
Supplement for Optimal decision-making
with time-varying reliability

Jan Drugowitsch1 Rubén Moreno-Bote2 Alexandre Pouget1
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CH-1211 Genève 4, Switzerland
jdrugo@gmail.com,

alexandre.pouget@unige.ch

2Research Unit, Parc Sanitari
Sant Joan de Déu and
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1 The generative model

Within a single trial, a binary hidden variable z ∈ {−1, 1} (with units s−1, if time is measured in
seconds) generates a stream of momentary evidence dx(t), t ≥ 0, by

dx = zdt+
1√
τ(t)

dW, where dτ = η (µ− τ) dt+ σ

√
2η

µ

√
τdB, (1)

where dW and dB are independent Wiener processes. The reliability τ(t) controls how informative
the momentary evidence dx(t) is about z. τ(t) follows the Cox-Ingersoll-Ross (CIR) process with
mean µ, standard deviation σ, and speed η, and has a gamma stead-state distribution with shape
µ2/σ2 and scale σ2/µ [1].

2 Inferring τ(t) from momentary evidence

It is possible to infer the reliability, τ(t), instantaneously by making observations of the diffusion
process, x(t). To show this, consider the discretization of this diffusion process δxn = zδt +

ζn
√
δtηn, where δt is a very small time interval, ζ2

n = ζ2(nδt) = τ(nδt)−1 is a time-dependent
variance (inverse of the time-dependent reliability evaluated at t = nδt), and ηn is a zero-mean
unit-variance normal random variable independent across time. Now, let us consider the square of
the steps δxn, which takes the form δx2

n = z2δt2 +ζ2
nδtη

2
n+2zζn

√
δt3ηn. To estimate the variance

ζ2(t) we will need to know the following moments of the squared process:

〈
δx2
n

〉
= ζ2

nδt+O(δt2), (2)

var
(
δx2
n

)
= 2ζ4

nδt
2 +O(δt3), (3)〈

δx2
nδx

2
m

〉
= ζ2

nζ
2
mδt

2 +O(δt3), (4)

where we have used
〈
η2
n

〉
=
〈
η2
nη

2
m

〉
= 1 and

〈
η4
n

〉
= 3, and averages 〈.〉 are respect to the process

dW in (Eq. 1) (equivalently respect to the ηns), and not respect to dB.

1



Let us consider the estimator y(t) =
∑N
n=1 δx

2
n, where the time window t has been split into N

equal infinitesimal intervals of length δt. This estimator has moments

〈y(t)〉 = δt

N∑
n=1

ζ2
n +O(δt)

δt→0−−−→
∫ t

0

ζ2(s)ds, (5)

var(y(t)) =

N∑
n=1

〈
δx4
n

〉
+
∑
mn

〈
δx2
nδx

2
m

〉
− 〈y〉2

δt→0−−−→
∫∫ t

0

ζ2(s1)ζ2(s2)ds1ds2 −
(∫ t

0

ζ2(s)ds
)2

= 0, (6)

where we have used t = Nδt, and the fact that averages are only with respect to the diffusion pro-
cess, not respect to trajectories of ζ2(t). Since y(t) is a continuous and differentiable deterministic
function of the path of ζ2(t), the estimator can be used to give infinitely precise estimates of the
variance of the underlying process simply by taking the temporal derivative:

d

dt
y(t) = ζ2(t) =

1

τ(t)
. (7)

It is important that in the definition of y(t) we do not assume that τ(t) is constant. However, when
computing mean and variance of y(t) across dW , we do use the fact that the samples of dW are i.i.d
(which is true by construction, Eq. (1)). In addition, in the derivation of the mean and variance of
y(t) we do not use that the samples of τ(t) are i.i.d, as we do not take the average over the process
τ(t) (equivalently over dB).

Intuitively, τ(t) is a continuous process (see Eq. (1)), and therefore there is a finite time resolution
T below which τ(t) can be considered approximately constant. Within that time resolution, one can
discretize time with infinitesimally small increments δt and get as many samples of dW as desired
(i.i.d. by definition, see Eq. (1)). From these samples one can estimate with arbitrarily high precision
the reliability τ(t) of the process, as formally shown above.

