mean performance are highlighted in boldface and italics respectively.

We next describe how one can compute the Ψ -regret of a linear classifier $h : \mathbb{R}^{10} \to {\pm 1}$ under the given distribution:

$$
\mathrm{regret}_D^{\Psi}[h] = \mathcal{P}_D^{\Psi,*} - \mathcal{P}_D^{\Psi}[h].
$$

In particular, we shall describe how the values of $\mathcal{P}_D^{\Psi}[h]$ and $\mathcal{P}_D^{\Psi,*}$ in the above expression can be computed for the given distribution D.

We start with the procedure outlined in [16] for calculating the performance measure \mathcal{P}_D^{Ψ} for any linear classifier $h(x) = \text{sign} \circ (w^{\top} x + b)$, where (for our purpose) $w \in \mathbb{R}^{10}$ and $b \in \mathbb{R}$. The TPR of h is given by:

$$
\text{TPR}_D[h] = \mathbf{P}(h(x) = 1|y = 1) = \int_{x \, | \, w^\top x + b \ge 0} f_+(x) \, dx.
$$

It can be seen that $w^{\top}x$ | $y = 1$ follows the normal distribution $\mathcal{N}(w^{\top}x, w^{\top} \Sigma w)$, and therefore by change of variables, we have

$$
\text{TPR}_D[h] = \int_{-b}^{\infty} g_+(x) \, dx,
$$

where g_+ is the pdf corresponding to $\mathcal{N}(w^\top x, w^\top \Sigma w)$. Likewise, the TNR for h is given by:

$$
TNR_D[h] = \int_{-\infty}^{-b} g_-(x) \, dx,
$$

where g_- is the pdf corresponding to $\mathcal{N}(-w^\top x, w^\top \Sigma w)$. This way, given w and b, both TPR and TNR are straightforward to determine, and consequently so is any performance measure that is a function Ψ of these quantities.

We next describe how the optimal value of the given performance measure $\mathcal{P}_D^{\Psi,*}$ can be computed. Since the given distribution satisfies Assumptions A and B, the optimal classifier for all performance measures considered in this work is obtained by suitably thresholding the class probability function η ; hence the optimal value $\mathcal{P}_D^{\Psi,*}$ for the given measure can be computed by performing a line search over $(0, 1)$ and picking the threshold $c^* \in (0, 1)$ for which the linear classifier sign $\circ (f(x) - c^*)$ maximizes the performance measure.

B Complete Proofs for Lemmas

B.1 Complete proof for Lemma 2

Proof. First, we simplify what we need to prove. We need to show that for a fixed $c \in (0, 1)$,

$$
\text{TPR}_D[\text{sign} \circ (\widehat{\eta}_S(x) - c)] \xrightarrow{P} \text{TPR}_D[\text{sign} \circ (\eta(x) - c)] \text{ and}
$$
\n
$$
\text{TNR}_D[\text{sign} \circ (\widehat{\eta}_S(x) - c)] \xrightarrow{P} \text{TNR}_D[\text{sign} \circ (\eta(x) - c)]
$$
\n
$$
\Leftrightarrow \text{ P}(\text{sign} \circ (\widehat{\eta}_S(x) - c) = 1 | y = 1) \xrightarrow{P} \text{ P}(\text{sign} \circ (\eta(x) - c) = 1 | y = 1) \text{ and}
$$
\n
$$
\text{P}(\text{sign} \circ (\widehat{\eta}_S(x) - c) = -1 | y = -1) \xrightarrow{P} \text{ P}(\text{sign} \circ (\eta(x) - c) = -1 | y = -1)
$$
\n
$$
\Leftrightarrow \text{ P}(\widehat{\eta}_S(x) > c | y = 1) \xrightarrow{P} \text{ P}(\eta(x) > c | y = 1) \text{ and}
$$
\n
$$
\text{P}(\widehat{\eta}_S(x) \le c | y = -1) \xrightarrow{P} \text{ P}(\eta(x) \le c | y = -1)
$$
\n
$$
\Leftrightarrow \text{ P}(\widehat{\eta}_S(x) \le c | y = 1) \xrightarrow{P} \text{ P}(\eta(x) \le c | y = 1) \text{ and}
$$
\n
$$
\text{P}(\widehat{\eta}_S(x) \le c | y = -1) \xrightarrow{P} \text{ P}(\eta(x) \le c | y = -1)
$$
\n
$$
\Leftrightarrow \text{P}_{x|y=1}(\widehat{\eta}_S(x) \le c) \xrightarrow{P} \text{ P}_{x|y=1}(\eta(x) \le c) \text{ and}
$$
\n
$$
\text{P}_{x|y=1}(\widehat{\eta}_S(x) \le c) \xrightarrow{P} \text{ P}_{x|y=1}(\eta(x) \le c).
$$
\n(3)

