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Abstract

We study consistency properties of algorithms for non-decomposable performance
measures that cannot be expressed as a sum of losses on individual data points,
such as the F-measure used in text retrieval and several other performance mea-
sures used in class imbalanced settings. While there has been much work on
designing algorithms for such performance measures, there is limited understand-
ing of the theoretical properties of these algorithms. Recently, Ye et al. (2012)
showed consistency results for two algorithms that optimize the F-measure, but
their results apply only to an idealized setting, where precise knowledge of the
underlying probability distribution (in the form of the ‘true’ posterior class prob-
ability) is available to a learning algorithm. In this work, we consider plug-in
algorithms that learn a classifier by applying an empirically determined threshold
to a suitable ‘estimate’ of the class probability, and provide a general methodology
to show consistency of these methods for any non-decomposable measure that can
be expressed as a continuous function of true positive rate (TPR) and true nega-
tive rate (TNR), and for which the Bayes optimal classifier is the class probability
function thresholded suitably. We use this template to derive consistency results
for plug-in algorithms for the F-measure and for the geometric mean of TPR and
precision; to our knowledge, these are the first such results for these measures. In
addition, for continuous distributions, we show consistency of plug-in algorithms
for any performance measure that is a continuous and monotonically increasing
function of TPR and TNR. Experimental results confirm our theoretical findings.

1 Introduction

In many real-world applications, the performance measure used to evaluate a learning model is
non-decomposable and cannot be expressed as a summation or expectation of losses on individual
data points; this includes, for example, the F-measure used in information retrieval [1], and several
combinations of the true positive rate (TPR) and true negative rate (TNR) used in class imbalanced
classification settings [2–5] (see Table 1). While there has been much work in the last two decades
in designing learning algorithms for such performance measures [6–14], our understanding of the
statistical consistency of these methods is rather limited. Recently, Ye et al. (2012) showed consis-
tency results for two algorithms for the F-measure [15] that use the ‘true’ posterior class probability
to make predictions on instances. These results implicitly assume that the given learning algorithm
has precise knowledge of the underlying probability distribution (in the form of the true posterior
class probability); this assumption does not however hold in most real-world settings.

In this paper, we consider a family of methods that construct a plug-in classifier by applying an
empirically determined threshold to a suitable ‘estimate’ of the class probability (obtained using a
model learned from a sample drawn from the underlying distribution). We provide a general method-
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Table 1: Performance measures considered in our study. Here β ∈ (0,∞) and p = P(y = 1).
Each performance measure here can be expressed as PΨ

D [h] = Ψ(TPRD[h],TNRD[h], p). The last
column contains the assumption on the distributionD under which the plug-in algorithm considered
in this work is statistically consistent w.r.t. a performance measure (details in Sections 3 and 5).
Measure Definition Ref. Ψ(u, v, p) Assumption on D
AM (1-BER) (TPR + TNR)/2 [17–19] u+v

