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Abstract

Deriving from the gradient vector of a generative model of local features, Fisher
vector coding (FVC) has been identified as an effective coding method for im-
age classification. Most, if not all, FVC implementations employ the Gaussian
mixture model (GMM) to characterize the generation process of local features.
This choice has shown to be sufficient for traditional low dimensional local fea-
tures, e.g., SIFT; and typically, good performance can be achieved with only a few
hundred Gaussian distributions. However, the same number of Gaussians is insuf-
ficient to model the feature space spanned by higher dimensional local features,
which have become popular recently. In order to improve the modeling capacity
for high dimensional features, it turns out to be inefficient and computationally
impractical to simply increase the number of Gaussians.

In this paper, we propose a model in which each local feature is drawn from a
Gaussian distribution whose mean vector is sampled from a subspace. With cer-
tain approximation, this model can be converted to a sparse coding procedure and
the learning/inference problems can be readily solved by standard sparse coding
methods. By calculating the gradient vector of the proposed model, we derive
a new fisher vector encoding strategy, termed Sparse Coding based Fisher Vec-
tor Coding (SCFVC). Moreover, we adopt the recently developed Deep Convo-
lutional Neural Network (CNN) descriptor as a high dimensional local feature
and implement image classification with the proposed SCFVC. Our experimen-
tal evaluations demonstrate that our method not only significantly outperforms
the traditional GMM based Fisher vector encoding but also achieves the state-of-
the-art performance in generic object recognition, indoor scene, and fine-grained
image classification problems.

1 Introduction

Fisher vector coding is a coding method derived from the Fisher kernel [[1] which was originally pro-
posed to compare two samples induced by a generative model. Since its introduction to computer
vision [2], many improvements and variants have been proposed. For example, in [3] the normaliza-
tion of Fisher vectors is identified as an essential step to achieve good performance; in [4] the spatial
information of local features is incorporated; in [5] the model parameters are learned through a end-
to-end supervised training algorithm and in [6] multiple layers of Fisher vector coding modules are
stacked into a deep architecture. With these extensions, Fisher vector coding has been established
as the state-of-the-art image classification approach.

Almost all of these methods share one common component: they all employ Gaussian mixture
model (GMM) as the generative model for local features. This choice has been proved effective in
modeling standard local features such as SIFT, which are often of low dimension. Usually, using a



mixture of a few hundred Gaussians has been sufficient to guarantee good performance. Generally
speaking, the distribution of local features can only be well captured by a Gaussian distribution
within a local region due to the variety of local feature appearances and thus the number of Gaussian
mixtures needed is essentially determined by the volume of the feature space of local features.

Recently, the choice of local features has gone beyond the traditional local patch descriptors such as
SIFT or SUREF [7] and higher dimensional local features such as the activation of a pre-trained deep
neural-network [8] or pooled coding vectors from a local region [9, [10] have demonstrated promis-
ing performance. The higher dimensionality and rich visual content captured by those features make
the volume of their feature space much larger than that of traditional local features. Consequently, a
much larger number of Gaussian mixtures will be needed in order to model the feature space accu-
rately. However, this would lead to the explosion of the resulted image representation dimensionality
and thus is usually computationally impractical.

To alleviate this difficulty, here we propose an alternative solution. We model the generation process
of local features as randomly drawing features from a Gaussian distribution whose mean vector is
randomly drawn from a subspace. With certain approximation, we convert this model to a sparse
coding model and leverage an off-the-shelf solver to solve the learning and inference problems.
With further derivation, this model leads to a new Fisher vector coding algorithm called Sparse
Coding based Fisher Vector Coding (SCFVC). Moreover, we adopt the recently developed Deep
Convolutional Neural Network to generate regional local features and apply the proposed SCFVC
to these local features to build an image classification system.