We now analyze the L_1 -consistency guarantee assumed in the statement of Lemma 2, namely $\mathbf{E}_x\big[|\widehat{\eta}_S(x) - \eta(x)|\big] \stackrel{P}{\to} 0.$ We begin by expanding this term.

$$
\mathbf{E}_x\big[|\widehat{\eta}_S(x) - \eta(x)|\big] = p.\mathbf{E}_x\big[\left|\widehat{\eta}_S(x) - \eta(x)\right| \mid y = 1\big] + (1-p).\mathbf{E}_x\big[\left|\widehat{\eta}_S(x) - \eta(x)\right| \mid y = -1\big]
$$

= $p.\mathbf{E}_{x|y=1}\big[\left|\widehat{\eta}_S(x) - \eta(x)\right|\big] + (1-p).\mathbf{E}_{x|y=-1}\big[\left|\widehat{\eta}_S(x) - \eta(x)\right|\big].$

Using the above expansion and the given guarantee on $\hat{\eta}_S$ (along with $p \in (0, 1)$), we obtain $\mathbf{E}_{x|y=1} [\hat{\eta}_S(x) - \eta(x)] \big] \xrightarrow{P} 0$ and $\mathbf{E}_{x|y=-1} [\hat{\eta}_S(x) - \eta(x)] \xrightarrow{P} 0^7$. Applying Markov inequality
for the random variable $\hat{\mathcal{F}}(x) = \eta(x) |$ for a fixed S, we have for any $\epsilon > 0$. for the random variable $|\hat{\eta}_S(x) - \eta(x)|$ for a fixed S, we have for any $\epsilon_1 > 0$,

$$
\mathbf{P}_{x|y=1}(\left|\widehat{\eta}_{S}(x)-\eta(x)\right|\geq\epsilon_{1})\leq\frac{\mathbf{E}_{x|y=1}\left[\left|\widehat{\eta}_{S}(x)-\eta(x)\right|\right]}{\epsilon_{1}}
$$
\nand\n
$$
\mathbf{P}_{x|y=-1}\left(\left|\widehat{\eta}_{S}(x)-\eta(x)\right|\geq\epsilon_{1}\right)\leq\frac{\mathbf{E}_{x|y=-1}\left[\left|\widehat{\eta}_{S}(x)-\eta(x)\right|\right]}{\epsilon_{1}},
$$

which in turn yields for a fixed $\epsilon_1 > 0$,

$$
\mathbf{P}_{x|y=1} (|\widehat{\eta}_S(x) - \eta(x)| \ge \epsilon_1) \xrightarrow{P} 0; \tag{4}
$$

⁷Here, we make use of the fact that for any two sequences of non-negative random variables X_n and Y_n for which $X_n + Y_n \xrightarrow{P} 0$, we have $X_n \xrightarrow{P} 0$ and $Y_n \xrightarrow{P} 0$.

$$
\mathbf{P}_{x|y=-1} (|\widehat{\eta}_S(x) - \eta(x)| \ge \epsilon_1) \xrightarrow{P} 0,
$$
\n(5)

where recall that the convergence in probability is w.r.t. to a random draw of S according to D^n .

In the rest of the proof, we shall make use of (a) the fact that Eq. (4) and (5) hold for arbitrarily small values of ϵ_1 and (b) our assumption that $P(\eta(x) \ge c | y = 1)$ and $P(\eta(x) \ge c | y = -1)$ are continuous at $c \in (0, 1)$ to establish the desired result. We start proving the result w.r.t. $x|y = 1$. For a fixed S and a fixed $\epsilon_2 > 0$, we have