2
Assumption A

Fβ-measure (1 + β2)/
(
β2

Prec + 1
TPR

)
[1, 19] (1+β2)pu

p+β2(pu+(1−p)(1−v))
Assumption A

G-TP/PR
√

TPR · Prec [3]
√

pu2

pu+(1−p)(1−v)
Assumption A

G-Mean (GM)
√

TPR · TNR [2, 3]
√
uv Assumption B

H-Mean (HM) 2/
(

1
TPR + 1

TNR

)
[4] 2uv

u+v
Assumption B

Q-Mean (QM) 1− ((1− TPR)2 + (1− TNR)2)/2 [5] 1− (1−u)2+(1−v)2

2
Assumption B

ology to show statistical consistency of these methods (under a mild assumption on the underlying
distribution) for any performance measure that can be expressed as a continuous function of the TPR
and TNR and the class proportion, and for which the Bayes optimal classifier is the class probability
function thresholded at a suitable point. We use our proof template to derive consistency results for
the F-measure (using a recent result by [15] on the Bayes optimal classifier for F-measure), and the
geometric mean of TPR and precision; to our knowledge, these are the first such results for these
performance measures. Using our template, we also obtain a recent consistency result by Menon et
al. [16] for the arithmetic mean of TPR and TNR. In addition, we show that for continuous distri-
butions, the optimal classifier for any performance measure that is a continuous and monotonically
increasing function of TPR and TNR is necessarily of the requisite thresholded form, thus establish-
ing consistency of the plug-in algorithms for all such performance measures. Experiments on real
and synthetic data confirm our theoretical findings, and show that the plug-in methods considered
here are competitive with the state-of-the-art SVMperf method [12] for non-decomposable measures.

Related Work. Much of the work on non-decomposable performance measures in binary classifi-
cation settings has focused on the F-measure; these include the empirical plug-in algorithm consid-
ered here [6], cost-weighted versions of SVM [9], methods that optimize convex and non-convex
approximations to F-measure [10–14], and decision-theoretic methods that learn a class probability
estimate and compute predictions that maximize the expected F-measure on a test set [7–9]. While
there has been considerable amount of work on consistency of algorithms for univariate performance
measures [16, 20–22], theoretical results on non-decomposable measures have been limited to char-
acterizing the Bayes optimal classifier for F-measure [15, 23, 24], and some consistency results for
F-measure for certain idealized versions of the empirical plug-in and decision theoretic methods
that have access to the true class probability [15]. There has also been some work on algorithms that
optimize F-measure in multi-label classification settings [25, 26] and consistency results for these
methods [26, 27], but these results do not apply to the binary classification setting that we consider
here; in particular, in a binary classification setting, the F-measure that one seeks to optimize is a
single number computed over the entire training set, while in a multi-label setting, the goal is to
optimize the mean F-measure computed over multiple labels on individual instances.

Organization. We start with some preliminaries in Section 2. Section 3 presents our main result
on consistency of plug-in algorithms for non-decomposable performance measures that are func-
tions of TPR and TNR. Section 4 contains application of our proof template to the AM, Fβ and
G-TP/PR measures, and Section 5 contains results under continuous distributions for performance
measures that are monotonic in TPR and TNR. Section 6 describes our experimental results on real
and synthetic data sets. Proofs not provided in the main text can be found in the Appendix.

2 Preliminaries

Problem Setup. Let X be any instance space. Given a training sample S =

((x1, y1), . . . , (xn, yn)) ∈ (X × {±1})n, our goal is to learn a binary classifier ĥS : X →{±1}
to make predictions for new instances drawn from X . Assume all examples (both training and
test) are drawn iid according to some unknown probability distribution D on X × {±1}. Let
η(x) = P(y = 1|x) and p = P(y = 1) (both under D). We will be interested in settings where the
performance of ĥS is measured via a non-decomposable performance measure P : {±1}X →R+,
which cannot be expressed as a sum or expectation of losses on individual examples.
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Non-decomposable performance measures. Let us first define the following quantities associated
with a binary classifier h : X →{±1}:

True Positive Rate / Recall TPRD[h] = P
(
h(x) = 1 | y = 1

)
True Negative Rate TNRD[h] = P

(
h(x) = −1 | y = −1

)
Precision PrecD[h] = P

(
y = 1 |h(x) = 1

)
= pTPRD[h]

pTPRD[h]+(1−p)(1−TNRD[h]) .

In this paper, we will consider non-decomposable performance measures that can be expressed as a
function of the TPR and TNR and the class proportion p. Specifically, let Ψ : [0, 1]3→R+; then the
Ψ-performance of h w.r.t. D, which we will denote as PΨ

D [h], will be defined as:
PΨ
D [h] = Ψ(TPRD[h], TNRD[h], p).

