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Abstract

We provide a general framework for computing lower-bounds on the sample com-
plexity of recovering the underlying graphs of Ising models, given i.i.d. samples.
While there have been recent results for specific graph classes, these involve fairly
extensive technical arguments that are specialized to each specific graph class. In
contrast, we isolate two key graph-structural ingredients that can then be used to
specify sample complexity lower-bounds. Presence of these structural properties
makes the graph class hard to learn. We derive corollaries of our main result that
not only recover existing recent results, but also provide lower bounds for novel
graph classes not considered previously. We also extend our framework to the
random graph setting and derive corollaries for Erdős-Rényi graphs in a certain
dense setting.

1 Introduction

Graphical models provide compact representations of multivariate distributions using graphs that
represent Markov conditional independencies in the distribution. They are thus widely used in a
number of machine learning domains where there are a large number of random variables, including
natural language processing [13], image processing [6, 10, 19], statistical physics [11], and spatial
statistics [15]. In many of these domains, a key problem of interest is to recover the underlying
dependencies, represented by the graph, given samples i.e. to estimate the graph of dependencies
given instances drawn from the distribution. A common regime where this graph selection problem
is of interest is the high-dimensional setting, where the number of samples n is potentially smaller
than the number of variables p. Given the importance of this problem, it is instructive to have
lower bounds on the sample complexity of any estimator: it clarifies the statistical difficulty of the
underlying problem, and moreover it could serve as a certificate of optimality in terms of sample
complexity for any estimator that actually achieves this lower bound. We are particularly interested
in such lower bounds under the structural constraint that the graph lies within a given class of graphs
(such as degree-bounded graphs, bounded-girth graphs, and so on).

The simplest approach to obtaining such bounds involves graph counting arguments, and an appli-
cation of Fano’s lemma. [2, 17] for instance derive such bounds for the case of degree-bounded
and power-law graph classes respectively. This approach however is purely graph-theoretic, and
thus fails to capture the interaction of the graphical model parameters with the graph structural con-
straints, and thus typically provides suboptimal lower bounds (as also observed in [16]). The other
standard approach requires a more complicated argument through Fano’s lemma that requires find-
ing a subset of graphs such that (a) the subset is large enough in number, and (b) the graphs in
the subset are close enough in a suitable metric, typically the KL-divergence of the corresponding
distributions. This approach is however much more technically intensive, and even for the simple
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classes of bounded degree and bounded edge graphs for Ising models, [16] required fairly extensive
arguments in using the above approach to provide lower bounds.

In modern high-dimensional settings, it is becoming increasingly important to incorporate structural
constraints in statistical estimation, and graph classes are a key interpretable structural constraint.
But a new graph class would entail an entirely new (and technically intensive) derivation of the
corresponding sample complexity lower bounds. In this paper, we are thus interested in isolating
the key ingredients required in computing such lower bounds. This key ingredient involves one
the following structural characterizations: (1) connectivity by short paths between pairs of nodes,
or (2) existence of many graphs that only differ by an edge. As corollaries of this framework, we
not only recover the results in [16] for the simple cases of degree and edge bounded graphs, but
to several more classes of graphs, for which achievability results have already been proposed[1].
Moreover, using structural arguments allows us to bring out the dependence of the edge-weights, λ,
on the sample complexity. We are able to show same sample complexity requirements for d-regular
graphs, as is for degree d-bounded graphs, whilst the former class is much smaller. We also extend
our framework to the random graph setting, and as a corollary, establish lower bound requirements
for the class of Erdős-Rényi graphs in a dense setting. Here, we show that under a certain scaling
of the edge-weights λ, Gp,c/p requires exponentially many samples, as opposed to a polynomial
requirement suggested from earlier bounds[1].

2 Preliminaries and Definitions

Notation: R represents the real line. [p] denotes the set of integers from 1 to p. Let 1S denote the
vector of ones and zeros where S is the set of coordinates containing 1. Let A− B denote A

⋂
Bc

and A∆B denote the symmetric difference for two sets A and B.