There is a single case in which the argument presented above breaks down: consider the limit in
which the volatility is infinity (η = 0 and pre-factor of dB in Eq. (1) constant). In this case, τ(t) is
not a continuous process, and then y(t) has a discontinuous derivative. Only in this unrealistic case
τ(t) cannot be estimated with infinite precision.

3 Inferring the latent z

To infer z, we again consider the discretization of the particle diffusion process δxn ∼
N
(
zδt, τ−1

n δt
)
, which is normal with mean zδt and variance τ−1

n δt. Then, assuming a uniform
prior on z, that is p(z) ∝z 1, the posterior z is proportional to

p(z|δx0:t) ∝z
∏
n

N
(
δxn|zδt, τ−1

n δt
)

∝z e−
∑
n
τn(δxn−zδt)2

2δt

∝z e−
z2

2

∑
n δtτn+zX(t)

(8)

where δx0:t denotes all momentary evidence until time t, and we have defined X(t) =
∑
n τnδxn.

Adding the appropriate normalization constant, which is the above summed over z = 1 and z = −1,
causes the terms containing z2 to cancel. When taking δt→ 0, this results in the posterior belief to
be given by

g(t) ≡ p (z = 1|dx0:t) =
1

1 + e−2X(t)
, where X(t) =

∫ t

0

τ(s)dx(s). (9)

This belief is valid even for the case of a bounded accumulation of evidence, as the introduction of
such boundaries does not change the sufficient statistics, X(t) [2, 3].
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4 Finding the expected future return by solving a PDE

The expected future return 〈V (g + δg, τ + δτ)〉p(δg,δτ |g,τ) can be found by the solution to a par-
tial differential equation (PDE). To do so, we define u(g, τ, t) ≡ V (g, τ) and u(g, τ, t + δt) ≡
〈V (g + δg, τ + δτ)〉, and replace this expectation by its second-order Taylor expansion around
(g, τ). Then, we find that, with δt→ 0, we have

∂u

∂t
=

(
〈dg〉
dt

∂

∂g
+
〈dτ〉
dt

∂

∂τ
+

〈
dg2
〉

2dt
∂2

∂g2
+

〈
dτ2
〉

2dt
∂2

∂τ2
+
〈dgdτ〉

dt
∂2

∂g∂τ

)
u, (10)

with all expectations implicitly conditional on g and τ . The above allows us to find u(g, τ, t + δt)
for some known u(g, τ).

The boundary conditions at g ∈ {0, 1} are u(g, τ, t) = Vd(g) = 1 for all t, where Vd = max{g, 1−
g}. For τ → ∞ we have u(g, τ, t) = 1 for all t. At τ = 0, all infinitesimal moments except for
〈dτ〉 = ηµdt are zero, such that we have a deterministic flow towards τ > 0. The main text justifies
the use of these boundary conditions.

4.1 The infinitesimal moments of g and τ

The infinitesimal moments of τ are, by the definition of the generative model, Eq. (1), given by

〈dτ |g, τ〉 = η (µ− τ) dt, (11)〈
dτ2|g, τ

〉
=

2ησ2

µ
τdt, (12)

where we have only retained terms of O(dt). The moments of g are found by assuming a small
time step δt in which δXn = τn

(
zδt+ τ

−1/2
n δt1/2ηn

)
, where ηn is a zero-mean unit-variance

normal random variable. To find δgn, we approximate the mapping from X(t) to g(t) (Eq. 9)) by a
second-order Taylor series expansion around Xn to find

δgn = 2(1− gn)gn

(
τnzδt+

√
τnδtηn

)
− 2(1− gn)gn(2gn − 1)

(
τnzδt+

√
τnδtηn

)2

. (13)

Taking δt→ 0 and only retaining terms of O(dt) results in the moments

〈dg|g, τ〉 = 0, (14)〈
dg2|g, τ

〉
= 4(1− g)2g2τdt, (15)

〈dgdτ |g, τ〉 = 0. (16)