$$
\begin{split} &\mathbf{P}_{x|y=1}(\widehat{\eta}_{S}(x)\leq c) \\ &= \mathbf{P}_{x|y=1}(\widehat{\eta}_{S}(x)\leq c,\,\eta(x)\leq c+\epsilon_{2}) + \mathbf{P}_{x|y=1}(\widehat{\eta}_{S}(x)\leq c,\eta(x)>c+\epsilon_{2}) \\ &\leq \mathbf{P}_{x|y=1}(\eta(x)\leq c+\epsilon_{2}) + \mathbf{P}_{x|y=1}(|\widehat{\eta}_{S}(x)-\eta(x)|\geq \epsilon_{2}), \end{split} \tag{6}
$$

and

$$
\begin{split} \mathbf{P}_{x|y=1}(\eta(x) \leq c - \epsilon_2) \\ &= \mathbf{P}_{x|y=1}(\widehat{\eta}_S(x) \leq c, \ \eta(x) \leq c - \epsilon_2) + \mathbf{P}_{x|y=1}(\widehat{\eta}_S(x) > c, \eta(x) \leq c - \epsilon_2) \\ &\leq \mathbf{P}_{x|y=1}(\widehat{\eta}_S(x) \leq c) + \mathbf{P}_{x|y=1}(|\widehat{\eta}_S(x) - \eta(x)| \geq \epsilon_2). \end{split} \tag{7}
$$

Consequently from Eq. (6) and (7), we get

$$
\mathbf{P}_{x|y=1}(\eta(x) \leq c - \epsilon_2) - \mathbf{P}_{x|y=1}(\left|\widehat{\eta}_S(x) - \eta(x)\right| \geq \epsilon_2) \leq \mathbf{P}_{x|y=1}(\widehat{\eta}_S(x) \leq c)
$$

and
$$
\mathbf{P}_{x|y=1}(\widehat{\eta}_S(x) \leq c) \leq \mathbf{P}_{x|y=1}(\eta(x) \leq c + \epsilon_2) + \mathbf{P}_{x|y=1}(\left|\widehat{\eta}_S(x) - \eta(x)\right| \geq \epsilon_2).
$$

Subtracting the term $P_{x|y=1}(\eta(x) \leq c)$ from both sides in each of the above inequalities and combining the resulting inequalities then gives us

$$
\left| \mathbf{P}_{x|y=1} \left(\widehat{\eta}_{S}(x) \leq c \right) - \mathbf{P}_{x|y=1} \left(\eta(x) \leq c \right) \right| \leq
$$
\n
$$
\max \left\{ \underbrace{\mathbf{P}_{x|y=1} \left(|\widehat{\eta}_{S}(x) - \eta(x)| \geq \epsilon_{2} \right) + \mathbf{P}_{x|y=1} \left(\eta(x) \leq c + \epsilon_{2} \right) - \mathbf{P}_{x|y=1} \left(\eta(x) \leq c \right)}_{\text{term}_1}, \right\}
$$
\n
$$
\underbrace{\mathbf{P}_{x|y=1} \left(|\widehat{\eta}_{S}(x) - \eta(x)| \geq \epsilon_{2} \right) - \mathbf{P}_{x|y=1} \left(\eta(x) \leq c - \epsilon_{2} \right) + \mathbf{P}_{x|y=1} \left(\eta(x) \leq c \right)}_{\text{term}_2} \right\}.
$$
\n(8)

Keeping S fixed, we now allow $\epsilon_2 \to 0$. In particular, by our assumption that $P_{x|y=1}(\eta(x) \le c)$ is continuous at c , for the terms inside the above 'max', we have:

$$
\lim_{\epsilon_2 \to 0} \text{term}_1 = \lim_{\epsilon_2 \to 0} \mathbf{P}_{x|y=1} \left(|\widehat{\eta}_S(x) - \eta(x)| \ge \epsilon_2 \right);
$$

$$
\lim_{\epsilon_2 \to 0} \text{term}_2 = \lim_{\epsilon_2 \to 0} \mathbf{P}_{x|y=1} \left(|\widehat{\eta}_S(x) - \eta(x)| \ge \epsilon_2 \right).
$$

Thus for a fixed S , the following holds from Eq. (8):

$$
0 \leq |\mathbf{P}_{x|y=1}(\widehat{\eta}_S(x) \leq c) - \mathbf{P}_{x|y=1}(\eta(x) \leq c)| \leq \lim_{\epsilon_2 \to 0} \mathbf{P}_{x|y=1}(|\widehat{\eta}_S(x) - \eta(x)| \geq \epsilon_2).
$$