In this work, we consider the problem of learning the graph structure of an Ising model. Ising
models are a class of graphical model distributions over binary vectors, characterized by the pair
(G(V,E), θ̄), where G(V,E) is an undirected graph on p vertices and θ̄ ∈ R(p2) : θ̄i,j = 0 ∀(i, j) /∈
E, θ̄i,j 6= 0 ∀ (i, j) ∈ E. Let X = {+1,−1}. Then, for the pair (G, θ̄), the distribution on X p is

given as: fG,θ̄(x) = 1
Z exp

(∑
i,j

θ̄i,j xixj

)
where x ∈ X p and Z is the normalization factor, also

known as the partition function.

Thus, we obtain a family of distributions by considering a set of edge-weighted graphs Gθ, where
each element of Gθ is a pair (G, θ̄). In other words, every member of the class Gθ is a weighted
undirected graph. Let G denote the set of distinct unweighted graphs in the class Gθ.

A learning algorithm that learns the graph G (and not the weights θ̄) from n independent samples
(each sample is a p-dimensional binary vector) drawn from the distribution fG,θ̄(·), is an efficiently
computable map φ : χnp → G which maps the input samples {x1, . . .xn} to an undirected graph
Ĝ ∈ G i.e. Ĝ = φ(x1, . . . ,xn).

We now discuss two metrics of reliability for such an estimator φ. For a given (G, θ̄), the probability
of error (over the samples drawn) is given by p(G, θ̄) = Pr

(
Ĝ 6= G

)
. Given a graph class Gθ, one

may consider the maximum probability of error for the map φ, given as:

pmax = max
(G,θ)∈Gθ

Pr
(
Ĝ 6= G

)
. (1)

The goal of any estimator φ would be to achieve as low a pmax as possible. Alternatively, there are
random graph classes that come naturally endowed with a probability measure µ(G, θ) of choosing
the graphical model. In this case, the quantity we would want to minimize would be the average
probability of error of the map φ, given as:

pavg = Eµ
[
Pr
(
Ĝ 6= G

)]
(2)

In this work, we are interested in answering the following question: For any estimator φ, what is the
minimum number of samples n, needed to guarantee an asymptotically small pmax or pavg ? The
answer depends on Gθ and µ(when applicable).
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For the sake of simplicity, we impose the following restrictions1: We restrict to the set of zero-field
ferromagnetic Ising models, where zero-field refers to a lack of node weights, and ferromagnetic
refers to all positive edge weights. Further, we will restrict all the non-zero edge weights (θ̄i,j) in
the graph classes to be the same, set equal to λ > 0. Therefore, for a given G(V,E), we have
θ̄ = λ1E for some λ > 0. A deterministic graph class is described by a scalar λ > 0 and the family
of graphs G. In the case of a random graph class, we describe it by a scalar λ > 0 and a probability
measure µ, the measure being solely on the structure of the graph G (on G).

Since we have the same weight λ(> 0) on all edges, henceforth we will skip the reference to it, i.e.
the graph class will simply be denoted G and for a given G ∈ G, the distribution will be denoted
by fG(·), with the dependence on λ being implicit. Before proceeding further, we summarize the
following additional notation. For any two distributions fG and fG′ , corresponding to the graphs
G and G′ respectively, we denote the Kullback-Liebler divergence (KL-divergence) between them
as D (fG‖fG′) =

∑
x∈Xp fG(x) log

(
fG(x)
fG′ (x)

)
. For any subset T ⊆ G, we let CT (ε) denote an

ε-covering w.r.t. the KL-divergence (of the corresponding distributions) i.e. CT (ε)(⊆ G) is a set of
graphs such that for any G ∈ T , there exists a G′ ∈ CT (ε) satisfying D (fG‖fG′) ≤ ε. We denote
the entropy of any r.v. X by H(X), and the mutual information between any two r.v.s X and Y , by
I(X;Y ). The rest of the paper is organized as follows. Section 3 describes Fano’s lemma, a basic
tool employed in computing information-theoretic lower bounds. Section 4 identifies key structural
properties that lead to large sample requirements. Section 5 applies the results of Sections 3 and
4 on a number of different deterministic graph classes to obtain lower bound estimates. Section 6
obtains lower bound estimates for Erdős-Rényi random graphs in a dense regime. All proofs can be
found in the Appendix (see supplementary material).

