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In the following supplemental material we provide some additional details and derivations for the
paper. We begin by showing how to calculate the joint distribution of p(β, z), marginalizing out π,
in Section 1. Then, in Section 2 we consider looking at joint log-likelihoods of HDP topic models
and show that the typical set of the distribution is very far from the mode. In Sections 3-4, we give
a more detailed calculation of the Hastings ratios. Finally, in Section 5, we visualize the inferred
topics from the New York Times Articles.

1 Calculating the p(β, z) Distribution

We begin by proving Proposition 5.1 in the paper, reproduced here.

Proposition 1.1. Let z be a set of topic assignments with integer values in {1, . . . ,K}. Let β be a
(K+1)–length vector representing global topic weights, and βK+1 be the sum of weights associated
with empty topics. The prior distribution, p(β, z), marginalizing over π, can be expressed as

p(β, z) =
[
γβγ−1

K+1

∏K

k=1
β−1
k

]
×
[∏D

j=1

Γ(α)
Γ(α+nj··)

∏K

k=1

Γ(αβk+nj·k)
Γ(αβk)

]
. (1)

To calculate the prior distribution, p(β, z), we will rely heavily on the Chinese Restaurant Franchise
(CRF) representation of the HDP given in [1]. Additionally, we change the notation slightly. In [1],
t was used as a particular table index, and tji was used as the particular index assigned to customer
i in restaurant j. This can be confusing, since we often refer to a variable without subscripts as the
set of all variables. Instead, we denote τji as the table assignment for customer i in restaurant j,
and κjt as the dish assignment for table t in restaurant j. The derivation is outlined in the following
steps.

1. Find p(β, κ, τ, z)

2. Find p(κ, τ |β, z)

3. Combine to find p(β, z)

1.1 Deriving the Joint: p(β, κ, τ, z)

Based on the generative process of the CRF, p(κ, τ) can be expressed as

p(τ) =

D∏
j=1

CRP(α, nj··) =

D∏
j=1

Γ(α)αmj·

Γ(α+ nj··)

mj·∏
t=1

Γ(njt·), (2)

p(κ|τ) = CRP(γ,m··) =
Γ(γ)γK

Γ(γ +m··)

K∏
k=1

Γ(m·k), (3)
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where CRP(·) represents a sample from a Chinese Restaurant Process. These expressions can be
combined to form the joint:

p(κ, τ) =

[
Γ(γ)γK

Γ(γ +m··)

K∏
k=1

Γ(m·k)

]
·

 D∏
j=1

Γ(α)αmj·

Γ(α+ nj··)

mj·∏
t=1

Γ(njt·)

 . (4)

We note that z, which directly assigns a customer to a dish, is a deterministic function conditioned
on κ and τ . More precisely, it can be expressed as

p(z|κ, τ) =
D∏
j=1

Nj∏
i=1

1I[zji = κjτji ]. (5)

Additionally, it is well known that p(β|m) is the following Dirichlet distribution
p(β|m) = Dir(β1, . . . , βK , βK+1;m·1, · · · ,m·K , γ). (6)

This can be seen by drawing on the fact that any partitioning of the space in a Dirichlet process
results in a Dirichlet distribution. Since m is a summary statistic of k, we have

p(β|κ, τ, z) = p(β|m) =
Γ(γ +m··)β

γ−1
K+1

Γ(γ)
∏K
k=1 Γ(m·k)

K∏
k=1

βm·k−1
k (7)

Finally, assuming z is consistent with κ and τ (i.e., Equation (5) evaluates to 1 instead of 0), the
entire joint prior of interest can be expressed as

p(β, κ, τ, z)

=

[
Γ(γ)γK

Γ(γ+m··)

K∏
k=1

Γ(m·k)

] D∏
j=1

Γ(α)αmj·

Γ(α+nj··)

mj·∏
t=1

Γ(njt·)

[ Γ(γ+m··)β
γ−1
K+1

Γ(γ)
∏K
k=1 Γ(m·k)

K∏
k=1

βm·k−1
k

]

= γKβγ−1
K+1α

m··

[
K∏
k=1

βm·k−1
k

] D∏
j=1

Γ(α)

Γ(α+ nj··)

mj·∏
t=1

Γ(njt·)

 (8)

1.2 Deriving the Conditional p(κ, τ |β, z)

We now show how to express p(κ, τ |β, z). We note that conditioning on z is equivalent to assign-
ing each customer a particular dish. Thus, we need to calculate the probability of any particular
configuration of tables such that each customer gets the correct dish.