To demonstrate its effectiveness in encoding the high dimensional local feature, we conduct a series
of experiments on generic object, indoor scene and fine-grained image classification datasets, it is
shown that our method not only significantly outperforms the traditional GMM based Fisher vector
coding in encoding high dimensional local features but also achieves state-of-the-art performance in
these image classification problems.

2 Fisher vector coding

2.1 General formulation

Given two samples generated from a generative model, their similarity can be evaluated by using a
Fisher kernel [1]]. The sample can take any form, including a vector or a vector set, as long as its gen-
eration process can be modeled. For a Fisher vector based image classification approach, the sample
is a set of local features extracted from an image which we denote it as X = {x1,Xa, - ,X7}.
Assuming each x; is modeled by a p.d.f P(x|)\) and is drawn i.i.d, in Fisher kernel a sample X can
be described by the gradient vector over the model parameter \

GX = Valog P(X|\) = > Vi log P(xi|A). (1)

The Fisher kernel is then defined as K (X,Y) = GK\(TF’le\(, where F is the information matrix

and is defined as F = F[G Gf\(T]. In practice, the role of the information matrix is less significant
and is often omitted for computational simplicity [3]. As a result, two samples can be directly
compared by the linear kernel of their corresponding gradient vectors which are often called Fisher
vectors. From a bag-of-features model perspective, the evaluation of the Fisher kernel for two
images can be seen as first calculating the gradient or Fisher vector of each local feature and then
performing sum-pooling. In this sense, the Fisher vector calculation for each local feature can be
seen as a coding method and we call it Fisher vector coding in this paper.

2.2 GMM based Fisher vector coding and its limitation

To implement the Fisher vector coding framework introduced above, one needs to specify the dis-
tribution P(x|A). In the literature, most, if not all, works choose GMM to model the generation
process of x, which can be described as follows:

e Draw a Gaussian model N (uy, X) from the prior distribution P(k), k =1,2,--- ,m .
e Draw a local feature x from N (g, X ).



Generally speaking, the distribution of x resembles a Gaussian distribution only within a local region
of feature space. Thus, for a GMM, each of Gaussian essentially models a small partition of the
feature space and many of them are needed to depict the whole feature space. Consequently, the
number of mixtures needed will be determined by the volume of the feature space. For the commonly
used low dimensional local features, such as SIFT, it has been shown that it is sufficient to set the
number of mixtures to few hundreds. However, for higher dimensional local features this number
may be insufficient. This is because the volume of feature space usually increases quickly with the
feature dimensionality. Consequently, the same number of mixtures will result in a coarser partition
resolution and imprecise modeling.

To increase the partition resolution for higher dimensional feature space, one straightforward so-
lution is to increase the number of Gaussians. However, it turns out that the partition resolution
increases slowly (compared to our method which will be introduced in the next section) with the
number of mixtures. In other words, much larger number of Gaussians will be needed and this will
result in a Fisher vector whose dimensionality is too high to be handled in practice.

3 Our method

3.1 Infinite number of Gaussians mixture

Our solution to this issue is to go beyond a fixed number of Gaussian distributions and use an
infinite number of them. More specifically, we assume that a local feature is drawn from a Gaussian
distribution with a randomly generated mean vector. The mean vector is a point on a subspace
spanned by a set of bases (which can be complete or over-complete) and is indexed by a latent
coding vector u. The detailed generation process is as follows:

e Draw a coding vector u from a zero mean Laplacian distribution P(u) = 55 exp(—%).
e Draw a local feature x from the Gaussian distribution N'(Bu, %),
where the Laplace prior for P(u) ensures the sparsity of resulting Fisher vector which can be helpful

for coding. Essentially, the above process resembles a sparse coding model. To show this relation-
ship, let’s first write the marginal distribution of x:

P(x) = / P(x,u/B)du = / P(x|u,B)P(u)du. (2)
u u
The above formulation involves an integral operator which makes the likelihood evaluation difficult.