3 Fano’s Lemma and Variants

Fano’s lemma [5] is a primary tool for obtaining bounds on the average probability of error, pavg . It
provides a lower bound on the probability of error of any estimator φ in terms of the entropy H(·)
of the output space, the cardinality of the output space, and the mutual information I(· , ·) between
the input and the output. The case of pmax is interesting only when we have a deterministic graph
class G, and can be handled through Fano’s lemma again by considering a uniform distribution on
the graph class.

Lemma 1 (Fano’s Lemma). Consider a graph class G with measure µ. Let, G ∼ µ, and let Xn =
{x1, . . . ,xn} be n independent samples such that xi ∼ fG, i ∈ [n]. Then, for pmax and pavg as
defined in (1) and (2) respectively,

pmax ≥ pavg ≥
H(G)− I(G;Xn)− log 2

log|G|
(3)

Thus in order to use this Lemma, we need to bound two quantities: the entropyH(G), and the mutual
information I(G;Xn). The entropy can typically be obtained or bounded very simply; for instance,
with a uniform distribution over the set of graphs G, H(G) = log |G|. The mutual information is
a much trickier object to bound however, and is where the technical complexity largely arises. We
can however simply obtain the following loose bound: I(G;Xn) ≤ H(Xn) ≤ np. We thus arrive
at the following corollary:

Corollary 1. Consider a graph class G. Then, pmax ≥ 1− np+log 2
log|G| .

Remark 1. From Corollary 1, we get: If n ≤ log|G|
p

(
(1− δ)− log 2

log|G|

)
, then pmax ≥ δ. Note that

this bound on n is only in terms of the cardinality of the graph class G, and therefore, would not
involve any dependence on λ (and consequently, be very loose).

To obtain sharper lower bound guarantees that depends on graphical model parameters, it is useful
to consider instead a conditional form of Fano’s lemma[1, Lemma 9], which allows us to obtain
lower bounds on pavg in terms conditional analogs of the quantities in Lemma 1. For the case of
pmax, these conditional analogs correspond to uniform measures on subsets of the original class G.

1Note that a lower bound for a restricted subset of a class of Ising models will also serve as a lower bound
for the class without that restriction.
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The conditional version allows us to focus on potentially harder to learn subsets of the graph class,
leading to sharper lower bound guarantees. Also, for a random graph class, the entropy H(G) may
be asymptotically much smaller than the log cardinality of the graph class, log|G| (e.g. Erdős-Rényi
random graphs; see Section 6), rendering the bound in Lemma 1 useless. The conditional version
allows us to circumvent this issue by focusing on a high-probability subset of the graph class.

Lemma 2 (Conditional Fano’s Lemma). Consider a graph class G with measure µ. Let, G ∼ µ,
and let Xn = {x1, . . . ,xn} be n independent samples such that xi ∼ fG, i ∈ [n]. Consider any
T ⊆ G and let µ (T ) be the measure of this subset i.e. µ (T ) = Prµ (G ∈ T ). Then, we have

pavg ≥ µ (T )
H(G|G ∈ T )− I(G;Xn|G ∈ T )− log 2

log|T |
and,

pmax ≥
H(G|G ∈ T )− I(G;Xn|G ∈ T )− log 2

log|T |

Given Lemma 2, or even Lemma 1, it is the sharpness of an upper bound on the mutual information
that governs the sharpness of lower bounds on the probability of error (and effectively, the number of
samples n). In contrast to the trivial upper bound used in the corollary above, we next use a tighter
bound from [20], which relates the mutual information to coverings in terms of the KL-divergence,
applied to Lemma 2. Note that, as stated earlier, we simply impose a uniform distribution on G when
dealing with pmax. Analogous bounds can be obtained for pavg .

Corollary 2. Consider a graph class G, and any T ⊆ G. Recall the definition ofCT (ε) from Section

2. For any ε > 0, we have pmax ≥
(

1− log|CT (ε)|+nε+log 2
log|T |

)
.

Remark 2. From Corollary 2, we get: If n ≤ log|T |
ε

(
(1− δ)− log 2

log|T | −
log|CT (ε)|

log|T |

)
, then pmax ≥

δ. ε is an upper bound on the radius of the KL-balls in the covering, and usually varies with λ.

But this corollary cannot be immediately used given a graph class: it requires us to specify a subset
T of the overall graph class, the term ε, and the KL-covering CT (ε).

