Appendix

A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.2

Observe that in iteration ¢, two consecutive intervals I;_; ; and I;_; ;41 correspond to two unions
of consecutive intervals I, U---U I and I41 U - - - U I, respectively from the original partition Py.
Moreover, since each interval in P;_1 \ F_1, t > 1, is formed by merging two consecutive intervals
from P;_o \ F;_o, it must be the case thatb —a + 1,c — b+ 1 < 2871 < 2571 < 1/(2¢’). Hence,
by Lemma 3.1, we have

e’ e
Iy 1) = Pm(Li—14))| < Ve - 2571 <
Ip(It-1,i) = Pm(Li-1,0))| 10k ~ 10v/2k
and similarly,
/
I_ i - Am I —1,2 =
Ip(li—1,i41) = Pm(Li-1,i41))] < VTS
To simplify notation, let [= I;_; ; and J = I;_; ;4. By definition of «,
p) _ p()+p(J) p(J) _pU)+
anra) = [HE - i+ 22 Y
! III 1]+ 1J] 7] \II+IJ\
)| J 1. 1
|1|+|J|’p)= p(I)H| (1
A straightforward calculation now gives that
oy,) = ag, (LJ)| - = [p(D1] = DI = [Bn(DII| = B (DI
p P |I|+|J‘ ‘ ‘ ’ ’
< o (e = B + o) ~ ()11
= T+
< 2¢'/(5k).

A.2 Proof of Lemma 3.3

We start by recording a basic fact that will be useful in the proof of the lemma. Let p be a distribution
over an interval I and let ¢ be any sub-distribution over I. Perhaps contrary to initial intuition, the
optimal scaling c- ¢, ¢ > 0, of ¢ to approximate p (with respect to the L;-distance) is not necessarily
obtained by scaling ¢ so that c - ¢ is a distribution over I. However, a simple argument (see e.g.,
Appendix A.1 of [CDSS14]) shows that scaling so that c- q is a distribution cannot result in L -error
more than twice that of the optimal scaling:

Claim A.1. Let p, g : I — RZ0 be probability distributions over I (so fl x)dx = f[der =1).
Then, writing || f||1 to denote [, |f(x)|dx, for every a > 0 we have that ||p — g||, < 2||p - ag||1.

We now proceed with the proof of Lemma 3.3.

We first show that a total of at most O(klog(1/¢’)) intervals are ever added into F; across all
executions of Step 4(b).

Suppose that intervals I;_; ;, [t_1 ;41 are added into J; in some execution of Step 4(b). We consider
the following two cases:

Case1: I;_; ;U I ;41 contains at least one breakpoint of Q. Since Q has at most k& breakpoints,
this can happen at most & times in total.

Case 2: I;_;;UI;_1 ;41 does not contain any breakpoint of Q. Then I;_; ;UI;_1 ;11 is a subset of
an interval in Q. Recalling that intervals I;_1 ;, ;1 ;41 were added into J; in an execution
of Step 4(b), we have that a5, (It—1,4, [t—1,i+1) > €’/(2k), and hence by Lemma 3.2, we

have that a,, (L1, [t—1i41) > % . %' Claim A.1 now implies that the contribution to the

10

L, distance between pand g from I;_1,; U141, 1., flti1 A Ip(z) — q(z)|dx,

is at least & i ?
Since ||p — ¢l|1 = opty(p), there can be at most

: 1
k+0(0m’“g)k) :O<k~log€>

intervals ever added into F; across all executions of Step 4(b) (note that for the last equality
we have used the assumption that opt,, (p) < €).

Next, we argue that each F; satisfies |F;| < O(klog®(1/€)). We have bounded the number of
intervals added into F; in Step 4(b) by O(k log(1/€")), so it remains to bound the number of intervals
added in Step 4(c)(Case 3) and 4(c)(Case 4). It is clear that a total of at most O(log(1/¢")) intervals
are ever added in 4(c)(Case 4). Inspection of Step 4(c)(Case 3) shows that for a given value of ¢,
the number of intervals that this step adds to JF; is at most the number of “blocks” of consecutive
Fi-intervals. Since each interval added in Step 4(c)(Case 3) extends some blocks of consecutive
JF-intervals but does not create a new one (and hence does not increase their number), across the
s =log(1/e") stages, the total number of intervals that can be added in executions of Step 4(c)(Case

3) is at most O (klog®(1/¢’)). It follows that we have | F,| = O(klog?(1/¢)) as claimed.
To bound |P; \ F;|, we observe that by inspection of the algorithm, for each ¢ we have [Py \ F;| <
2|Py—1 \ Fi—1|. Since |Py| = ©(k/e’), it follows that | P, \ F,| = O(k), and the lemma is proved.