Now, from an application of Eq. (4) (which holds for arbitrarily small ϵ_1), we obtain the following convergence in probability over a random draw of S from D^n :

$$
\left|\mathbf{P}_{x|y=1}\big(\widehat{\eta}_{S}(x)\leq c\big)-\mathbf{P}_{x|y=1}\big(\eta(x)\leq c\big)\right|\xrightarrow{P}0,
$$

which in turn, implies

$$
\mathbf{P}_{x|y=1}(\widehat{\eta}_S(x)\leq c)\xrightarrow{P}\mathbf{P}_{x|y=1}(\eta(x)\leq c).
$$

This is the desired relation w.r.t $x|y = 1$ (as seen in Eq. (3)). The desired result w.r.t. $x|y = -1$ follows likewise. \Box

B.2 Complete proof for Lemma 4

Proof. Define for $i, j \in \{-1, 1\}$:

$$
\widehat{p}_{i,j,n}[h] = \sum_{k=1}^{n} \mathbf{1}(y_k = i, h(x_k) = j)/n
$$
 and $p_{ij}[h] = \mathbf{E}_D[\mathbf{1}(y = i, h(x) = j)].$

For a fixed $h \in \mathcal{T}_f$, by the weak law of large numbers (WLLN), we have $\forall i, j$:

$$
\widehat{p}_{i,j,n}[h] \xrightarrow{P} p_{i,j}[h],
$$

where the convergence in probability is over draw of $S \sim D^n$. Also, $\hat{p}_S \stackrel{P}{\rightarrow} p$ (again by WLLN). Given that

$$
\widehat{\text{TPR}}_S[h] = \frac{1}{\widehat{p}_S} \widehat{p}_{1,1,n}[h] \quad \text{and} \quad \widehat{\text{TNR}}_S[h] = \frac{1}{(1-\widehat{p}_S)} \widehat{p}_{-1,-1,n}[h],
$$

we thus have

$$
\widehat{\text{TPR}}_S[h] \xrightarrow{P} \frac{p_{1,1}[h]}{p} = \text{TPR}_D[h] \quad \text{and} \quad \widehat{\text{TNR}}_S[h] \xrightarrow{P} \frac{p_{-1,-1}[h]}{1-p} = \text{TNR}_D[h].
$$

In turn, by continuity of Ψ , we obtain

$$
\widehat{\mathcal{P}}_S^{\Psi}[h] \xrightarrow{P} \mathcal{P}_D^{\Psi}[h].
$$

B.3 Complete proof for Lemma 5

Proof. Recall that any fixed $h \in \mathcal{T}_f$ is of the form sign \circ $(f(x) - c)$ for some constant $c \in$ $(0, 1)$. Let $p_{i,j}[h]$ and $p_{i,j,n}[h]$ be as defined in the proof of Lemma 4 (Section B.2). Since VC-dimension(\mathcal{T}_f) = 1, by standard VC-dimension based uniform convergence arguments, we can argue that for all $i, j \in \{\pm 1\}$, given any $\epsilon' > 0$,

$$
\mathbf{P}_{S \sim D^n} \bigg(\bigcup_{h \in \mathcal{T}_f} \big| \widehat{p}_{i,j,n}[h] - p_{i,j}[h] \big| \ge \epsilon' \bigg) \to 0.
$$

We also have $\widehat{p}_S \xrightarrow{P} p$ (by WLLN).

Now, as in the proof of Lemma 4, observing that TPR and TNR are continuous functions of the above quantities, it can be shown using an appropriate choice of $\epsilon' > 0$ in the above expressions, and by an application of union bound, that for any given $\epsilon > 0$,

$$
\mathbf{P}_{S \sim D^{n}} \bigg(\bigcup_{h \in \mathcal{T}_{f}} \Big\{ |\text{TPR}_{D}[h] - \widehat{\text{TPR}}_{S}[h]| \geq \epsilon \Big\} \bigg) \to 0
$$

and
$$
\mathbf{P}_{S \sim D^{n}} \bigg(\bigcup_{h \in \mathcal{T}_{f}} \Big\{ |\text{TNR}_{D}[h] - \widehat{\text{TNR}}_{S}[h]| \geq \epsilon \Big\} \bigg) \to 0.
$$

Once again, by continuity of Ψ , we have:

$$
\mathbf{P}_{S\sim D^{n}}\bigg(\bigcup_{h\in\mathcal{T}_{f}}\left\{ \left|\mathcal{P}_{D}^{\Psi}[h]-\widehat{\mathcal{P}}_{S}^{\Psi}[h]\right|\geq\epsilon\right\} \bigg)\to0\text{ as }n\to\infty,
$$

as desired.