We can simplify the bound above by setting ε to be the radius of a single KL-ball w.r.t. some center,
covering the whole set T . Suppose this radius is ρ, then the size of the covering set is just 1. In this
case, from Remark 2, we get: If n ≤ log|T |

ρ

(
(1− δ)− log 2

log|T |

)
, then pmax ≥ δ. Thus, our goal

in the sequel would be to provide a general mechanism to derive such a subset T : that is large in
number and yet has small diameter with respect to KL-divergence.

We note that Fano’s lemma and variants described in this section are standard, and have been applied
to a number of problems in statistical estimation [1, 14, 16, 20, 21].

4 Structural conditions governing Correlation

As discussed in the previous section, we want to find subsets T that are large in size, and yet have
a small KL-diameter. In this section, we summarize certain structural properties that result in small
KL-diameter. Thereafter, finding a large set T would amount to finding a large number of graphs in
the graph class G that satisfy these structural properties.

As a first step, we need to get a sense of when two graphs would have corresponding distributions
with a small KL-divergence. To do so, we need a general upper bound on the KL-divergence be-
tween the corresponding distributions. A simple strategy is to simply bound it by its symmetric
divergence[16]. In this case, a little calculation shows :

D (fG‖fG′) ≤ D (fG‖fG′) +D (fG′‖fG)

=
∑

(s,t)∈E\E′
λ (EG [xsxt]− EG′ [xsxt]) +

∑
(s,t)∈E′\E

λ (EG′ [xsxt]− EG [xsxt])

(4)

whereE andE′ are the edges in the graphsG andG′ respectively, and EG[·] denotes the expectation
under fG. Also note that the correlation between xs and xt, EG[xsxt] = 2PG(xsxt = +1)− 1.
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From Eq. (4), we observe that the only pairs, (s, t), contributing to the KL-divergence are the ones
that lie in the symmetric difference,E∆E′. If the number of such pairs is small, and the difference of
correlations inG andG′ (i.e. EG [xsxt]−EG′ [xsxt]) for such pairs is small, then the KL-divergence
would be small.

To summarize the setting so far, to obtain a tight lower bound on sample complexity for a class of
graphs, we need to find a subset of graphs T with small KL diameter. The key to this is to identify
when KL divergence between (distributions corresponding to) two graphs would be small. And the
key to this in turn is to identify when there would be only a small difference in the correlations
between a pair of variables across the two graphs G and G′. In the subsequent subsections, we
provide two simple and general structural characterizations that achieve such a small difference of
correlations across G and G′.

4.1 Structural Characterization with Large Correlation

One scenario when there might be a small difference in correlations is when one of the correlations
is very large, specifically arbitrarily close to 1, say EG′ [xsxt] ≥ 1 − ε, for some ε > 0. Then,
EG[xsxt] − EG′ [xsxt] ≤ ε, since EG[xsxt] ≤ 1. Indeed, when s, t are part of a clique[16], this is
achieved since the large number of connections between them force a higher probability of agree-
ment i.e. PG(xsxt = +1) is large.

In this work we provide a more general characterization of when this might happen by relying on the
following key lemma that connects the presence of “many” node disjoint “short” paths between a
pair of nodes in the graph to high correlation between them. We define the property formally below.
Definition 1. Two nodes a and b in an undirected graph G are said to be (`, d) connected if they
have d node disjoint paths of length at most `.
Lemma 3. Consider a graph G and a scalar λ > 0. Consider the distribution fG(x) induced by
the graph. If a pair of nodes a and b are (`, d) connected, then EG [xaxb] ≥ 1− 2

1+
(1+(tanh(λ))`)d

(1−(tanh(λ))`)d

.