Suppose there are three customers with assignments z11 = 1, z12 = 2, and z13 = 2. While x11

must sit at a different table than x12 and x13 (i.e., τ12 6= τ11 6= τ23), nothing can be said about the
relationship between τ12 and τ13. This results from the fact that two customers can be served the
same dish at different tables.

An equivalent metaphor for the process conditioned on z is that a customer comes into a restaurant
having been assigned dish k. The customer then chooses to sit at an occupied table serving dish k
with probability proportional to the number of customers there, or starts a new table that serves dish
k with probability αβk. This process is equivalent to D × K independent CRPs, each with nj·k
customers and αβk as the concentration parameter. Thus, we can write this easily as

p(κ, τ |β, z) =
D∏
j=1

K∏
k=1

CRP(αβk, nj·k) (9)

=
D∏
j=1

K∏
k=1

(αβk)mjkΓ(αβk)

Γ(αβk + nj·k)

mjk∏
t=1

Γ(njtk) (10)

= αm··

 D∏
j=1

K∏
k=1

β
mjk
k Γ(αβk)

Γ(αβk + nj·k)

 D∏
j=1

mjk∏
t=1

Γ(njt·)

 , (11)
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where we have used the fact that every table only serves one dish to equate the following

K∏
k=1

mjk∏
t=1

Γ(njtk) =

mj·∏
t=1

Γ(njt·). (12)

1.3 Finding the Prior p(β, z)

We now note the following relationship:

p(β, κ, τ, z) = p(β, z)p(κ, τ |β, z). (13)

Finding the expression for p(β, z) is as simple as substituting the previously found expressions.
Assuming consistency between z with κ and τ , we can ignore the p(z|κ, τ) term in Equation (5),
resulting in

p(β, z) =
p(β, κ, τ, z)

p(κ, τ |β, z)
, (14)

=
γKβγ−1

K+1α
m··
[∏K

k=1 β
m·k−1
k

] [∏D
j=1

Γ(α)
Γ(α+nj··)

∏mj·
t=1 Γ(njt·)

]
αm··

[∏D
j=1

∏K
k=1

Γ(αβk)
Γ(αβk+nj·k)β

mjk
k

] [∏D
j=1

∏mj·
t=1 Γ(njt·)

] , (15)

=
γKβγ−1

K+1

[∏K
k=1 β

−1
k

] [∏D
j=1

Γ(α)
Γ(α+nj··)

]
∏D
j=1

∏K
k=1

Γ(αβk)
Γ(αβk+nj·k)

, (16)

= γKβγ−1
K+1

K∏
k=1

β−1
k

 D∏
j=1

Γ(α)

Γ(α+ nj··)

K∏
k=1

Γ(αβk + nj·k)

Γ(αβk)

 . (17)

This concludes the derivation of finding the expression for p(β, z).

1.4 Notes on p(β, z)

We highlight a few notes on the derived expression for p(β, z). At first glance, parts of Equation
(17) may seem a bit odd. For example, the β−1

k term seems like an improper prior, and the term
inside the square brackets just seems like the product of Dirichlet-Multinomial distributions. We
remind the reader that meaning of β in p(β, z) slightly differs from the infinite-length global topic
proportions. In particular, β is defined over the partitions imposed by z. Moreover, because z takes
on exactly K non-empty partitions, βk > 0 ∀k ∈ {1, . . . ,K}, and β−1

k will never result in division
by zero.