 \Box

B.4 Complete proof for Lemma 9

Proof. Our proof is similar to that of Theorem 4 in [15]. Recall $\mathcal{T}_{\eta} = \{\text{sign} \circ (\eta - t) | t \in [0, 1]\}$ and let $h^* = \sup_{h \in \mathcal{T}_\eta} \mathcal{P}_D^{\text{G-TP/PR}}[h]$ (the existence of this classifier is guaranteed by Assumption A). We shall show that for any $h \notin \mathcal{T}_\eta$, $\exists h \in \mathcal{T}_\eta$ such that $\mathcal{P}_D^{\text{G-TP/PR}}[h] \geq \mathcal{P}_D^{\text{G-TP/PR}}[h]$, thus giving us $\mathcal{P}_{D}^{\text{G-TP/PR}}[h^*] \geq \mathcal{P}_{D}^{\text{G-TP/PR}}[h] \geq \mathcal{P}_{D}^{\text{G-TP/PR}}[h]$; this would imply that the optimal predictor for G-TP/PR is indeed of the desired threshold form.

For any $h \notin \mathcal{T}_\eta$, upon arranging all instances $x \in \mathcal{X}$ in non-increasing order of η , we can find disjoint subsets $A, B, C \subseteq \mathcal{X}$, with $\sup_{x \in A} \eta(x) \leq \inf_{x \in B} \eta(x) \leq \sup_{x \in B} \eta(x) \leq \inf_{x \in C} \eta(x)$, such that: $A \cup C = \{x \in \mathcal{X} \mid h(x) = 1\}$ and $B \subseteq \{x \in \mathcal{X} \mid h(x) = -1\}$. We now define two new classifiers:

$$
h_A(x) = \begin{cases} -1 & \text{if } x \in A \\ h(x) & \text{of } w \end{cases} \quad \text{and} \quad h_B(x) = \begin{cases} 1 & \text{if } x \in B \\ h(x) & \text{of } w \end{cases}.
$$

We now claim that one of these newly defined classifiers must be at least as good as h w.r.t. G-TP/PR (this claim is proved below).

Claim. Either $\mathcal{P}_D^{\text{G-TP/PR}}[h_A] \geq \mathcal{P}_D^{\text{G-TP/PR}}[h]$ or $\mathcal{P}_D^{\text{G-TP/PR}}[h_B] \geq \mathcal{P}_D^{\text{G-TP/PR}}[h]$.

According to the above claim, any classifier that is not of the form sign ∘ $(\eta(x) - c)$ is only as good as one of h_B or h_A w.r.t. G-TP/PR. We could now imagine one of h_A or h_B as the new h and make repeated use of the above exchange argument to eventually arrive at a classifier h in \mathcal{T}_{η} with $\mathcal{P}_D^{\text{G-TP/PR}}[\tilde{h}] \geq \mathcal{P}_D^{\text{G-TP/PR}}[\tilde{h}]$, as desired.

It remains to be shown that the above claim is true.

