
10 Appendix

10.1 Missingness Process in Figure 1

Figure 1 Missingness Graph depicting the missingness process in a hypothetical (job-specific)
gender wage gap study that measured the variables: sex (S), work experience(X), qualifica-
tion(Q) and income(I). Fully observed and partially observed variables are represented by
filled and hollow nodes respectively. While sex and work experience were found to be fully
observed in all records i.e. Vo = {S,X}, qualification and income were found to be missing
in some of the records i.e. Vm = {Q, I}. RQ and RI denote the causes of missingness of
Q and I respectively and are assumed to be independent of S,Q,I and X. The assumptions
in the model are: (1) women are likely to be less qualified and experienced than men, (2)
income is determined by qualification and job experience of the candidate, and (3) missing-
ness in Q and I are correlated, caused by unobserved common factors such as laziness or
resistance to respond.

10.2 Testing compatibility between underlying and manifest distributions

Example 4. Let the incomplete dataset contain two partially observed variables, Z and
W .The tests for compatibility between manifest distribution: Pm(Z∗,W ∗, Rz, Rw) and the
underlying distribution: Pu(Z,W,Rz, Rw) are:

Case-1: Let X = {Z,W}, then Y = Vm \X = {}
Pm(Z∗ = z,W ∗ = w,Rz = 0, Rw = 0) = Pu(Z = z,W = w,Rz = 0, Rw = 0)∀z, w

Case-2: Let X = {Z}, then Y = {W}
Pm(Z∗ = z,W ∗ = m,Rz = 0, Rw = 1) =

∑
w Pu(Z = z, w,Rz = 0, Rw = 1)∀z

Case-3: Let X = {W}, then Y = {Z}
Pm(Z∗ = m,W ∗ = w,Rz = 1, Rw = 0) =

∑
z Pu(z,W = w,Rz = 1, Rw = 0)∀w

Case-4: Let X = {}, then Y = {Z,W}
Pm(Z∗ = m,W ∗ = m,Rz = 1, Rw = 1) =

∑
z,w Pu(z, w,Rz = 1, Rw = 1)

10.3 Proof of theorem 1

Proof. follows from Theorem-1 in Mohan et al. [2013] (restated below as theorem 7) noting
that ordered factorization is one specific form of decomposition.

Theorem 7 (Mohan et al. [2013]). A query Q defined over variables in Vo ∪ Vm is recov-
erable if it is decomposable into terms of the form Qj = P (Sj |Tj) such that Tj contains the
missingness mechanism Rv = 0 of every partially observed variable V that appears in Qj.

10.4 Recovering P (V ) when parents of R belong to Vo ∪ Vm

Theorem 8 (Recoverability of the Joint P (V ) (Mohan et al. [2013])). Given a m-graph
G with no edges between the R variables and no latent variables as parents of R variables,
a necessary and sufficient condition for recovering the joint distribution P (V ) is that no
variable X be a parent of its missingness mechanism RX . Moreover, when recoverable,
P (V ) is given by

P (v) =
P (R = 0, v)

∏
i P (Ri = 0|paori , pa

m
ri
, RPam

ri
= 0)

(6)

where Paori ⊆ Vo and Pamri ⊆ Vm are the parents of Ri.

Example 5. We wish to recover P (X,Y, Z) from the m-graph in Figure 1 (a). An enumer-
ation of various orderings will reveal that none of the orders are admissible. Nevertheless,
using theorem 8, we can recover the joint probability as given below:

P (X,Y, Z) =
P (R′x, R

′
y, R

′
z, X, Y, Z)

P (R′z|X,R′x)P (R′x|Y,R
′
y)P (R′y|Z,R

′
z)
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Figure 5: m-graph in which joint distribution is recoverable.

10.5 Proof of Theorem 2

Proof.

P (V ) =
P (R = 0, V )

P (R = 0|V )

=
P (R = 0, V )

P (R(1) = 0, R(2) = 0, ...RN = 0|V )

Mb(R(i)) d-separates R(i) from all variables that are not in R(i) ∪ Mb(R(i)) i.e.
R(i)⊥⊥({R, V } − {R(i),Mb(R(i))})|Mb(R(i)) . Hence,

P (V ) =
P (R = 0, V )

∏
i P (R(i) = 0|Mb(R(i)))

Using R(i) ∩RMb(R(i)) = ∅ and R(i)⊥⊥({R, V } − {R(i),Mb(R(i))})|Mb(R(i)) we get,

P (V ) =
P (R = 0, V )

∏
i P (R(i) = 0|Mb(R(i)), RMb(R(i)) = 0)

Now we can directly apply equation 1 and express P (V ) in terms of quantities estimable
from the available dataset. Therefore, P (V ) is recoverable.

10.6 Example: Recoverability by Theorem 2

Example 6. P (X,Y, Z,W ) is the query of interest and Figure 2 (b) depicts the missingness
process and identifies the sets Rpart and Mb(R(i)). A quick inspection reveals that no ad-
missible sequence exists. However, notice that CI1 : R(1)⊥⊥(R(2),Mb(R(2)))|Mb(R(1)) and
CI2 : R(2)⊥⊥(R(1),Mb(R(1)))|Mb(R(2)) hold in the m-graph. We exploit these independen-
cies to recover the joint distribution as detailed below:

P (X,Y, Z,W ) = P (R=0,X,Y,Z,W )
P (R=0|X,Y,Z,W ) =

P (R=0,X,Y,Z,W )
P (R(1)=0,R(2)=0|X,Y,Z,W )

= P (R=0,X,Y,Z,W )
P (R(1)=0|X,Y,R(2)=0)P (R(2)=0|Z,W,R(1)=0)

(Using CI1 and CI2)

P (V ) = P (R=0,X∗,Y ∗,Z∗,W∗)
P (Rw=0,Rz=0|X∗,Y ∗,Rx=0,Ry=0)P (Rx=0,Ry=0|Z∗,W∗,Rz=0,Rw=0) (By equation 1)

10.7 Proof of Corollary 1

Proof.