For example, for β > 0, the Fβ-measure of h can be defined through the func-
tion ΨFβ : [0, 1]3→R+ given by ΨFβ (u, v, p) = (1+β2)pu

p+β2(pu+(1−p)(1−v)) , which gives

PFβD [h] = (1 + β2)/
(

β2

PrecD[h] + 1
TPRD[h]

)
. Table 1 gives several examples of non-decomposable

performance measures that are used in practice. We will also find it useful to consider empirical ver-
sions of these performance measures calculated from a sample S, which we will denote as P̂Ψ

S [h]:

P̂Ψ
S [h] = Ψ(T̂PRS [h], T̂NRS [h], p̂S), (1)

where p̂S = 1
n

∑n
i=1 1(yi = 1) is an empirical estimate of p, and

T̂PRS [h] =
1

p̂Sn

n∑
i=1

1(h(xi) = 1, yi = 1); T̂NRS [h] =
1

(1− p̂S)n

n∑
i=1

1(h(xi) = −1, yi = −1)

are the empirical TPR and TNR respectively.1

Ψ-consistency. We will be interested in the optimum value of PΨ
D over all classifiers:

PΨ,∗
D = sup

h:X →{±1}
PΨ
D [h].

In particular, one can define the Ψ-regret of a classifier h as:
regretΨD[h] = PΨ,∗

D − PΨ
D [h].

A learning algorithm is then said to be Ψ-consistent if the Ψ-regret of the classifier ĥS output by the
algorithm on seeing training sample S converges in probability to 0:2

regretΨD[ĥS ]
P−→ 0.

Class of Threshold Classifiers. We will find it useful to define for any function f : X → [0, 1],
the set of classifiers obtained by assigning a threshold to f : Tf = {sign ◦ (f − t) | t ∈ [0, 1]},
where sign(u) = 1 if u > 0 and −1 otherwise. For a given f , we shall also define the thresholds
corresponding to maximum population and empirical measures respectively (when they exist) as:

t∗D,f,Ψ ∈ argmax
t∈[0,1]

PΨ
D [sign ◦ (f − t)]; t̂S,f,Ψ ∈ argmax

t∈[0,1]

P̂Ψ
S [sign ◦ (f − t)].

Plug-in Algorithms and Result of Ye et al. (2012). In this work, we consider a family of plug-in
algorithms, which divide the input sample S into samples (S1, S2), use a suitable class probability
estimation (CPE) algorithm to learn a class probability estimator η̂S1

: X → [0, 1] from S1, and
output a classifier ĥS(x) = sign(η̂S1(x)− t̂S2,η̂S1 ,Ψ

), where t̂S2,η̂S1 ,Ψ
is a threshold that maximizes

the empirical performance measure on S2 (see Algorithm 1). We note that this approach is differ-
ent from the idealized plug-in method analyzed by Ye et al. (2012) in the context of F-measure
optimization, where a classifier is learned by assigning an empirical threshold to the ‘true’ class
probability function η [15]; the consistency result therein is useful only if precise knowledge of η is
available to a learning algorithm, which is not the case in most practical settings.

L1-consistency of a CPE algorithm. Let C be a CPE algorithm, and for any sample S, denote
η̂S = C(S). We will say C is L1-consistent w.r.t. a distribution D if Ex

[∣∣η̂S(x)− η(x)
∣∣] P−→ 0.

1In the setting considered here, the goal is to maximize a (non-decomposable) function of expectations; we
note that this is different from the decision-theoretic setting in [15], where one looks at the expectation of a
non-decomposable performance measure on n examples, and seeks to maximize its limiting value as n→∞.