To simplify the calculation, we use the point-wise maximum within the integral term to approximate
the likelihood, that is,

P(x) =~ P(x|u*,B)P(u").
u* = argmax P(x|u, B)P(u) (3)
u
By assumming that 3 = diag(o?,--- ,02,) and setting 0? = --- = 02, = 02 as a constant. The

logarithm of P(x) is written as
o1
log(P(x|B)) = min —[x — Bul3 + Al[ulls,
“)

which is exactly the objective value of a sparse coding problem. This relationship suggests that we
can learn the model parameter B and infer the latent variable u by using the off-the-shelf sparse
coding solvers.

One question for the above method is that compared to simply increasing the number of models
in traditional GMM, how much improvement is achieved by increasing the partition resolution. To
answer this question, we designed an experiment to compare these two schemes. In our experiment,
the partition resolution is roughly measured by the average distance (denoted as d ) between a feature
and its closest mean vector in the GMM or the above model. The larger d is, the lower the partition
resolution is. The comparison is shown in Figure(l| In Figure|l|(a), we increase the dimensionality



of local features [[]and for each dimension we calculate d in a GMM model with 100 mixtures. As
seen, d increases quickly with the feature dimensionality. In Figure [I| (b), we try to reduce d by
introducing more mixture distributions in GMM model. However, as can be seen, d drops slowly
with the increase in the number of Gaussians. In contrast, with the proposed method, we can achieve
much lower d by using only 100 bases. This result illustrates the advantage of our method.

—O— GMM

2 ©— GMM with 100 mixtures 23l ™ Proposed model (with 100 bases)
18 L L i L L L L L 225 i i i i i i i i
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Figure 1: Comparison of two ways to increase the partition resolution. (a) For GMM, d (the av-
erage distance between a local feature and its closest mean vector) increases with the local feature
dimensionality. Here the GMM is fixed at 100 Gaussians. (b) d is reduced in two ways (1) simply
increasing the number of Gaussian distributions in the mixture. (2) using the proposed generation
process. As can be seen, the latter achieves much lower d even with a small number of bases.

3.2 Sparse coding based Fisher vector coding

Once the generative model of local features is established, we can readily derive the corresponding
Fisher coding vector by differentiating its log likelihood, that is,
o)  EPGAB) 9k lx — Bu [+ A,
0B 0B
u* = argmax P(x|u, B)P(u). 5)

Note that the differentiation involves u* which implicitly interacts with B. To calculate this term,
we notice that the sparse coding problem can be reformulated as a general quadratic programming
problem by defining u™ and u~ as the positive and negative parts of u, that is, the sparse coding
problem can be rewritten as

min  |x —B(u" —u")|3+ 21T (u" +u")

ut,u—

st.ut >0 u >0 (6)
By further defining u’ = (u*,u™)7, log(P(x|B)) can be expressed in the following general form,

1
v(B) - iu'TP(B)u’, 7
where P(B) and v(B) are a matrix term and a vector term depending on B respectively. The
derivative of £(B) has been studied in [[11]. According to the Lemma 2 in [[11]], we can differentiate
L(B) with respect to B as if u’ did not depend on B. In other words, we can firstly calculate u’ or
9log(P(x|B))
7B

log(P(x|B)) = L(B) = max u’

equivalently u* by solving the sparse coding problem and then obtain the Fisher vector
as

O lx = Bu [ Mw
0B N

I"This is achieved by performing PCA on a 4096-dimensional CNN regional descriptor. For more details
about the feature we used, please refer to Section [3.4]

— Bu")u*”. (8)




Table 1: Comparison of results on Pascal VOC 2007. The lower part of this table lists some results
reported in the literature. We only report the mean average precision over 20 classes. The average
precision for each class is listed in Table

Methods mean average precision Comments

SCFVC (proposed) 76.9% single scale, no augmented data

GMMFVC 73.8% single scale, no augmented data

CNNaug-SVM [8] 77.2% with augmented data, use CNN for whole image
CNN-SVM [8] 73.9% no augmented data.use CNN for whole image
NUS [13] 70.5% -

GHM [l14] 64.7% -

AGS [15] 71.1% -

Note that the Fisher vector expressed in Eq. (§) has an interesting form: it is simply the outer product
between the sparse coding vector u* and the reconstruction residual term (x — Bu*). In traditional
sparse coding, only the kth dimension of a coding vector uy is used to indicate the relationship
between a local feature x and the kth basis. Here in the sparse coding based Fisher vector, the
coding value u; multiplied by the reconstruction residual is used to capture their relationship.