P (V ) =
P (R = 0, V )

P (R = 0|V )

=
P (R = 0, V )

P (R(1), R(2), ...RN |V )
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Since Pasub(R(i)) ⊆ V d-separates Ri from all the other variables in (V ∪ R) \ (R(i) ∪
Pasub(R(i))) , we get

P (V ) =
P (R = 0, V )

∏
i P (R(i) = 0|Pasub(R(i)))

Using R(i) ∩RPasub(R(i)) = ∅ and R(i)⊥⊥({R, V } − {R(i), Pasub(R(i))})|Pasub(R(i)) we get,

P (V ) =
P (R = 0, V )

∏
i P (R(i) = 0|Pasub(R(i)), RPasub(R(i)) = 0)

10.8 Proof of Theorem 3

We will be using the following lemma (stated and proved in Mohan et al. [2013] (Supple-
mentary materials)) in our proof.

Lemma 1. If a target relation Q is not recoverable in m-graph G, then Q is not recoverable
in the graph G′ resulting from adding a single edge to G.

Proof. Non-recoverability of P (V ) when X is a parent of Rx has been proved in Mohan
et al. [2013]. If P (V ) is non-recoverable when G contains subgraph G1 : X → Rx, then
P (V ) is non-recoverable when G contains subgraph G2 : X < −−U −− > Rx since, (a) G1

and G2 are equivalent models and (b) we are dealing with recoverability of a probabilistic
query. Nevertheless, a detailed proof by construction follows.

M1 and M2 are two models in which variables U,X and Rx are binary and U is a fair coin.
In M1, X = 0 and Rx = u and in M2, X = u and Rx = u. Notice that although the two
models agree on the manifest distribution, they disagree on the query P (X). Hence P (X)
is non-recoverable in X < − − U − − > Rx. Using Lemma-1 (Refer appendix), we can
conclude that P (V ) is non-recoverable in any m-graph in which X and Rx are connected
by a bi-directed edge.

Figure 6: An m-graph in which P (X,Z) is not-recoverable where Z = {Z1, Z2, ..., Zk}. X is
partially observed, all Z variables are fully observed, parents of Zi are Ui−1 and Ui, parent
of X is Uo and parent of Rx is Uk.

Given the m-graph in Figure 6 we will now prove that P (X,Z1, Z2...Zk) is non-recoverable.
Let M3 and M4 be two models such that all the variables are binary, all the U variables are
fair coins, X = U0, Rx = Uk and Zi = Ui−1 ⊕ Ui, 1 ≤ i < k. In M3, Zk = Uk−1 and in M4,
Zk = Uk−1⊕Uk. Both models yield the same manifest distribution. However, they disagree
on the query P (X,Z1, Z2...Zk). For instance, in M3, P (X = 0, Z = 0, Rx = 1) > 0 where
as in M4, P (X = 0, Z = 0, Rx = 1) = 0. Therefore in M4, P (X = 0, Z = 0) = P (X =
0, Z = 0, Rx = 0) and in M3, P (X = 0, Z = 0) = P (X = 0, Z = 0, Rx = 0) + P (X =
0, Z = 0, Rx = 1). Hence in the m-graph in figure 6, the joint distribution P (X,Z) is
non-recoverable. Using lemma 1, we can conclude that joint distribution is non-recoverable
in any m-graph which has a bi-directed path from any partially observed variable X to its
missingness mechanism Rx.

10.9 Proof of Corollary 2

Proof. Let |Vm| = 1 and Y1 ∈ Y be the only partially observed variable. Let G′ be the
subgraph containing all variables in X ∪Y ∪{Ry1 , Y

∗
1 }. We know that if (1) or (2) are true,
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then, (i) P (X,Y ) is not recoverable in G′ and (ii) P (X) is recoverable in G′. Therefore,

P (Y |X) = P (Y,X)
P (X) is not recoverable in G′ and hence by lemma 1, not recoverable in G.

10.10 Proof of Theorem 4

Proof. P (Y |do(X)) =
∑

z,w′ P (Y |Z,W ′, do(X))P (Z,W ′|do(X))

If condition 1 holds, then by Rule-2 of do-calculus (Pearl [2009]) we have:
P (Y |Z,W ′, do(X)) = P (Y |Z, do(X), do(W ′))
Since Y ⊥w Ry|Z,
P (Y |Z, do(X), do(W ′)) = P (Y |Z, do(X), do(W ′), R′y)

= P (Y ∗|Z, do(X), do(W ′), R′y)
Therefore, P (y|do(x)) is recoverable.

10.11 Proof of Theorem 5

Proof. (sufficiency) Whenever (1) and (2) are satisfied, Y⊥⊥Ry|Vo holds. Hence, P (V ) which
may be written as P (Y |VO)P (VO) can be recovered as P (Y ∗|VO, Ry = 0)P (VO).
(necessity) follows from theorem 2.

10.12 Proof of Theorem 6

Proof. (sufficiency) Under simple attrition, all paths to Ry from Y containing X are blocked
by X. Therefore, when both conditions specified in the theorem are satisfied, it implies that
Y and Ry are separable. Given that Z is any separator between Y and Ry, P (Y |X) may
be recovered as

∑
z P (Y ∗|X,Z,R′y)P (Z|X).

(necessity) follows from theorem 2
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