
Appendix

A Omitted Proofs from Section 3

A.1 Proof of Lemma 3.2

Observe that in iteration t, two consecutive intervals I
t�1,i

and I
t�1,i+1

correspond to two unions
of consecutive intervals I

a

[ · · ·[ I
b

and I
b+1

[ · · ·[ I
c

respectively from the original partition P
0

.
Moreover, since each interval in P

t�1

\F
t�1

, t > 1, is formed by merging two consecutive intervals
from P

t�2

\ F
t�2

, it must be the case that b� a+ 1, c� b+ 1  2

t�1 < 2

s�1  1/(2"0). Hence,
by Lemma 3.1, we have

|p(I
t�1,i

)� bp
m
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t�1,i

))| 
p
"0 · 2s�1 · "0

10k
 "0

10

p
2k

and similarly,

|p(I
t�1,i+1

)� bp
m

(I
t�1,i+1

))|  "0

10

p
2k

.

To simplify notation, let I = I
t�1,i

and J = I
t�1,i+1

. By definition of ↵,

↵
p

(I, J) =

����
p(I)

|I| � p(I) + p(J)

|I|+ |J |

���� |I|+
����
p(J)

|J | � p(I) + p(J)

|I|+ |J |

���� |J |

=

2

|I|+ |J |
��p(I)|J |� p(J)|I|

��. (1)

A straightforward calculation now gives that

|↵
p

(I, J)� ↵bpm(I, J)| =

2

|I|+ |J |

���
��p(I)|J |� p(J)|I|

���
��bp

m

(I)|J |� bp
m

(J)|I|
��
���

 2

|I|+ |J |

⇣��p(I)� bp
m

(I)
��|J |+

��p(J)� bp
m

(J)
��|I|

⌘

 2"0/(5k).

A.2 Proof of Lemma 3.3

We start by recording a basic fact that will be useful in the proof of the lemma. Let p be a distribution
over an interval I and let q be any sub-distribution over I . Perhaps contrary to initial intuition, the
optimal scaling c · q, c > 0, of q to approximate p (with respect to the L

1

-distance) is not necessarily
obtained by scaling q so that c · q is a distribution over I . However, a simple argument (see e.g.,
Appendix A.1 of [CDSS14]) shows that scaling so that c ·q is a distribution cannot result in L

1

-error
more than twice that of the optimal scaling:
Claim A.1. Let p, g : I ! R�0 be probability distributions over I (so

R
I

p(x)dx =

R
I

g(x)dx = 1).
Then, writing kfk

1

to denote
R
I

|f(x)|dx, for every a > 0 we have that kp� gk
1

 2kp� agk
1

.

We now proceed with the proof of Lemma 3.3.

We first show that a total of at most O(k log(1/"0)) intervals are ever added into F
t

across all
executions of Step 4(b).

Suppose that intervals I
t�1,i

, I
t�1,i+1

are added into F
t

in some execution of Step 4(b). We consider
the following two cases:

Case 1: I
t�1,i

[ I
t�1,i+1

contains at least one breakpoint of Q. Since Q has at most k breakpoints,
this can happen at most k times in total.

Case 2: I
t�1,i

[I
t�1,i+1

does not contain any breakpoint of Q. Then I
t�1,i

[I
t�1,i+1

is a subset of
an interval in Q. Recalling that intervals I

t�1,i

, I
t�1,i+1

were added into F
t

in an execution
of Step 4(b), we have that ↵bpm(I

t�1,i

, I
t�1,i+1

) > "0/(2k), and hence by Lemma 3.2, we
have that ↵

p

(I
t�1,i

, I
t�1,i+1

) � 1

5

· "

0

k

. Claim A.1 now implies that the contribution to the
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L
1

distance between p and q from I
t�1,i

[ I
t�1,i+1

, i.e.,
R
It�1,i[It�1,i+1

|p(x) � q(x)|dx,

is at least 1

10

"

0

k

.
Since kp� qk

1

= opt

k

(p), there can be at most

k +O

✓
opt

k

(p) · k
"0

◆
= O

✓
k · log 1

"

◆

intervals ever added into F
t

across all executions of Step 4(b) (note that for the last equality
we have used the assumption that opt

k

(p)  ").