4.2 Solving the PDE by the Alternating Direction Implicit method

Having 〈dgdτ |g, τ〉 = 0 allows us to use the Alternating Direction Implicit (ADI) method to solve
the above PDE. To do so, we discretize u(g, τ, ·) on a grid g1, . . . , gK in steps of ∆g for g, and
τ1, . . . , τJ in steps of ∆τ for τ . We set g1 = 0 and gK = 1 for the belief, and τ1 = 0 and τJ to twice
the 99th percentile of the steady-state distribution of τ . Furthermore, we define unkj ≡ u(gk, τj , t)

and un+1
kj ≡ u(gk, τj , t+ dt). Then, the above PDE, Eq. (10), can be solved by the ADI method [4]

in two steps,

u
n+ 1

2

kj − unkj =
δt

2

(
〈δg〉
δt

∂

∂g
+

〈
δg2
〉

2δt

∂2

∂g2

)
u
n+ 1

2

kj +
δt

2

(
〈δτ〉
δt

∂

∂τ
+

〈
δτ2
〉

2δt

∂2

∂τ2

)
unkj , (17)

un+1
kj − u

n+ 1
2

kj =
δt

2

(
〈δg〉
δt

∂

∂g
+

〈
δg2
〉

2δt

∂2

∂g2

)
u
n+ 1

2

kj +
δt

2

(
〈δτ〉
δt

∂

∂τ
+

〈
δτ2
〉

2δt

∂2

∂τ2

)
un+1
kj (18)
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where δt is the time discretization. For all k, j, and n but the boundary at τ = 0, the derivatives are
approximated by the central finite differences

∂

∂g
ukj ≈

uk+1,j − uk−1,j

2∆g
, (19)

∂2

∂g2
ukj ≈

uk+1,j − 2ukj + uk−1,j

∆2
g

, (20)

∂

∂τ
ukj ≈

uk,j+1 − uk,j−1

2∆τ
, (21)

∂2

∂τ2
ukj ≈

uk,j+1 − 2ukj + uk,j−1

∆2
τ

. (22)

At τ = 0, the only required derivative is ∂u/∂τ , which we approximate by the right finite difference,

∂

∂τ
uk1 ≈

uk2 − uk1

∆τ
. (23)

In the next two subsections, we deal with computing un+ 1
2 from un, and then computing un+1 from

un+ 1
2 , separately. In both cases, the computation time is of order O(KJ), such that the expected

return can be computed in time linear in the discretization of the (g, τ) space.

4.3 Moving from n to n+ 1
2

Equation (17) can for all j = 1, . . . , J be written as the linear system

L
n+ 1

2
j u

n+ 1
2

j = bnj , (24)

where u
n+ 1

2
j is a column vector with K elements

(
u
n+ 1

2
1,j , . . . , u

n+ 1
2

K,j

)
, bnj is a vector of the same

size, and L
n+ 1

2
j is a tri-diagonal K×K matrix. Thus, the above system can for each j be solved for

u
n+ 1

2
j in O(K) time, thus leading to an overall computational time complexity O(KJ).

For 2 ≤ j ≤ J , the matrices Ln+ 1
2

j have elements

(
L
n+ 1

2
j

)
km

=



1 + δt
2∆2

g

〈δg2〉
δt if m = k for 2 ≤ k ≤ K − 1,

− δt
4∆g

〈δg〉
δt −

δt
4∆2

g

〈δg2〉
δt if m = k + 1 for 2 ≤ k ≤ K − 1,

δt
4∆g

〈δg〉
δt −

δt
4∆2

g

〈δg2〉
δt if m = k − 1 for 2 ≤ k ≤ K − 1,

1 if k = m for k ∈ {1,K},
0 otherwise.