A.3 Proof of Lemma 3.4

Fix an interval I in P. If there does not exist an interval J in Q such that / C J, then I must contain
a breakpoint of Q, and hence since P is ¢’-good for (p, ¢), we have p(I) < &’/(2k). This implies
that the contribution to ||(p)” — ¢||1 that comes from I, namely [, |(p)” (z) — q(z)|dz, satisfies

J107@=a@ite < [107 @ -p@lds+ [o) - ala)lds

< / Ip() — q()|dz + 2p(1)
< / (@) — gl +

The other possibility is that there exists an interval J in Q such that I C J. In this case, we have

that
/| —q|M</m) — q(a)|da.

Since there are at most & intervals in P containing breakpoints of Q, summing the above inequalities
over all intervals [in P, we get that

/

1(P)” —qllx < llp — gl + &' = opty(p) + ',
and hence
1(p)" = pllr < [I(p)” = alls + lp — qll1 < 20pty(p) + €.

A.4 Proof of Lemma 3.5
We construct the claimed R based on Py, Ps_1, ..., Py as follows:

(i) If I is an interval in PP, not containing a breakpoint of Q, then I is also in R.

(ii) If I is an interval in P, that does contain a breakpoint of Q, then we further partition 7
into a set of intervals S by calling procedure Refine-partition(s,). This recur-
sive procedure exploits the local structure of the earlier, finer partitions Ps_1,Ps_o,... as
described below.

11

Procedure Refine—-partition:

Input: Integer ¢, Interval J
Output: S, a partition of interval J

1. If t = 0, then output {J}.
2. If J is an interval in Py, then
(a) If J contains a breakpoint of 9, then output Refine-partition(t — 1,
J).
(b) Otherwise output {.J}.
3. Otherwise, J is a union of two intervals in P;. Let J; and Jy denote the two

intervals in P, such that J; U Jo = J. Output Refine-partition(t, J;) U
Refine-partition(t, Js).

We claim that [R| (the number of intervals in R) is at most |P,| + O(k - log). To see this,
note that each interval I € P, not containing a breakpoint of Q (corresponding to (i) above)
translates directly to a single interval of 'R. For each interval of type (ii) in P, inspection of
the Refine-Partition procedure shows that that these intervals are partitioned into at most
O(klog(1/e)) intervals in R.

In the rest of the proof, we show that for any interval J in P4 containing at least one breakpoint of
Q, the contribution to the L; distance between (p)”= and (p)® coming from interval J is at most

4 1 . . .
bs] - El'%, where b is the set of breakpoints of Q in .J.

Consider a fixed breakpoint v of Q. Let I, denote the interval containing v in the partition P.
If I; , merges with another interval in P; in Case 1 of Step 4(c), we denote that other interval as
I . Since I, merges with I} , in Case 1 of Step 4(c), these intervals are both not in F; and hence
were both not in F;_; in Step 4(b). Consequently when ¢ > 1 it must be the case that condition
(ii) of Step 4(b) does not hold for these intervals, i.e. ag, (Itv,1;,) < &'/(2k). It follows that

by Lemma 3.2, we have that a, (1 4, It’ﬂ)) is at most é—i. When ¢t = 1, we have a similar bound
ap(Iiv, 1{,) < €'/k, by using (1) and the fact that p(1y,,), p(I{) < €'/2k when I ., I}, € Po.

On the other hand, inspection of the procedure Refine-Partition gives that if two intervals
in P, are unions of some intervals in Refine-partition(s,), and their union is an interval in
Py11, then there exists v which is a breakpoint of Q such that the two intervals are I; ,, and I7 .