3.3 Pooling and normalization

From the i.i.d assumption in Eq. , the Fisher vector of the whole image isE]
Olog(P(Z|B 0log(P(x;|B -
PEB) _ 5 Dlos(POB) _ 5y T o
x; €T x; €L

This is equivalent to performing the sum-pooling for the extracted Fisher coding vectors. However,
it has been observed [3| [12] that the image signature obtained using sum-pooling tends to over-
emphasize the information from the background [3] or bursting visual words [12]]. It is important to
apply normalization when sum-pooling is used. In this paper, we apply intra-normalization [12] to
normalize the pooled Fisher vectors. More specifically, we apply {2 normalization to the subvectors
> x,ez(Xi — Bui)uy, Vk, where k indicates the kth dimension of the sparse coding u;. Besides

intra-normalization, we also utilize the power normalization as suggested in [3]].

3.4 Deep CNN based regional local features

Recently, the middle-layer activation of a pre-trained deep CNN has been demonstrated to be a
powerful image descriptor [} [16]. In this paper, we employ this descriptor to generate a number
of local features for an image. More specifically, an input image is first resized to 512x512 pixels
and regions with the size of 227x227 pixels are cropped with the stride 8 pixels. These regions
are subsequently feed into the deep CNN and the activation of the sixth layer is extracted as local
features for these regions. In our implementation, we use the Caffe [[17] package which provides a
deep CNN pre-trained on ILSVRC2012 dataset and its 6-th layer is a 4096-dimensional vector. This
strategy has demonstrated better performance than directly using deep CNN features for the whole
image recently [16].

Once regional local features are extracted, we encoded them using the proposed SCFVC method and
generate an image level representation by sum-pooling and normalization. Certainly, our method is
open to the choice of other high-dimensional local features. The reason for choosing deep CNN
features in this paper is that by doing so we can demonstrate state-of-the-art image classification
performance.

4 Experimental results

We conduct experimental evaluation of the proposed sparse coding based Fisher vector coding
(SCFVC) on three large datasets: Pascal VOC 2007, MIT indoor scene-67 and Caltech-UCSD Birds-

f dlog(P(Z|B))
oB

’the vectorized form o is used as the image representation.



Table 2: Comparison of results on Pascal VOC 2007 for each of 20 classes. Besides the proposed
SCFVC and the GMMFVC baseline, the performance obtained by directly using CNN as global
feature is also compared.

aero bike Dbird boat bottle  bus car cat chair cow

SCFVC 895 84.1 83.7 837 43.9 76.7 87.8 825 60.6 69.6
GMMFVC 87.1 80.6 803 79.7 42.8 722 874 761 58.6 64.0
CNN-SVM 885 81.0 835 820 42.0 725 853 8l.6 599 585

table dog horse mbike person plant sheep sofa train TV

SCFVC 72.0 77.1 88.7 82.1 94.4 568 714 67.7 909 75.0
GMMFVC 669 75.1 849 812 93.1 531 708 662 879 713
CNN-SVM  66.5 77.8 81.8 78.8 90.2 548 71.1 62.6 872 718

Table 3: Comparison of results on MIT-67. The lower part of this table lists some results reported
in the literature.