Proof of Claim. Let us assume the contrary, that $\mathcal{P}_D^{\text{G-TPP/PR}}[h] > \mathcal{P}_D^{\text{G-TPP/PR}}[h]$ and $\mathcal{P}_D^{\text{G-TPP/PR}}[h] >$ $\mathcal{P}_D^{\text{G-TP/PR}}[h_B]$, and arrive at a contradiction. Let $a = \mathbf{P}(x \in A)$, $b = \mathbf{P}(x \in B)$ and $c = \mathbf{P}(x \in C)$, and assume without loss of generality that $a, b > 0$. Let $\alpha = \mathbf{E}_x \left[\eta(x) \mid x \in A \right], \beta = \mathbf{E}_x \left[\eta(x) \mid x \in A \right]$ B and $\gamma = \mathbf{E}_x[\eta(x) | x \in C]$. It is clearly seen that $0 \le \alpha \le \beta \le \gamma$. With the above definitions, we have, TPR_D(h) = $\frac{a\alpha + c\gamma}{p}$ and Prec_D(h) = $\frac{a\alpha + c\gamma}{a+c}$, and in turn, $\mathcal{P}^{\text{G-TP/PR}}(h) = \sqrt{\frac{(a\alpha + c\gamma)^2}{p(a+c)}}$ $\frac{i\alpha+c\gamma)^2}{p(a+c)},$ while $\mathcal{P}^{\text{G-TP/PR}}(h_B) = \sqrt{\frac{(a\alpha + b\beta + c\gamma)^2}{n(a+b+c)} }$ $\frac{\alpha+b\beta+c\gamma)^2}{p(a+b+c)}$ and $\mathcal{P}^{\text{G-TP/PR}}(h_A) = \sqrt{\frac{(c\gamma)^2}{p(c)}}$ $\frac{c\gamma)^2}{p(c)}$.

By our contradiction hypothesis,

$$
\sqrt{\frac{(a\alpha+c\gamma)^2}{p(a+c)}}>\sqrt{\frac{(a\alpha+b\beta+c\gamma)^2}{p(a+b+c)}}\quad\text{and}\quad\sqrt{\frac{(a\alpha+c\gamma)^2}{p(a+c)}}>\sqrt{\frac{(c\gamma)^2}{p(c)}},
$$

which implies

$$
(a+b+c)(a\alpha+c\gamma)^2 > (a+c)(a\alpha+b\beta+c\gamma)^2
$$
\n(9)

and
$$
c(a\alpha + c\gamma)^2 > (a+c)(c\gamma)^2
$$
. (10)

Now, from Eq. (10), we have

$$
c(a^2\alpha^2 + c^2\gamma^2 + 2a\alpha c\gamma) > ac^2\gamma^2 + c^3\gamma^2 \quad \text{or} \quad ac\alpha^2 + 2c^2\alpha\gamma > c^2\gamma^2,\tag{11}
$$

Next, from Eq. (9), we have

$$
(a+b+c)(a^2\alpha^2+c^2\gamma^2+2ac\alpha\gamma)>(a+c)(a^2\alpha^2+b^2\beta^2+c^2\gamma^2+2ab\alpha\beta+2bc\beta\gamma+2ac\alpha\gamma),
$$
 which can be simplified as

$$
b(a2a2 + c2\gamma2 + 2ac\alpha\gamma) > (a + c)(b2\beta2 + 2ab\alpha\beta + 2bc\beta\gamma).
$$

Using the upper bound for the term $c^2\gamma^2$ from Eq. (11) in the above inequality, we get

$$
b(a^2\alpha^2 + ac\alpha^2 + 2c^2\alpha\gamma + 2ac\alpha\gamma) > (a+c)(b^2\beta^2 + 2ab\alpha\beta + 2bc\beta\gamma)
$$

\n
$$
\implies b(a+c)(a\alpha^2 + 2c\alpha\gamma) > (a+c)(b^2\beta^2 + 2ab\alpha\beta + 2bc\beta\gamma)
$$

 $\implies a\alpha^2 + 2c\alpha\gamma > b\beta^2 + 2a\alpha\beta + 2c\beta\gamma.$

Using $\beta \ge \alpha$, we can now lower bound the right hand side in the above inequality to get

 $a\alpha^2 + 2c\alpha\gamma > b\beta^2 + 2a\alpha^2 + 2c\alpha\gamma \implies 0 > a\alpha^2 + b\beta^2$,

which is a contradiction since $a, b > 0$ and $\alpha, \beta > 0$. This proves the claim.

 \Box

B.5 Complete proof for Lemma 11

Proof. Recall $\mathcal{T}_\eta = \{\text{sign} \circ (\eta - t) | t \in [0, 1]\}$ and let $h^* = \sup_{h \in \mathcal{T}_\eta} \mathcal{P}_D^{\Psi}[h]$ (the existence of this classifier is guaranteed by Assumption B). We shall now use an exchange argument (that makes use of Assumption B) to show that for any $h \notin \mathcal{T}_\eta$, $\exists h \in \mathcal{T}_\eta$ such that $\mathcal{P}_D^{\Psi}[h] \geq \mathcal{P}_D^{\Psi}[h]$, thus implying $\mathcal{P}_D^{\Psi}[h^*] \geq \mathcal{P}_D^{\Psi}[h] \geq \mathcal{P}_D^{\Psi}[h]$; this would imply that the optimal predictor for \mathcal{P}^{Ψ} is indeed of the desired threshold form. In particular, we shall show that $TPR_D[\tilde{h}] \geq TPR_D[h]$ and $TNR_D[\tilde{h}] \geq$ TNR_D[h], which by the monotonicity assumption on Ψ yields $\mathcal{P}_D^{\Psi}[\hat{h}] \ge \mathcal{P}_D^{\Psi}[h]$.