From the above lemma, we can observe that as ` gets smaller and d gets larger, EG [xaxb] approaches
its maximum value of 1. As an example, in a k-clique, any two vertices, s and t, are (2, k − 1)
connected. In this case, the bound from Lemma 3 gives us: EG [xaxb] ≥ 1 − 2

1+(coshλ)k−1 . Of

course, a clique enjoys a lot more connectivity (i.e. also
(
3, k−1

2

)
connected etc., albeit with node

overlaps) which allows for a stronger bound of ∼ 1− λkeλ

eλk
(see [16])2

Now, as discussed earlier, a high correlation between a pair of nodes contributes a small term to the
KL-divergence. This is stated in the following corollary.
Corollary 3. Consider two graphs G(V,E) and G′(V,E′) and scalar weight λ > 0 such that
E − E′ and E′ − E only contain pairs of nodes that are (`, d) connected in graphs G′ and G
respectively, then the KL-divergence between fG and fG′ , D (fG‖fG′) ≤ 2λ|E∆E′|

1+
(1+(tanh(λ))`)d

(1−(tanh(λ))`)d

.

4.2 Structural Characterization with Low Correlation

Another scenario where there might be a small difference in correlations between an edge pair across
two graphs is when the graphs themselves are close in Hamming distance i.e. they differ by only a
few edges. This is formalized below for the situation when they differ by only one edge.
Definition 2 (Hamming Distance). Consider two graphs G(V,E) and G′(V,E′). The hamming
distance between the graphs, denoted by H(G,G′), is the number of edges where the two graphs
differ i.e.

H(G,G′) = |{(s, t) | (s, t) ∈ E∆E′}| (5)
Lemma 4. Consider two graphs G(V,E) and G′(V,E′) such that H(G,G′) = 1, and (a, b) ∈ E
is the single edge in E∆E′. Then, EfG [xaxb] − EfG′ [xaxb] ≤ tanh(λ). Also, the KL-divergence
between the distributions, D (fG‖f ′G) ≤ λ tanh(λ).

2Both the bound from [16] and the bound from Lemma 3 have exponential asymptotic behaviour (i.e. as k
grows) for constant λ. For smaller λ, the bound from [16] is strictly better. However, not all graph classes allow
for the presence of a large enough clique, for e.g., girth bounded graphs, path restricted graphs, Erdős-Rényi
graphs.
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The above bound is useful in low λ settings. In this regime λ tanhλ roughly behaves as λ2. So, a
smaller λ would correspond to a smaller KL-divergence.

4.3 Influence of Structure on Sample Complexity

Now, we provide some high-level intuition behind why the structural characterizations above would
be useful for lower bounds that go beyond the technical reasons underlying Fano’s Lemma that we
have specified so far. Let us assume that λ > 0 is a positive real constant. In a graph even when the
edge (s, t) is removed, (s, t) being (`, d) connected ensures that the correlation between s and t is
still very high (exponentially close to 1). Therefore, resolving the question of the presence/absence
of the edge (s, t) would be difficult – requiring lots of samples. This is analogous in principle to
the argument in [16] used for establishing hardness of learning of a set of graphs each of which is
obtained by removing a single edge from a clique, still ensuring many short paths between any two
vertices. Similarly, if the graphs,G andG′, are close in Hamming distance, then their corresponding
distributions, fG and fG′ , also tend to be similar. Again, it becomes difficult to tease apart which
distribution the samples observed may have originated from.

5 Application to Deterministic Graph Classes

In this section, we provide lower bound estimates for a number of deterministic graph families. This
is done by explicitly finding a subset T of the graph class G, based on the structural properties of
the previous section. See the supplementary material for details of these constructions. A common
underlying theme to all is the following: We try to find a graph in G containing many edge pairs
(u, v) such that their end vertices, u and v, have many paths between them (possibly, node disjoint).
Once we have such a graph, we construct a subset T by removing one of the edges for these well-
connected edge pairs. This ensures that the new graphs differ from the original in only the well-
connected pairs. Alternatively, by removing any edge (and not just well-connected pairs) we can get
another larger family T which is 1-hamming away from the original graph.

5.1 Path Restricted Graphs

Let Gp,η be the class of all graphs on p vertices with have at most η paths (η = o(p)) between any
two vertices. We have the following theorem :

Theorem 1. For the class Gp,η , if n ≤ (1 − δ) max
{

log(p/2)
λ tanhλ ,

1+cosh(2λ)η−1

2λ log
(

p
2(η+1)

)}
, then

pmax ≥ δ.

To understand the scaling, it is useful to think of cosh(2λ) to be roughly exponential in λ2 i.e.

cosh(2λ) ∼ eΘ(λ2)3. In this case, from the second term, we need n ∼ Ω
(
eλ

2η

λ log
(
p
η

))
samples.