Methods Classification Accuracy Comments

SCFVC (proposed) 68.2% with single scale
GMMFVC 64.3% with single scale
MOP-CNN [[16] 68.9% with three scales

VLAD level2 [16] 65.5% with single best scale
CNN-SVM [8]] 58.4% use CNN for whole image
FV+Bag of parts [19] 63.2% -

DPM [20] 37.6% -

200-2011. These are commonly used evaluation benchmarks for generic object classification, scene
classification and fine-grained image classification respectively. The focus of these experiments is
to examine that whether the proposed SCFVC outperforms the traditional Fisher vector coding in
encoding high dimensional local features.

4.1 Experiment setup

In our experiments, the activations of the sixth layer of a pre-trained deep CNN are used as regional
local features. PCA is applied to further reduce the regional local features from 4096 dimensions to
2000 dimensions. The number of Gaussian distributions and the codebook size for sparse coding is
set to 100 throughout our experiments unless otherwise mentioned.

For the sparse coding, we use the algorithm in [18]] to learn the codebook and perform the coding
vector inference. For all experiments, linear SVM is used as the classifier.

4.2 Main results

Pascal-07 Pascal VOC 2007 contains 9963 images with 20 object categories which form 20 binary
(object vs. non-object) classification tasks. The use of deep CNN features has demonstrated the
state-of-the-art performance [8]] on this dataset. In contrast to [8], here we use the deep CNN fea-
tures as local features to model a set of image regions rather than as a global feature to model the
whole image. The results of the proposed SCFVC and traditional Fisher vector coding, denoted as
GMMFVC, are shown in Table [T]and Table[2] As can be seen from Table I} the proposed SCFVC
leads to superior performance over the traditional GMMFVC and outperforms GMMFVC by 3%.
By cross-referencing Table [2] it is clear that the proposed SCFVC outperforms GMMFVC in all
of 20 categories. Also, we notice that the GMMFVC is merely comparable to the performance of
directly using deep CNN as global features, namely, CNN-SVM in Table[I] Since both the proposed
SCFVC and GMMFVC adopt deep CNN features as local features, this observation suggests that
the advantage of using deep CNN features as local features can only be clearly demonstrated when
the appropriate coding method, i.e. the proposed SCFVC is employed. Note that to further boost the



Table 4: Comparison of results on Birds-200 2011. The lower part of this table lists some results
reported in the literature.

Methods Classification Accuracy Comments

SCFVC (proposed) 66.4% with single scale

GMMFVC 61.7% with single scale

CNNaug-SVM [8] 61.8% with augmented data, use CNN for the whole image
CNN-SVM [8] 53.3% no augmented data, use CNN as global features
DPD+CNN+LogReg [21] 65.0% use part information

DPD [22] 51.0% -
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Figure 2: The performance comparison of classification accuracy vs. local feature dimensionality
for the proposed SCFVC and GMMFVC on MIT-67.

performance, one can adopt some additional approaches like introducing augmented data or com-
bining multiple scales. Some of the methods compared in Table[I]have employed these approaches
and we have commented this fact as so inform readers that whether these methods are directly com-
parable to the proposed SCFVC. We do not pursue these approaches in this paper since the focus of
our experiment is to compare the proposed SCFVC against traditional GMMFVC.

MIT-67 MIT-67 contains 6700 images with 67 indoor scene categories. This dataset is quite chal-
lenging because the differences between some categories are very subtle. The comparison of classi-
fication results are shown in Table[3] Again, we observe that the proposed SCFVC significantly out-
performs traditional GMMFVC. To the best of our knowledge, the best performance on this dataset
is achieved in [16] by concatenating the features extracted from three different scales. The proposed
method achieves the same performance only using a single scale. We also tried to concatenate the
image representation generated from the proposed SCFVC with the global deep CNN feature. The
resulted performance can be as high as 70% which is by far the best performance achieved on this
dataset.