For any $h \notin \mathcal{T}_\eta$, upon arranging all instances $x \in \mathcal{X}$ in non-increasing order of η , we can find disjoint subsets $A \subseteq \{x \in \mathcal{X} \mid h(x) = 1\}$ and $B \subseteq \{x \in \mathcal{X} \mid h(x) = -1\}$ such that $\sup_{x \in A} \eta(x) \le$ $\inf_{x\in B} \eta(x)$. Let $a = \mathbf{P}(x \in A)$ and $b = \mathbf{P}(x \in B)$; assume without loss of generality, $a, b > 0$.

Let us consider the case where $a \geq b$; here we choose a set $A' \subseteq A$ with $P(x \in A') = b$, and define a classifier h' as

$$
h'(x) = \begin{cases} 1 & \text{if } x \in B \\ -1 & \text{if } x \in A' \\ h(x) & \text{o/w} \end{cases}.
$$

We shall now show that $TPR_D[h'] \geq TPR_D[h]$ and $TNR_D[h'] \geq TNR_D[h]$. In particular,

$$
\begin{aligned}\n\text{TPR}_D[h'] &= \text{TPR}_D[h] \\
&= \mathbf{P}\left(h'(x) = 1 \mid y = 1\right) - \mathbf{P}\left(h(x) = 1 \mid y = 1\right) \\
&= \frac{1}{p} \mathbf{E}_x \left[\eta(x) \mathbf{1}\left(h'(x) = 1\right)\right] - \frac{1}{p} \mathbf{E}_x \left[\eta(x) \mathbf{1}\left(h(x) = 1\right)\right] \\
&= \frac{1}{p} \left[\mathbf{E}_x \left[\eta(x) \mathbf{1}\left(h'(x) = 1, h(x) = -1\right)\right] - \mathbf{E}_x \left[\eta(x) \mathbf{1}\left(h(x) = 1, h'(x) = -1\right)\right]\right] \\
&= \frac{1}{p} \left[\mathbf{E}_x \left[\eta(x) \mathbf{1}\left(x \in B\right)\right] - \mathbf{E}_x \left[\eta(x) \mathbf{1}\left(x \in A'\right)\right]\right] \quad \text{(by definition of } h') \\
&\geq \frac{1}{p} \left[\left(\inf_{x \in B} \eta(x)\right) \mathbf{P}(x \in B) - \left(\sup_{x \in A'} \eta(x)\right) \mathbf{P}(x \in A')\right] \\
&= \frac{b}{p} \left[\inf_{x \in B} \eta(x) - \sup_{x \in A'} \eta(x)\right] \quad \text{(using } \mathbf{P}(x \in B) = \mathbf{P}(x \in A') = b) \\
&\geq \frac{b}{p} \left[\inf_{x \in B} \eta(x) - \sup_{x \in A} \eta(x)\right] \quad \text{(using } A' \subseteq A) \\
&\geq 0,\n\end{aligned}
$$

where the last step follows from the definition of sets A and B ; in a similar manner, one can show that $\text{TNR}_D[h'] - \text{TNR}_D[h] \geq 0.$

For the case when $a < b$, we choose a set $B' \subset B$ with $P(x \in B') = a$, and define h' as

$$
h'(x) = \begin{cases} 1 & \text{if } x \in B' \\ -1 & \text{if } x \in A \\ h(x) & \text{ofw} \end{cases}.
$$

Similar to the previous case, one can show that $TPR_D[h'] \geq TPR_D[h]$ and $TNR_D[h'] \geq TNR_D[h]$.