Next, we argue that each F
t

satisfies |F
t

|  O(k log2(1/")). We have bounded the number of
intervals added into F

t

in Step 4(b) by O(k log(1/"0)), so it remains to bound the number of intervals
added in Step 4(c)(Case 3) and 4(c)(Case 4). It is clear that a total of at most O(log(1/"0)) intervals
are ever added in 4(c)(Case 4). Inspection of Step 4(c)(Case 3) shows that for a given value of t,
the number of intervals that this step adds to F

t

is at most the number of “blocks” of consecutive
F

t

-intervals. Since each interval added in Step 4(c)(Case 3) extends some blocks of consecutive
F

t

-intervals but does not create a new one (and hence does not increase their number), across the
s = log(1/"0) stages, the total number of intervals that can be added in executions of Step 4(c)(Case
3) is at most O(k log2(1/"0)). It follows that we have |F

s

| = O(k log2(1/")) as claimed.

To bound |P
t

\ F
t

|, we observe that by inspection of the algorithm, for each t we have |P
t

\ F
t

| 
1

2

|P
t�1

\ F
t�1

|. Since |P
0

| = ⇥(k/"0), it follows that |P
s

\ F
s

| = O(k), and the lemma is proved.

A.3 Proof of Lemma 3.4

Fix an interval I in P . If there does not exist an interval J in Q such that I ✓ J , then I must contain
a breakpoint of Q, and hence since P is "0-good for (p, q), we have p(I)  "0/(2k). This implies
that the contribution to k(p)P � qk

1

that comes from I , namely
R
I

|(p)P(x)� q(x)|dx, satisfies
Z

I

|(p)P(x)� q(x)|dx 
Z

I

|(p)P(x)� p(x)|dx+

Z

I

|p(x)� q(x)|dx


Z

I

|p(x)� q(x)|dx+ 2p(I)


Z

I

|p(x)� q(x)|dx+

"0

k
.

The other possibility is that there exists an interval J in Q such that I ✓ J . In this case, we have
that Z

I

|(p)P(x)� q(x)|dx 
Z

I

|p(x)� q(x)|dx.

Since there are at most k intervals in P containing breakpoints of Q, summing the above inequalities
over all intervals I in P , we get that

k(p)P � qk
1

 kp� qk
1

+ "0 = opt

k

(p) + "0,

and hence
k(p)P � pk

1

 k(p)P � qk
1

+ kp� qk
1

 2opt

k

(p) + "0.

A.4 Proof of Lemma 3.5

We construct the claimed R based on P
s

,P
s�1

, . . . ,P
0

as follows:

(i) If I is an interval in P
s

not containing a breakpoint of Q, then I is also in R.
(ii) If I is an interval in P

s

that does contain a breakpoint of Q, then we further partition I
into a set of intervals S by calling procedure Refine-partition(s, I). This recur-
sive procedure exploits the local structure of the earlier, finer partitions P

s�1

,P
s�2

, . . . as
described below.
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Procedure Refine-partition:
Input: Integer t, Interval J
Output: S, a partition of interval J

1. If t = 0, then output {J}.
2. If J is an interval in P

t

, then
(a) If J contains a breakpoint of Q, then output Refine-partition(t � 1,

J).
(b) Otherwise output {J}.

3. Otherwise, J is a union of two intervals in P
t

. Let J
1

and J
2

denote the two
intervals in P

t

such that J
1

[ J
2

= J . Output Refine-partition(t, J
1

) [
Refine-partition(t, J

2

).

We claim that |R| (the number of intervals in R) is at most |P
s

| + O(k · log 1

"

). To see this,
note that each interval I 2 P

s

not containing a breakpoint of Q (corresponding to (i) above)
translates directly to a single interval of R. For each interval of type (ii) in P

s

, inspection of
the Refine-Partition procedure shows that that these intervals are partitioned into at most
O(k log(1/")) intervals in R.

In the rest of the proof, we show that for any interval J in P
s

containing at least one breakpoint of
Q, the contribution to the L

1

distance between (p)Ps and (p)R coming from interval J is at most
|b

J

| · "

0
log

1
"

k

, where b
J

is the set of breakpoints of Q in J .

Consider a fixed breakpoint v of Q. Let I
t,v

denote the interval containing v in the partition P
t

.
If I

t,v

merges with another interval in P
t

in Case 1 of Step 4(c), we denote that other interval as
I 0
t,v

. Since I
t,v

merges with I 0
t,v

in Case 1 of Step 4(c), these intervals are both not in F
t

and hence
were both not in F

t�1

in Step 4(b). Consequently when t > 1 it must be the case that condition
(ii) of Step 4(b) does not hold for these intervals, i.e. ↵bpm(I

t,v

, I 0
t,v

)  "0/(2k). It follows that
by Lemma 3.2, we have that ↵

p

(I
t,v

, I 0
t,v

) is at most 4"

0

5k

. When t = 1, we have a similar bound
↵
p

(I
t,v

, I 0
t,v

)  "0/k, by using (1) and the fact that p(I
t,v

), p(I 0
t,v

)  "0/2k when I
t,v

, I 0
t,v

2 P
0

.