Thus, the contribution to the L; distance between (p)” and (p)® coming from interval .J is at most
< -log é - |b.s|. Summing over all intervals .J that contain at least one breakpoint and recalling that

the total number of breakpoints is at most k, we get that the overall L; distance between (p)”= and
(p)® is at most ¢.

A.5 Proof of Theorem 6

Proof. The algorithm A’ works in two stages, which we describe and analyze below.

In the first stage, A’ iterates over [log(20/¢)] “guesses” for the value of opt.(p), where the i-th
guess g; is 75 - 21 (so g1 = 15 and griog(20/e)] = 1). For each value of g;, it performs r = o(1)
runs of Algorithm A (using a fresh sample from p for each run) using parameter g; as the “c”
parameter for each run; let Ay ;, ..., h,; be the r hypotheses thus obtained for the i-th guess. It is
clear that this stage uses O(m(e/10) + m(2¢/10) + ---) = O(m(e)) draws from p, and similarly
that it runs in time O(t(¢)). If opts(p) < ¢, then (for a suitable choice of r = O(1)) we get that
with probability at least 39/40, some hypothesis hi ¢ satisfies ||[p — hi]| < a - opte(p) + €/10.
Otherwise, there must be some i € {2,..., [log(20/¢)]} such that g;/2 < opte(p) < g;; in this
case, for a suitable choice of r = O(1) we get that with probability at least 39/40, there is some
hypothesis h; , that satisfies |[p — h;¢l1 < a - opte(p) + gi < (o + 2) - opte(p). Thus in either
event, with probability at least 39/40 some h; ; satisfies ||p — h; ¢||1 < (o +2) - opte(p) + €/10.

In the second stage, A’ runs a hypothesis selection procedure to choose one of the candidate
hypotheses h; . A number of such procedures are known (see e.g. Section 6.6 of [DLO1] or

12

[DDS12, DK14, AJOS14]); all of them work by running some sort of “tournament” over the hy-
potheses, and all have the guarantee that with high probability they will output a hypothesis from
the pool of candidates which has L; error (with respect to the target distribution p) not much worse
than that of the best candidate in the pool. We use the classic Scheffé algorithm (see [DLO1]) as
described and analyzed in [AJOS14] (see Algorithm SCHEFFE* in Appendix B of that paper).
Adapted to our context, this algorithm has the following performance guarantee:

Proposition A.2. Let p be a target distribution over [0, 1) and let D; = {p, ;\/:1 be a collection of
N distributions over [0, 1) with the property that there exists i € [N| such that ||p—p;||1 < 7. There
is a procedure SCHEFFE which is given as input a parameter € > 0 and a confidence parameter
0 > 0, and is provided with access to

(i) i.i.d. draws from p and from p; for all i € [N], and

(ii) an evaluation oracle evaly,, for each € [N]. This is a procedure which, on input v € [0, 1),
outputs the value p;(r) of the pdf of p; at the point r.

The procedure SCHEFFE has the following behavior: It makes s =
O ((1/€%) - (log N +log(1/6))) draws from p and from each p;, i € [N], and O(s) calls to
each oracle eval,,, i € [N], and performs O(sN?) arithmetic operations. With probability at least
1 — ¢ it outputs an index i* € [N that satisfies ||p — p;» |1 < 10 max{r,¢e}.

The algorithm A’ runs the procedure SCHEFFE using the N = O(log(1/¢)) hypotheses h; ¢, with
its “c” parameter set to %0~(the input parameter ¢ that is given to A’) and its “§” parameter set to
1/40. By Proposition A.2, with overall probability at least 19/20 the output is a hypothesis h; ¢
satisfying ||p — hi¢|l1 < 10(a + 2)opte(p) + €. The overall running time and sample complexity

O

are easily seen to be as claimed, and the theorem is proved.

B Proof of Theorem 7

We write Usy to denote the uniform distribution over [2N]. The following proposition shows that
Uon has Ly distance from pg, g, almost twice that of the optimal 2-flat distribution:

Proposition B.1. Fixany 0 <t < 1/2.