If η is scaling with p, this can be prohibitively large (exponential in λ2η). Thus, to have low sample
complexity, we must enforce λ = O(1/

√
η). In this case, the first term gives n = Ω(η log p), since

λ tanh(λ) ∼ λ2, for small λ.

We may also consider a generalization of Gp,η . Let Gp,η,γ be the set of all graphs on p vertices such
that there are at most η paths of length at most γ between any two nodes (with η + γ = o(p)). Note
that there may be more paths of length > γ.

Theorem 2. Consider the graph class Gp,η,γ . For any ν ∈ (0, 1), let tν = p1−ν−(η+1)
γ . If n ≤

(1− δ) max

 log(p/2)
λ tanhλ ,

1+

[
cosh(2λ)η−1

(
1+tanh(λ)γ+1

1−tanh(λ)γ+1

)tν ]
2λ ν log(p)

, then pmax ≥ δ.

The parameter ν ∈ (0, 1) in the bound above may be adjusted based on the scaling of η and γ.
Also, an approximate way to think of the scaling of

(
1+tanh(λ)γ+1

1−tanh(λ)γ+1

)
is ∼ eλ

γ+1

. As an example,

for constant η and γ, we may choose v = 1
2 . In this case, for some constant c, our bound imposes

n ∼ Ω
(

log p
λ tanhλ ,

ecλ
γ+1√p

λ log p
)

. Now, same as earlier, to have low sample complexity, we must

3In fact, for λ ≤ 3, we have eλ
2/2 ≤ cosh(2λ) ≤ e2λ

2

. For λ > 3, cosh(2λ) > 200
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have λ = O(1/p1/2(γ+1)), in which case, we get a n ∼ Ω(p1/(γ+1) log p) sample requirement from
the first term.

We note that the family Gp,η,γ is also studied in [1], and for which, an algorithm is proposed. Under
certain assumptions in [1], and the restrictions: η = O(1), and γ is large enough, the algorithm in
[1] requires log p

λ2 samples, which is matched by the first term in our lower bound. Therefore, the
algorithm in [1] is optimal, for the setting considered.

5.2 Girth Bounded Graphs

The girth of a graph is defined as the length of its shortest cycle. Let Gp,g,d be the set of all graphs
with girth atleast g, and maximum degree d. Note that as girth increases the learning problem
becomes easier, with the extreme case of g =∞ (i.e. trees) being solved by the well known Chow-
Liu algorithm[3] in O(log p) samples. We have the following theorem:

Theorem 3. Consider the graph class Gp,g,d. For any ν ∈ (0, 1), let dν = min
(
d, p

1−ν

g

)
. If

n ≤ (1− δ) max

 log(p/2)
λ tanhλ ,

1+

(
1+tanh(λ)g−1

1−tanh(λ)g−1

)dν
2λ ν log(p)

, then pmax ≥ δ.

5.3 Approximate d-Regular Graphs

Let Gapprox
p,d be the set of all graphs whose vertices have degree d or degree d− 1. Note that this class

is subset of the class of graphs with degree at most d. We have:

Theorem 4. Consider the class Gapprox
p,d . If n ≤ (1−δ) max

{
log( pd4 )
λ tanhλ ,

eλd

2λdeλ

(
pd
4

)}
then pmax ≥ δ.

Note that the second term in the bound above is from [16]. Now, restricting λ to prevent exponential
growth in the number of samples, we get a sample requirement of n = Ω(d2 log p). This matches
the lower bound for degree d bounded graphs in [16]. However, note that Theorem 4 is stronger in
the sense that the bound holds for a smaller class of graphs i.e. only approximately d-regular, and
not d-bounded.
5.4 Approximate Edge Bounded Graphs

Let Gapprox
p,k be the set of all graphs with number of edges ∈

[
k
2 , k
]
. This class is a subset of the class

of graphs with edges at most k. Here, we have:

Theorem 5. Consider the class Gapprox
p,k , and let k ≥ 9. If we have number of samples n ≤ (1 −

δ) max

{
log( k2 )
λ tanhλ ,

eλ(
√

2k−1)

2λeλ(
√

2k+1)
log
(
k
2

)}
, then pmax ≥ δ.