On the other hand, inspection of the procedure Refine-Partition gives that if two intervals
in P

t

are unions of some intervals in Refine-partition(s, I), and their union is an interval in
P
t+1

, then there exists v which is a breakpoint of Q such that the two intervals are I
t,v

and I 0
t,v

.

Thus, the contribution to the L
1

distance between (p)Ps and (p)R coming from interval J is at most
"

0

k

· log 1

"

0 · |bJ |. Summing over all intervals J that contain at least one breakpoint and recalling that
the total number of breakpoints is at most k, we get that the overall L

1

distance between (p)Ps and
(p)R is at most ".

A.5 Proof of Theorem 6

Proof. The algorithm A0 works in two stages, which we describe and analyze below.

In the first stage, A0 iterates over dlog(20/")e “guesses” for the value of optC(p), where the i-th
guess g

i

is "

10

· 2i�1 (so g
1

=

"

10

and gdlog(20/")e � 1). For each value of g
i

, it performs r = O(1)

runs of Algorithm A (using a fresh sample from p for each run) using parameter g
i

as the “"”
parameter for each run; let h

1,i

, . . . , h
r,i

be the r hypotheses thus obtained for the i-th guess. It is
clear that this stage uses O(m("/10) +m(2"/10) + · · · ) = O(m(")) draws from p, and similarly
that it runs in time O(t(")). If optC(p)  ", then (for a suitable choice of r = O(1)) we get that
with probability at least 39/40, some hypothesis h

1,`

satisfies kp � h
1,`

k  ↵ · optC(p) + "/10.
Otherwise, there must be some i 2 {2, . . . , dlog(20/")e} such that g

i

/2 < optC(p)  g
i

; in this
case, for a suitable choice of r = O(1) we get that with probability at least 39/40, there is some
hypothesis h

i,`

that satisfies kp � h
i,`

k
1

 ↵ · optC(p) + g
i

 (↵ + 2) · optC(p). Thus in either
event, with probability at least 39/40 some h

i,`

satisfies kp� h
i,`

k
1

 (↵+ 2) · optC(p) + "/10.

In the second stage, A0 runs a hypothesis selection procedure to choose one of the candidate
hypotheses h

i,`

. A number of such procedures are known (see e.g. Section 6.6 of [DL01] or
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[DDS12, DK14, AJOS14]); all of them work by running some sort of “tournament” over the hy-
potheses, and all have the guarantee that with high probability they will output a hypothesis from
the pool of candidates which has L

1

error (with respect to the target distribution p) not much worse
than that of the best candidate in the pool. We use the classic Scheffé algorithm (see [DL01]) as
described and analyzed in [AJOS14] (see Algorithm SCHEFFE⇤ in Appendix B of that paper).
Adapted to our context, this algorithm has the following performance guarantee:

Proposition A.2. Let p be a target distribution over [0, 1) and let D
⌧

= {p
j

}N
j=1

be a collection of
N distributions over [0, 1) with the property that there exists i 2 [N ] such that kp�p

i

k
1

 ⌧ . There
is a procedure SCHEFFE which is given as input a parameter " > 0 and a confidence parameter
� > 0, and is provided with access to

(i) i.i.d. draws from p and from p
i

for all i 2 [N ], and

(ii) an evaluation oracle eval
pi for each 2 [N ]. This is a procedure which, on input r 2 [0, 1),

outputs the value p
i

(r) of the pdf of p
i

at the point r.

The procedure SCHEFFE has the following behavior: It makes s =

O
�
(1/"2) · (logN + log(1/�))

�
draws from p and from each p

i

, i 2 [N ], and O(s) calls to
each oracle eval

pi , i 2 [N ], and performs O(sN2

) arithmetic operations. With probability at least
1� � it outputs an index i? 2 [N ] that satisfies kp� p

i

?k
1

 10max{⌧, "}.

The algorithm A0 runs the procedure SCHEFFE using the N = O(log(1/")) hypotheses h
i,`

, with
its “"” parameter set to 1

10

·(the input parameter " that is given to A0
) and its “�” parameter set to

1/40. By Proposition A.2, with overall probability at least 19/20 the output is a hypothesis h
i,`

satisfying kp � h
i,`

k
1

 10(↵ + 2)optC(p) + ". The overall running time and sample complexity
are easily seen to be as claimed, and the theorem is proved.

B Proof of Theorem 7

We write U
2N

to denote the uniform distribution over [2N ]. The following proposition shows that
U
2N

has L
1

distance from p
S1,S2,t almost twice that of the optimal 2-flat distribution:

Proposition B.1. Fix any 0 < t < 1/2.