2We say φ(S) converges in probability to a ∈ R, written as φ(S)
P−→ a, if ∀ε > 0,

PS∼Dn(|φ(S)− a| ≥ ε)→ 0 as n→∞.
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Algorithm 1 Plug-in with Empirical Threshold for Performance Measure PΨ : 2X →R+

1: Input: S = ((x1, y1), . . . , (xn, yn)) ∈ (X × {±1})n
2: Parameter: α ∈ (0, 1)

3: Let S1 = ((x1, y1), . . . , (xn1
, yn1

)), S2 = ((xn1+1, yn1+1), . . . , (xn, yn)), where n1 = dnαe
4: Learn η̂S1 = C(S1), where C : ∪∞n=1(X × {±1})n→ [0, 1]X is a suitable CPE algorithm

5: t̂S2,η̂S1 ,Ψ
∈ argmax

t∈[0,1]

P̂Ψ
S2

[sign ◦ (η̂S1
− t)]

6: Output: Classifier ĥS(x) = sign(η̂S1
(x)− t̂S2,η̂S1 ,Ψ

)

3 A Generic Proof Template for Ψ-consistency of Plug-in Algorithms

We now give a general result for showing consistency of the plug-in method in Algorithm 1 for any
performance measure that can be expressed as a continuous function of TPR and TNR, and for which
the Bayes optimal classifier is obtained by suitably thresholding the class probability function.

Assumption A. We will say that a probability distribution D on X × {±1} satisfies Assumption A
w.r.t. Ψ if t∗D,η,Ψ exists and is in (0, 1), and the cumulative distribution functions of the random vari-
able η(x) conditioned on y = 1 and on y = −1, P(η(x) ≤ z | y = 1) and P(η(x) ≤ z | y = −1),
are continuous at z = t∗D,η,Ψ.3

Note that this assumption holds for any distribution D for which η(x) conditioned on y = 1 and on
y = −1 is continuous, and also for any D for which η(x) conditioned on y = 1 and on y = −1 is
mixed, provided the optimum threshold t∗D,η,Ψ for PΨ exists and is not a point of discontinuity.

Under the above assumption, and assuming that the CPE algorithm used in Algorithm 1 is L1-
consistent (which holds for any algorithm that uses a regularized empirical risk minimization of a
proper loss [16, 28]), we have our main consistency result.

Theorem 1 (Ψ-consistency of Algorithm 1). Let Ψ : [0, 1]3→R+ be continuous in each argument.
Let D be a probability distribution on X ×{±1} that satisfies Assumption A w.r.t. Ψ, and for which
the Bayes optimal classifier is of the form hΨ,∗(x) = sign ◦ (η(x)− t∗D,η,Ψ). If the CPE algorithm
C in Algorithm 1 is L1-consistent, then Algorithm 1 is Ψ-consistent w.r.t. D.

Before we prove the above theorem, we will find it useful to state the following lemmas. In our first
lemma, we state that the TPR and TNR of a classifier constructed by thresholding a suitable class
probability estimate at a fixed c ∈ (0, 1) converge respectively to the TPR and TNR of the classifier
obtained by thresholding the true class probability function η at c.
Lemma 2 (Convergence of TPR and TNR for fixed threshold). Let D be a distribution on X ×
{±1}. Let η̂S : X → [0, 1] be generated by an L1-consistent CPE algorithm. Let c ∈ (0, 1) be
an apriori fixed constant such that the cumulative distribution functions P(η(x) ≤ z | y = 1) and
P(η(x) ≤ z | y = −1) are continuous at z = c. We then have

TPRD[sign ◦ (η̂S − c)]
P−→ TPRD[sign ◦ (η − c)];

TNRD[sign ◦ (η̂S − c)]
P−→ TNRD[sign ◦ (η − c)].

As a corollary to the above lemma, we have a similar result for PΨ.
Lemma 3 (Convergence of PΨ for fixed threshold). Let Ψ : [0, 1]3→R+ be continuous in each
argument. Under the statement of Lemma 2, we have

PΨ
D [sign ◦ (η̂S − c)]

P−→ PΨ
D [sign ◦ (η − c)].