In both these cases, we have by monotonicity of Ψ that $\mathcal{P}_D^{\Psi}[h'] \geq \mathcal{P}_D^{\Psi}[h]$. Note that unless $a = b$, $h' \notin \mathcal{T}_\eta$. Hence, when $a \neq b$, we can view h' as the new h, and apply the above exchange argument repeatedly to eventually arrive at $\tilde{h} \in \mathcal{T}_{\eta}$ with $\mathcal{P}_D^{\Psi}[\tilde{h}] \geq \mathcal{P}_D^{\Psi}[h]$, as desired. \Box

C Example Distribution Where the Optimal Classifier for G-mean, H-mean and Q-mean is Not Threshold-based

We now present an example of a distribution under which the optimal classifier for the G-Mean, H-Mean and Q-Mean performance measures (see Table 1) is not of the requisite thresholded form, i.e. not of the form sign $\circ (\eta(x) - c)$ for any $c \in (0, 1)$.

Let $\mathcal{X} = \{x_1, x_2, x_3\}$. For some a constant $\epsilon \in (0, 1/2)$, consider the following distribution D over $\mathcal{X} \times \{\pm 1\}$:

	$\mathbf{P}(x)$	$\eta(x) = \mathbf{P}(y=1 x)$
x_1	0.25	$1/2-\epsilon$
x_2	0.5	1/2
x_3	$0.25\,$	$1/2+\epsilon$

Table 4: Example distribution D over $\mathcal{X} \times \{\pm 1\}$, where the optimal classifier for the G-mean, H-mean and Q-mean performance measures is not threshold-based.

Consider the following binary classifiers defined on \mathcal{X} :

$$
\widetilde{h}_0(x) = \begin{cases}\n1 & \text{if } x \in \{x_1, x_2, x_3\} \\
-1 & \text{of } x\n\end{cases}
$$
\n
$$
\widetilde{h}_1(x) = \begin{cases}\n1 & \text{if } x \in \{x_1, x_2\} \\
-1 & \text{of } x\n\end{cases}
$$
\n
$$
\widetilde{h}_2(x) = \begin{cases}\n1 & \text{if } x \in \{x_1\} \\
-1 & \text{of } x\n\end{cases}
$$
\n
$$
\widetilde{h}_3(x) = \begin{cases}\n-1 & \text{if } x \in \{x_1, x_2, x_3\} \\
1 & \text{of } x\n\end{cases}
$$
\n
$$
h_4(x) = \begin{cases}\n1 & \text{if } x \in \{x_2\} \\
-1 & \text{of } x\n\end{cases}
$$

where the first four classifiers constitute the set of all classifiers on X of the form sign ∘ (η – c) for $c \in (0, 1)$ (indicated by a '∼'), while the last one is not of a thresholded form. We next list out in Table 5 the values of the G-mean, H-mean and Q-mean performance measures for these classifiers. It can be seen that for distributions defined using a small value of $\epsilon \in (0, 0.5)$, for each of G-Mean, H-Mean and Q-Mean, the classifier h_4 offers a higher performance measure value than any of the threshold-based classifiers. Clearly, threshold-based classifiers are not optimal under distributions of the above form with small values of ϵ .

	TPR	TNR	G-Mean $\sqrt{TPR} \cdot TNR$	H-Mean $2/(\frac{1}{TPR} + \frac{1}{TNR})$	O-Mean $1 - ((1 - TPR)^2 + (1 - TNR)^2)/2$
\widetilde{h}_0		Ω	Ω	$\overline{0}$	1/2
\widetilde{h}_1		$3/4 + \epsilon/2$ $1/4 + \epsilon/2$	$\sqrt{3}/4 + O(\sqrt{\epsilon})$	$3/8 + O(\epsilon)$	$11/16 + O(\epsilon^2)$
\widetilde{h}_2		$1/4 + \epsilon/2$ $3/4 + \epsilon/2$	$\sqrt{3}/4 + O(\sqrt{\epsilon})$	$3/8 + O(\epsilon)$	$11/16 + O(\epsilon^2)$
\widetilde{h}_3	θ		Ω	θ	1/2
h_4	1/2	1/2	1/2	1/2	3/4

Table 5: Performance measures G-mean, H-mean and Q-mean evaluated for classifiers h_0 , h_1 , h_2 , h_3 and h_4 under the example distribution D in Table 4. Here $\epsilon \in (0, 0.5)$. For small values of ϵ , classifier h_4 offers the best value w.r.t. all measures (highlighted in bold).