Note that the second term in the bound above is from [16]. If we restrict λ to prevent exponential
growth in the number of samples, we get a sample requirement of n = Ω(k log k). Again, we match
the lower bound for the edge bounded class in [16], but through a smaller class.

6 Erdős-Rényi graphs G(p, c/p)

In this section, we relate the number of samples required to learn G ∼ G(p, c/p) for the dense case,
for guaranteeing a constant average probability of error pavg. We have the following main result
whose proof can be found in the Appendix.

Theorem 6. Let G ∼ G(p, c/p), c = Ω(p3/4 + ε′), ε′ > 0. For this class of random graphs, if
pavg ≤ 1/90, then n ≥ max (n1, n2) where:

n1 =
H(c/p)(3/80) (1− 80pavg −O(1/p)) 4λp

3 exp(− p
36 ) + 4 exp(− p

3
2

144 ) + 4λ

9

(
1+(cosh(2λ))

c2
6p

)
 , n2 =

p

4
H(c/p)(1− 3pavg)−O(1/p)

(6)
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Remark 3. In the denominator of the first expression, the dominating term is 4λ

9

(
1+(cosh(2λ))

c2
6p

) .

Therefore, we have the following corollary.
Corollary 4. Let G ∼ G(p, c/p), c = Ω(p3/4+ε′) for any ε′ > 0. Let pavg ≤ 1/90, then

1. λ = Ω(
√
p/c) : Ω

(
λH(c/p)(cosh(2λ))

c2

6p

)
samples are needed.

2. λ < O(
√
p/c) : Ω(c log p) samples are needed. (This bound is from [1] )

Remark 4. This means that when λ = Ω(
√
p/c), a huge number (exponential for constant λ) of

samples are required. Hence, for any efficient algorithm, we require λ = O
(√
p/c
)

and in this
regime O (c log p) samples are required to learn.

6.1 Proof Outline

The proof skeleton is based on Lemma 2. The essence of the proof is to cover a set of graphs T ,
with large measure, by an exponentially small set where the KL-divergence between any covered
and the covering graph is also very small. For this we use Corollary 3. The key steps in the proof
are outlined below:

1. We identify a subclass of graphs T , as in Lemma 2, whose measure is close to 1, i.e.
µ(T ) = 1− o(1). A natural candidate is the ’typical’ set T pε which is defined to be a set of
graphs each with ( cp2 −

cpε
2 ,

cp
2 + cpε

2 ) edges in the graph.

2. (Path property) We show that most graphs in T have property R: there are O(p2) pairs of
nodes such that every pair is well connected by O( c

2

p ) node disjoint paths of length 2 with
high probability. The measure µ(R|T ) = 1− δ1.

3. (Covering with low diameter) Every graph G in R
⋂
T is covered by a graph G′ from

a covering set CR(δ2) such that their edge set differs only in the O(p2) nodes that are
well connected. Therefore, by Corollary 3, KL-divergence between G and G′ is very small
(δ2 = O(λp2 cosh(λ)−c

2/p)).
4. (Efficient covering in Size) Further, the covering set CR is exponentially smaller than T .
5. (Uncovered graphs have exponentially low measure) Then we show that the uncovered

graphs have large KL-divergence
(
O(p2λ)

)
but their measure µ(Rc |T ) is exponentially

small.
6. Using a similar (but more involved) expression for probability of error as in Corollary 2,

roughly we need O( log|T |
δ1+δ2

) samples.

The above technique is very general. Potentially this could be applied to other random graph classes.

7 Summary

In this paper, we have explored new approaches for computing sample complexity lower bounds
for Ising models. By explicitly bringing out the dependence on the weights of the model, we have
shown that unless the weights are restricted, the model may be hard to learn. For example, it is hard
to learn a graph which has many paths between many pairs of vertices, unless λ is controlled. For the
random graph setting, Gp,c/p, while achievability is possible in the c = poly log p case[1], we have
shown lower bounds for c > p0.75. Closing this gap remains a problem for future consideration.
The application of our approaches to other deterministic/random graph classes such as the Chung-
Lu model[4] (a generalization of Erdős-Rényi graphs), or small-world graphs[18] would also be
interesting.
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