We next state a result showing convergence of the empirical performance measure to its population
value for a fixed classifier, and a uniform convergence result over a class of thresholded classifiers.
Lemma 4 (Concentration result for PΨ). Let Ψ : [0, 1]3→R+ be continuous in each argument.
Then for any fixed h : X →{±1}, and ε > 0,

PS∼Dn
(∣∣∣PΨ

D [h]− P̂Ψ
S [h]

∣∣∣ ≥ ε) → 0 as n→∞.

3For simplicity, we assume that t∗D,η,Ψ is in (0, 1); our results easily extend to the case when t∗D,η,Ψ ∈ [0, 1].
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Lemma 5 (Uniform convergence of PΨ over threshold classifiers). Let Ψ : [0, 1]3→R+ be
continuous in each argument. For any f : X → [0, 1] and ε > 0,

PS∼Dn

( ⋃
θ∈Tf

{∣∣∣PΨ
D [θ]− P̂Ψ

S [θ]
∣∣∣ ≥ ε}) → 0 as n→∞.

We are now ready to prove our main theorem.

Proof of Theorem 1. Recall t∗D,η,Ψ ∈ argmax
t∈[0,1]

PΨ
D [sign ◦ (η − t)] exists by Assumption A. In the

following, we shall use t∗ in the place of t∗D,η,Ψ and t̂S2,S1 in the place of t̂S2,η̂S1 ,Ψ
. We have

regretΨD[hS ] = regretΨD[sign ◦ (η̂S1 − t̂S2,S1)]

= PΨ,∗
D − PΨ

D [sign ◦ (η̂S1
− t̂S2,S1

)]

= PΨ
D [sign ◦ (η − t∗)] − PΨ

D [sign ◦ (η̂S1 − t̂S2,S1)],

which follows from the assumption on the Bayes optimal classifier for PΨ. Adding and subtracting
empirical and population versions of PΨ computed on certain classifiers,

regretΨD[sign ◦ (η̂S1 − t̂S2,S1)] = PΨ
D [sign ◦ (η − t∗)] − PΨ

D [sign ◦ (η̂S1 − t∗)]︸ ︷︷ ︸
term1

+ PΨ
D [sign ◦ (η̂S1

− t∗)] − P̂Ψ
S2

[sign ◦ (η̂S1
− t̂S2,S1

)]︸ ︷︷ ︸
term2

+ P̂Ψ
S2

[sign ◦ (η̂S1
− t̂S2,S1

)] − PΨ
D [sign ◦ (η̂S1

− t̂S2,S1
)]︸ ︷︷ ︸

term3

.

We now show convergence for each of the above terms. Applying Lemma 3 with c = t∗ (by
Assumption A, t∗ ∈ (0, 1) and satisfies the necessary continuity assumption), we have term1

P−→ 0.
For term2, from the definition of threshold t̂S2,S1 (see Algorithm 1), we have

term2 ≤ PΨ
D [sign ◦ (η̂S1 − t∗)] − P̂Ψ

S2
[sign ◦ (η̂S1 − t∗)]. (2)

Then for any ε > 0,

PS∼Dn
(
term2 ≥ ε

)
= PS1∼Dn1 , S2∼Dn−n1

(
term2 ≥ ε

)
= ES1

[
PS2|S1

(
term2 ≥ ε

)]
≤ ES1

[
PS2|S1

(∣∣PΨ
D [sign ◦ (η̂S1

− t∗)] − P̂Ψ
S2

[sign ◦ (η̂S1
− t∗)]

∣∣ ≥ ε
)]

→ 0

as n→∞, where the third step follows from Eq. (2), and the last step follows by applying, for a
fixed S1, the concentration result in Lemma 4 with h = sign ◦ (η̂S1 − t∗) (given continuity of Ψ).
Finally, for term3, we have for any ε > 0,

PS
(
term3 ≥ ε

)
= ES1

[
PS2|S1

(
P̂Ψ
S2

[sign ◦ (η̂S1
− t̂S2,S1

)] − PΨ
D [sign ◦ (η̂S1

− t̂S2,S1
)] ≥ ε

)]
≤ ES1

[
PS2|S1

( ⋃
θ∈Tη̂S1

{∣∣P̂Ψ
S2

[θ] − PΨ
D [θ]

∣∣ ≥ ε
})]

→ 0

as n→∞, where the last step follows by applying the uniform convergence result in Lemma 5 over
the class of thresholded classifiers Tη̂S1 = {sign ◦ (η̂S1

− t) | t ∈ [0, 1]} (for a fixed S1).