Birds-200-2011 Birds-200-2011 contains 11788 with 200 different birds species, which is a com-
monly used benchmark for fine-grained image classification. The experimental results on this
dataset are shown in Table @] The advantage of SCFVC over GMMFVC is more pronounced on
this dataset: SCFVC outperforms GMMFVC by over 4%. We also notice two interesting obser-
vations: (1) GMMFVC even achieves comparable performance to the method of using the global
deep CNN feature with augmented data, namely, CNNaug-SVM in Table @ (2) Although we do
not use any parts information (of birds), our method outperforms the result using parts information
(DPD+CNN+LogReg in Table ). These two observations suggest that using deep CNN features
as local features is better for fine-grained problems and the proposed method can further boost its
advantage.



Table 5: Comparison of results on MIT-67 with three different settings: (1) 100-basis codebook with
1000 dimensional local features, denoted as SCFV-100-1000D (2) 400 Gaussian mixtures with 300
dimensional local features, denoted as GMMFV-400-300D (3) 1000 Gaussian mixtures with 100
dimensional local features denoted as GMMFV-1000-100D. They have the same/similar total image
representation dimensionality.

SCFV-100-1000D GMMFV-400-300D GMMFV-1000-100D
68.1% 64.0% 60.8%

4.3 Discussion

In the above experiments, the dimensionality of local features is fixed to 2000. But how about the
performance comparison between the proposed SCFV and traditional GMMFV on lower dimen-
sional features? To investigate this issue, we vary the dimensionality of the deep CNN features from
100 to 2000 and compare the performance of the two Fisher vector coding methods on MIT-67. The
results are shown in Figure[2] As can be seen, for lower dimensionality (like 100), the two methods
achieve comparable performance and in general both methods benefit from using higher dimensional
features. However, for traditional GMMFVC, the performance gain obtained from increasing fea-
ture dimensionality is lower than that obtained by the proposed SCFVC. For example, from 100 to
1000 dimensions, the traditional GMMFVC only obtains 4% performance improvement while our
SCFVC achieves 7% performance gain. This validates our argument that the proposed SCFVC is
especially suited for encoding high dimensional local features.

Since GMMFVC works well for lower dimensional features, how about reducing the higher dimen-
sional local features to lower dimensions and use more Gaussian mixtures? Will it be able to achieve
comparable performance to our SCFVC which uses higher dimensional local features but a smaller
number of bases? To investigate this issue, we also evaluate the classification performance on MIT-
67 using 400 Gaussian mixtures with 300-dimension local features and 1000 Gaussian mixtures with
100-dimension local features. Thus the total dimensionality of these two image representations will
be similar to that of our SCFVC which uses 100 bases and 1000-dimension local features. The com-
parison is shown in Table[5] As can be seen, the performance of these two settings are much inferior
to the proposed one. This suggests that some discriminative information may have already been lost
after the PCA dimensionality reduction and the discriminative power can not be re-boosted by sim-
ply introducing more Gaussian distributions. This verifies the necessity of using high dimensional
local features and justifies the value of the proposed method.

In general, the inference step in sparse coding can be slower than the membership assignment in
GMM model. However, the computational efficiency can be greatly improved by using an approx-
imated sparse coding algorithm such as learned FISTA [23] or orthogonal matching pursuit [10].
Also, the proposed method can be easily generalized to several similar coding models, such as local
linear coding [24]]. In that case, the computational efficiency is almost identical (or even faster if
approximated k-nearest neighbor algorithms are used) to the traditional GMMFVC.

5 Conclusion

In this work, we study the use of Fisher vector coding to encode high-dimensional local features.
Our main discovery is that traditional GMM based Fisher vector coding is not particular well suited
to modeling high-dimensional local features. As an alternative, we proposed to use a generation
process which allows the mean vector of a Gaussian distribution to be chosen from a point in a
subspace. This model leads to a new Fisher vector coding method which is based on sparse coding
model. Combining with the activation of the middle layer of a pre-trained CNN as high-dimensional
local features, we build an image classification system and experimentally demonstrate that the
proposed coding method is superior to the traditional GMM in encoding high-dimensional local
features and can achieve state-of-the-art performance in three image classification problems.
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