1. For any distribution p
S1,S2,t in the support of D

t

, we have

kU
2N

� p
S1,S2,tk1 = t.

2. For any distribution p
S1,S2,t in the support of D

t

, we have

opt

2

(p
S1,S2,t) 

t

2

✓
1 +

t

1� t

◆
.

Proof. Part (1.) is a simple calculation. For part (2.), consider the 2-flat distribution

q(i) =

8
<

:

1

2N

⇣
1 +

t

2(1�t)

⌘
if i 2 [N ]

1

2N

⇣
1� t

2(1�t)

⌘
if i 2 [N + 1, . . . , 2N ]

It is straightforward to verify that kp
S1,S2,t � qk

1

=

t

2

⇣
1 +

t

1�t

⌘
as claimed.

For a distribution p we write Ap to indicate that algorithm A is given access to i.i.d. points drawn
from p.

The following simple proposition states that no algorithm can successfully distinguish between a
distribution p

S1,S2,t ⇠ D
t

and U
2N

using fewer than (essentially)
p
N draws:
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Proposition B.2. There is an absolute constant c > 0 such that the following holds: Fix any
0 < t < 1/2, and let B be any “distinguishing algorithm” which receives c

p
N i.i.d. draws from a

distribution over [2N ] and outputs either “uniform” or “non-uniform”. Then
��Pr[BU[2N] outputs “uniform”]�Pr

pS1,S2,t⇠Dt [B
pS1,S2,t outputs “uniform”]

��  0.01. (2)

The proof is an easy consequence of the fact that in both cases (the distribution is U
[2N ]

, or the
distribution is p

S1,S2,t ⇠ D
t

), with probability at least 0.99 the c
p
N draws received by A are a

uniform random set of c
p
N distinct elements from [2N ] (this can be shown straighforwardly using

a birthday paradox type argument).

Now we use Proposition B.2 to show that any (2 � �)-semi-agnostic learning algorithm even for
2-flat distributions must use a sample of size ⌦(

p
N), and thereby prove Theorem 7:

Theorem 7. Fix any � > 0 and any function f(·). There is no algorithm A with the following
property: given " > 0 and access to independent points drawn from an unknown distribution p over
[2N ], algorithm A makes o(

p
N) · f(") draws from p and with probability at least 51/100 outputs

a hypothesis distribution h over [2N ] satisfying kh� pk
1

 (2� �)opt
2

(p) + ".

Proof. Fix a value of � > 0 and suppose, for the sake of contradiction, that there exists such an
algorithm A. We describe how the existence of such an algorithm A yields a distinguishing algorithm
B that violates Proposition B.2.

The algorithm B works as follows, given access to i.i.d. draws from an unknown distribution p. It
first runs algorithm A with its “"” parameter set to " := �

3

12(2+�)

, obtaining (with probability at least
51/100) a hypothesis distribution h over [2N ] such that kh � pk

1

 (2 � �)opt
2

(p) + ". It then
computes the value kh � U

2N

k
1

of the L
1

-distance between h and the uniform distribution (note
that this step uses no draws from the distribution). If kh� U

2N

k
1

< 3"/2 then it outputs “uniform”
and otherwise it outputs “non-uniform.”

Since � (and hence ") is independent of N , the algorithm B makes fewer than c
p
N draws from p

(for N sufficiently large). To see that the above-described algorithm B violates (2), consider first the
case that p is U

[2N ]

. In this case opt

2

(p) = 0 and so with probability at least 51/100 the hypothesis
h satisfies kh � U

2N

k
1

 ", and hence algorithm B outputs “uniform” with probability at least
51/100.

On the other hand, suppose that p = p
S1,S2,t is drawn from D

t

, where t = �

2+�

. In this case, with
probability at least 51/100 the hypothesis h satisfies

kh� p
S1,S2,tk1  (2� �)opt

2

(p
S1,S2,t) + "  (2� �) · t

2

·
✓
1 +

t

1� t

◆
+ ",

by part (2.) of Proposition B.1. Since by part (1.) of Proposition B.1 we have kU
2N

�p
S1,S2,tk1 = t,

the triangle inequality gives that

kh� U
2N

k
1

� t� (2� �) · t
2

·
✓
1 +

t

1� t

◆
� " = 2",

where to obtain the final equality we recalled the settings " =

�

3

12(2+�)

, t = �

2+�

. Hence algorithm
B outputs “uniform” with probability at most 49/100. Thus we have

��Pr[BU[2N] outputs “uniform”]�Pr
pS1,S2,t⇠Dt [B

pS1,S2,t outputs “uniform”]
�� � 0.02

which contradicts (2) and proves the theorem.
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