(25)

In the above, the first three lines specify the diagonal, upper diagonal, and lower diagonal, respec-
tively. The fourth lines is responsible for the boundary condition at the k ∈ {1,K} boundary. The
associated vectors bnj have elements

(
bnj
)
k

=

(
1− δt

2∆τ2

〈
δτ2
〉

δt

)
unkj+(

δt

4∆τ

〈δτ〉
δt
− δt

4∆2
τ

〈
δτ2
〉

δt

)
unk,j+1 +

(
− δt

4∆τ

〈δτ〉
δt

+
δt

4∆2
τ

〈
δτ2
〉

δt

)
unk,j−1, (26)

for all 2 ≤ k ≤ K − 1 and are set to
(
bnj
)
k

= unkj otherwise. For the τ boundaries at j ∈ {1, J},

L
n+ 1

2
j is set to L

n+ 1
2

j = I . At j = 0 (corresponding to τ = 0), bn1 has elements

(bn1 )k =

(
1− δt

2∆τ

〈δτ〉
δt

)
unk1 +

δt

2

〈δτ〉
δt

unk2, (27)

for 2 ≤ k ≤ K − 1, and is set to (bn1 )k = unk1 otherwise. At j = J , all elements of bnJ are set to
(bnJ)k = unkJ to obey the boundary condition at j = J .
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4.4 Moving from n+ 1
2 to n+ 1

Equation (18) can for all k = 1, . . .K be written as the linear system

Ln+1
k un+1

k = b
n+ 1

2

k , (28)

where un+1
k is a column vector with J elements

(
un+1
k,1 , . . . , un+1

k,J

)
, bn+ 1

2

k is a vector of the same

size, and Ln+1
k is a tri-diagonal J × J matrix. Thus, the above system can for each k be solved for

un+1
k in O(J) time, thus leading to an overall computational time complexity O(KJ).

For 2 ≤ j ≤ J − 1, the matrices Ln+1
k have elements

(
Ln+1
k

)
jn

=



1 + δt
2∆2

τ

〈δτ2〉
δt if n = j for 2 ≤ j ≤ J − 1,

− δt
4∆τ

〈δτ〉
δt −

δt
4∆2

τ

〈δτ2〉
δt if n = j + 1 for 2 ≤ j ≤ J − 1,

δt
4∆τ

〈δτ〉
δt −

δt
4∆2

τ

〈δτ2〉
δt if n = j − 1 for 2 ≤ j ≤ J − 1,

1 + δt
2∆τ

〈δτ〉
δt if j = n = 1,

− δt
2∆τ

〈δτ〉
δt if j = 1, n = 2,

1 if j = n = J,
0 otherwise.

(29)

In the above, the first three lines specify the diagonal, upper diagonal, and lower diagonal, respec-
tively. The fourth and fifth line follow from the boundary condition at j = 1. The sixth line follows
from the boundary condition at j = J . The associated vectors bn+ 1

2

k have elements

(
b
n+ 1

2

k

)
j

=

(
1− δt

2∆2
g

〈
δg2
〉

δt

)
u
n+ 1

2

kj +(
δt

4∆g

〈δg〉
δt

+
δt

4∆2
g

〈
δg2
〉

δt

)
u
n+ 1

2

k+1,j +

(
− δt

4∆g

〈δg〉
δt

+
δt

4∆2
g

〈
δg2
〉

δt

)
u
n+ 1

2

k−1,j

(30)

for all 2 ≤ j ≤ J − 1, and
(
b
n+ 1

2

k

)
j

= u
n+ 1

2

kj otherwise. Due to the boundary conditions at

k ∈ {1,K} we have Ln+1
k = I for both k’s, and associated

(
b
n+ 1

2

k

)
j

= u
n+ 1

2

kj for all j.

References
[1] John C. Cox, Jonathan E. Ingersoll Jr., and Stephen A. Ross. A theory of the term structure of

interest rates. Econometrica, 53(2):385–408, 1985.
[2] Rubén Moreno-Bote. Decision confidence and uncertainty in diffusion models with partially

correlated neuronal integrators. Neural Computation, 22:1786–1811, 2010.
[3] Jan Drugowitsch, Rubén Moreno-Bote, Anne K. Churchland, Michael N. Shadlen, and Alexan-

dre Pouget. The cost of accumulating evidence in perceptual decision making. The Journal of
Neuroscience, 32(11):3612–3628, 2012.

[4] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.

5


	The generative model
	Inferring (t) from momentary evidence
	Inferring the latent z
	Finding the expected future return by solving a PDE
	The infinitesimal moments of g and 
	Solving the PDE by the Alternating Direction Implicit method
	Moving from n to n + 12
	Moving from n + 12 to n + 1