4 Consistency of Plug-in Algorithms for AM, Fβ , and G-TP/PR

We now use the result in Theorem 1 to establish consistency of the plug-in algorithms for the arith-
metic mean of TPR and TNR, the Fβ-measure, and the geometric mean of TPR and precision.
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4.1 Consistency for AM-measure

The arithmetic mean of TPR and TNR (AM) or one minus the balanced error rate (BER) is a widely-
used performance measure in class imbalanced binary classification settings [17–19]:

PAM
D [h] =

TPRD[h] + TNRD[h]

2
.

It can be shown that Bayes optimal classifier for the AM-measure is of the form
hAM,∗(x) = sign ◦ (η(x)− p) (see for example [16]), and that the threshold chosen by the plug-
in method in Algorithm 1 for the AM-measure is an empirical estimate of p. In recent work, Menon
et al. show that this plug-in method is consistent w.r.t. the AM-measure [16]; their proof makes use
of a decomposition of the AM-measure in terms of a certain cost-sensitive error and a result of [22]
on regret bounds for cost-sensitive classification. We now use our result in Theorem 1 to give an
alternate route for showing AM-consistency of this plug-in method.4

Theorem 6 (Consistency of Algorithm 1 w.r.t. AM-measure). Let Ψ = ΨAM. Let D be a
distribution on X × {±1} that satisfies Assumption A w.r.t. ΨAM. If the CPE algorithm C in
Algorithm 1 is L1-consistent, then Algorithm 1 is AM-consistent w.r.t. D.

Proof. We apply Theorem 1 noting that ΨAM(u, v, p) = (u+v)/2 is continuous in all its arguments,
and that the Bayes optimal classifier for PAM is of the requisite thresholded form.

4.2 Consistency for Fβ-measure

The Fβ-measure or the (weighted) harmonic mean of TPR and precision is a popular performance
measure used in information retrieval [1]:

PFβ
D [h] =

(1 + β2)TPRD[h]PrecD[h]

β2TPRD[h] + PrecD[h]
=

(1 + β2)pTPRD[h]

p+ β2
(
pTPRD[h] + (1− p)(1− TNRD[h])

) ,
where β ∈ (0, 1) controls the trade-off between TPR and precision. In a recent work, Ye et al. [15]
show that the optimal classifier for the Fβ-measure is the class probability η thresholded suitably.
Lemma 7 (Optimality of threshold classifiers for Fβ-measure; Ye et al. (2012) [15]). For any
distribution D over X × {±1} that satisfies Assumption A w.r.t. Ψ, the Bayes optimal classifier for
PFβ is of the form hFβ ,∗(x) = sign ◦ (η(x)− t∗D,η,Fβ ).

As noted earlier, the authors in [15] show that an idealized plug-in method that applies an empirically
determined threshold to the ‘true’ class probability η is consistent w.r.t. the Fβ-measure . This result
is however useful only when the ‘true’ class probability is available to a learning algorithm, which
is not the case in most practical settings. On the other hand, the plug-in method considered in our
work constructs a classifier by assigning an empirical threshold to a suitable ‘estimate’ of the class
probability. Using Theorem 1, we now show that this method is consistent w.r.t. the Fβ-measure.
Theorem 8 (Consistency of Algorithm 1 w.r.t. Fβ-measure). Let Ψ = ΨFβ in Algorithm 1. Let
D be a distribution on X × {±1} that satisfies Assumption A w.r.t. ΨFβ . If the CPE algorithm C in
Algorithm 1 is L1-consistent, then Algorithm 1 is Fβ-consistent w.r.t. D.