1. For any distribution pg, s, + in the support of D;, we have

HUQN _pshsmt' 1=t

2. For any distribution pg, s, 1 in the support of Dy, we have

t

t
Pty (Psy,sat) < 5 (1 + 115) :

Proof. Part (1.) is a simple calculation. For part (2.), consider the 2-flat distribution
, av (14 oagy) ifi€[N]
q(i) = {7, . o
ifie[N+1,...,2N]

v (1= 2(1—t)

It is straightforward to verify that [|ps, s+ — ¢ll1 = & (1 + ﬁ) as claimed. O

For a distribution p we write AP to indicate that algorithm A is given access to i.i.d. points drawn
from p.

The following simple proposition states that no algorithm can successfully distinguish between a
distribution pg, s, + ~ D and Us v using fewer than (essentially) VN draws:

13

Proposition B.2. There is an absolute constant ¢ > 0 such that the following holds: Fix any
0 <t < 1/2, and let B be any “distinguishing algorithm” which receives cv/ N ii.d. draws from a
distribution over [2N) and outputs either “uniform” or “non-uniform”. Then

|Pr[Bu[2N] outputs “uniform”| — Pr,g o ~p,[BP5152" outputs “uniform”]| < 0.01. (2)

The proof is an easy consequence of the fact that in both cases (the distribution is U7, or the
distribution is pg, s, ~ D;), with probability at least 0.99 the cV/'N draws received by A are a

uniform random set of ¢y/NN distinct elements from [2V] (this can be shown straighforwardly using
a birthday paradox type argument).

Now we use Proposition B.2 to show that any (2 — §)-semi-agnostic learning algorithm even for
2-flat distributions must use a sample of size (v/N), and thereby prove Theorem 7:

Theorem 7. Fix any 6 > 0 and any function f(-). There is no algorithm A with the following
property: given € > 0 and access to independent points drawn from an unknown distribution p over
[2N], algorithm A makes o(N/N) - f() draws from p and with probability at least 51100 outputs
a hypothesis distribution h over [2N| satisfying ||h — p|l1 < (2 — §)opty(p) + €.

Proof. Fix a value of § > 0 and suppose, for the sake of contradiction, that there exists such an
algorithm A. We describe how the existence of such an algorithm A yields a distinguishing algorithm
B that violates Proposition B.2.

The algorithm B works as follows, given access to i.i.d. draws from an unknown distribution p. It
first runs algorithm A with its “c” parameter set to € := m, obtaining (with probability at least

51/100) a hypothesis distribution & over [2N] such that ||h — p||1 < (2 — §)opty(p) + €. It then
computes the value |h — Uan||1 of the L,-distance between h and the uniform distribution (note
that this step uses no draws from the distribution). If || — Uan||1 < 3¢/2 then it outputs “uniform”
and otherwise it outputs “non-uniform.”

Since & (and hence ¢) is independent of N, the algorithm B makes fewer than ¢\/N draws from p
(for N sufficiently large). To see that the above-described algorithm B violates (2), consider first the
case that p is Uz). In this case opty(p) = 0 and so with probability at least 51/100 the hypothesis
h satisfies ||h — Uan|l1 < €, and hence algorithm B outputs “uniform” with probability at least
51/100.

)

375 In this case, with

On the other hand, suppose that p = pg, s, ¢ is drawn from D, where ¢t =
probability at least 51/100 the hypothesis h satisfies

t t
I = ps, sl < 2 optalps, o)+ < (2-0) 5+ (1415) e

by part (2.) of Proposition B.1. Since by part (1.) of Proposition B.1 we have ||{Uaon —ps,.s,.¢]|1 = ¢,
the triangle inequality gives that

t t
||h*Z/[2NH12t7(275)§ <1+t)€25,

where to obtain the final equality we recalled the settings ¢ = #15), t= %. Hence algorithm

B outputs “uniform” with probability at most 49/100. Thus we have

|Pr(B Yizn1 outputs “uniform”] — Pr,g o, ,~p,[BP?1°2* outputs “uniform”]

> 0.02

which contradicts (2) and proves the theorem. O

14

	Introduction
	Preliminaries
	The algorithm and its analysis
	The main algorithm
	Intuition for the algorithm
	The algorithm
	Analysis of the algorithm and proof of Theorem 4

	A general reduction to the case of small opt for semi-agnostic learning
	Dealing with distributions that are not well behaved

	Lower bounds on agnostic learning
	Omitted Proofs from Section 3
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Theorem 6

	Proof of Theorem 7