Proof. We apply Theorem 1 noting that ΨFβ (u, v, p) = (1+β2)pu
p+β2(pu+(1−p)(1−v)) is continuous in each

argument, and that (by Lemma 7) the Bayes optimal classifier for PFβ is of the requisite form.

4.3 Consistency for G-TP/PR

The geometric mean of TPR and precision (G-TP/PR) is another performance measure proposed for
class imbalanced classification problems [3]:

PG-TP/PR
D [h] =

√
TPRD[h]PrecD[h] =

√
pTPRD[h]2

pTPRD[h] + (1− p)(1− TNRD[h])
.

4Note that the plug-in classification threshold chosen for the AM-measure is the same independent of the
class probability estimate used; our consistency results will therefore apply in this case even if one uses, as
in [16], the same sample for both learning a class probability estimate, and estimating the plug-in threshold.
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We first show that the optimal classifier for G-TP/PR is obtained by thresholding the class probability
function η at a suitable point; our proof uses a technique similar to the one for the Fβ-measure in [15].
Lemma 9 (Optimality of threshold classifiers for G-TP/PR). For any distribution D on
X × {±1} that satisfies Assumption A w.r.t. Ψ, the Bayes optimal classifier for PG-TP/PR is of
the form hG-TP/PR,∗(x) = sign(η(x) − t∗D,η,G-TP/PR).

Theorem 10 (Consistency of Algorithm 1 w.r.t. G-TP/PR). Let Ψ = ΨG-TP/PR. Let D be a
distribution on X × {±1} that satisfies Assumption A w.r.t. ΨG-TP/PR. If the CPE algorithm C in
Algorithm 1 is L1-consistent, then Algorithm 1 is G-TP/PR-consistent w.r.t. D.

Proof. We apply Theorem 1 noting that ΨG-TP/PR(u, v, p) =
√

pu2

pu+(1−p)(1−v) is continuous in each

argument, and that (by Lemma 9) the Bayes optimal classifier for PG-TP/PR is of the requisite form.

5 Consistency of Plug-in Algorithms for Non-decomposable Performance
Measures that are Monotonic in TPR and TNR

The consistency results seen so far apply to any distribution that satisfies a mild continuity condi-
tion at the optimal threshold for a performance measure, and have crucially relied on the specific
functional form of the measure. In this section, we shall see that under a stricter continuity assump-
tion on the distribution, the empirical plug-in algorithm can be shown to be consistent w.r.t. any
performance measure that is a continuous and monotonically increasing function of TPR and TNR.

Assumption B. We will say that a probability distribution D on X × {±1} satisfies Assumption
B w.r.t. Ψ if t∗D,η,Ψ exists and is in (0, 1), and the cumulative distribution function of the random
variable η(x), P(η(x) ≤ z), is continuous at all z ∈ (0, 1).

Distributions that satisfy the above assumption also satisfy Assumption A. We show that under this
assumption, the optimal classifier for any performance measure that is monotonically increasing in
TPR and TNR is obtained by thresholding η, and this holds irrespective of the specific functional
form of the measure. An application of Theorem 1 then gives us the desired consistency result.
Lemma 11 (Optimality of threshold classifiers for monotonic Ψ under distributional assump-
tion). Let Ψ : [0, 1]3→R+ be monotonically increasing in its first two arguments. Then for any
distribution D on X × {±1} that satisfies Assumption B, the Bayes optimal classifier for PΨ is of
the form hΨ,∗(x) = sign(η(x) − t∗D,η,Ψ).

Theorem 12 (Consistency of Algorithm 1 for monotonic Ψ under distributional assumption).
Let Ψ : [0, 1]3→R+ be continuous in each argument, and monotonically increasing in its first two
arguments. Let D be a distribution on X × {±1} that satisfies Assumption B. If the CPE algorithm
C in Algorithm 1 is L1-consistent, then Algorithm 1 is Ψ-consistent w.r.t. D.

Proof. We apply Theorem 1 by using the continuity assumption on Ψ, and noting that, by Lemma 11
and monotonicity of Ψ, the Bayes optimal classifier for PΨ is of the requisite form.

The above result applies to all performance measures listed in Table 1, and in particular, to the
geometric, harmonic, and quadratic means of TPR and TNR [2–5], for which the Bayes optimal
classifier need not be of the requisite thresholded form for a general distribution (see Appendix C).

6 Experiments

We performed two types of experiments. The first involved synthetic data, where we demonstrate
diminishing regret of the plug-in method in Algorithm 1 with growing sample size for different
performance measures; since the data is generated from a known distribution, exact calculation of
regret is possible here. The second involved real data, where we show that the plug-in algorithm is
competitive with the state-of-the-art SVMperf algorithm for non-decomposable measures (SVMPerf)
[12]; we also include for comparison a plug-in method with a fixed threshold of 0.5 (Plug-in (0-1)).
We consider three performance measures here: F1-measure, G-TP/PR and G-Mean (see Table 1).

Synthetic data. We generated data from a known distribution (class conditionals are multivariate
Gaussians with mixing ratio p and equal covariance matrices) for which the optimal classifier for
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Figure 1: Experiments on synthetic data with p = 0.5: regret as a function of number of training
examples using various methods for the F1, G-TP/PR and G-mean performance measures.
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Figure 2: Experiments on synthetic data with p = 0.1: regret as a function of number of training
examples using various methods for the F1, G-TP/PR and G-Mean performance measures.
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Figure 3: Experiments on real data: results for various methods (using linear models) on four data
sets in terms of F1, G-TP/PR and G-Mean performance measures. Here N, d, p refer to the number
of instances, number of features and fraction of positives in the data set respectively.

each performance measure considered here is linear, making it sufficient to learn a linear model; the
distribution satisfies Assumption B w.r.t. each performance measure. We used regularized logistic
regression as the CPE method in Algorithm 1 in order to satisfy the L1-consistency condition in
Theorem 1 (see Appendix A.1 and A.4 for details). The experimental results are shown in Figures 1
and 2 for p = 0.5 and p = 0.1 respectively. In each case, the regret for the empirical plug-in method
(Plug-in (F1), Plug-in (G-TP/PR) and Plug-in (GM)) goes to zero with increasing training set size,
validating our consistency results; SVMperf fails to exhibit diminishing regret for p = 0.1; and as
expected, Plug-in (0-1), with its apriori fixed threshold, fails to be consistent in most cases.

Real data. We ran the three algorithms described earlier over data sets drawn from the UCI ML
repository [29] and a cheminformatics data set obtained from [30], and report their performance on
separately held test sets. Figure 3 contains results for four data sets averaged over 10 random train-
test splits of the original data. (See Appendix A.2 for details and A.3 for additional results). Clearly,
in most cases, the empirical plug-in method performs comparable to SVMperf and outperforms the
Plug-in (0-1) method. Moreover, the empirical plug-in was found to run faster than SVMperf.

7 Conclusions
We have presented a general method for proving consistency of plug-in algorithms that assign an
empirical threshold to a suitable class probability estimate for a variety of non-decomposable perfor-
mance measures for binary classification that can be expressed as a continuous function of TPR and
TNR, and for which the Bayes optimal classifier is the class probability function thresholded suit-
ably. We use our template to show consistency for the AM, Fβ and G-TP/PR measures, and under a
continuous distribution, for any performance measure that is continuous and monotonic in TPR and
TNR. Our experiments suggest that these algorithms are competitive with the SVMperf method.
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