The term in the square brackets is very similar to a Dirichlet-Multinomial. A product of D indepen-
dent Dirichlet-Multinomial distributions can be expressed as

D∏
j=1

Dir-Mult(zj ;αβ1, . . . , αβK+1) =
D∏
j=1

Γ(α)

Γ(α+ nj··)

K+1∏
k=1

Γ(αβk + nj·k)

Γ(αβk)
,

where we have used the fact that
∑K
k=1 αβk = α. While this expression looks similar to the one

in Equation (17), the inner product is over K + 1 terms instead of K. Another way of viewing the
difference is that Equation (17) implicitly assumes that nj·(K+1) is zero, since z can only take on
K unique partitions. For this reason, the term inside the square brackets of Equation (17) is not the
product of Dirichlet-Multinomials.

Equation (17) cannot be analytically integrated to validate that it has the correct normaliza-
tion. We know, however, that Equation (11) describing p(κ, τ |β, z) trivially integrates to one
by the construction of the independent CRPs. Because p(κ, τ |β, z) is a valid distribution and
p(β, κ, τ, z)/p(κ, τ |β, z) has no dependence on κ or τ , the derived expression for p(β, z) must
be a valid distribution, conditioned on p(β, κ, τ, z) being the correct joint distribution.
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Figure 1: Joint posterior model log likelihood plotted against number of topics for the Associated
Press dataset.

2 Joint Model Likelihoods

When the desired topic distributions have a lot of overlap, the resulting likelihood of a sample
from the typical set under the posterior is typically much smaller than the mode of the distribution.
To illustrate this observation, we consider the Associated Press dataset of [2]. We initialize an
HDP sample with K initial topics, and do not allow the addition of new topics. The resulting joint
posterior log likelihood for the entire model is shown in Figure 1 Clearly, the joint likelihood is
highest for one giant topic. However, we do not expect a sample from the posterior to only contain
one topic. In other words, this means the configuration with a single topic is not in the typical set of
the posterior, even though it has high likelihood.

For this reason, a deterministic split proposal that has q(z|v̂,v̂)
q(ẑ|v,v) close to unity will almost always

reject the sample, since the model likelihood decreases. This is slightly abnormal since, in general,
proposals for a split will have the ratio, q(z|v̂,v̂)

q(ẑ|v,v) , evaluate to much less than unity due to the fact that
there is only one way to merge two clusters, but many ways to split a cluster into two. As such, the
deterministic split proposals described in [3] do not work well in HDPs, and led us to develop the
other local and global split/merge proposals.

3 Hastings Ratios for Local Proposals

For the proposed local split of topic a, the only variables that are changed are βa and zji for all
points with label a. Thus, the ratio of posteriors for the local split can be expressed as

p(β̂, ẑ, x)

p(β, z, x)
=

γβa

β̂bβ̂c

 D∏
j=1

Γ(αβa)

Γ(αβa + nj·a)

∏
k∈{b,c}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

 p(x|ẑ)
p(x|z)

(18)

Consider the proposal over the main variables β̂ and ẑ. A split move is proposed as follows. Condi-
tioned on β and z, we propose a new β̂ and ẑ with the following:

ẑ ∼ q(ẑ|v, v) (19)

(β̃b, β̃c) ∼ Dir( ˆ̃m·b(ẑ), ˆ̃m·c(ẑ)) (20)

(β̂b, β̂c) = βa · (β̃b, β̃c), (21)

where q(ẑ|v, v) is described in the main paper. We are a little more careful with notation here, and
denote ˆ̃m as the proposed temporary variables. Here, we considering calculating the proposal ratio
for the β’s. We use the reversible jump algorithm [4] to calculate the ratio. The function f maps us
from

[βa, βa`]→ [β̂b, β̂c] (22)
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The Jacobian matrix for the mapping is then

Jβ =

 ∂β̂b∂βa

∂β̂b
∂βa`

∂β̂c
∂βa

∂β̂c
∂βa`

 =

[
βa` βa

(1− βa`) −βa

]
, (23)

which has an absolute value determinant of

|det(Jβ)| =
∣∣βa · βa` − βa(1− βa`)

∣∣ = βa. (24)

The ratio of proposals is then just βa for a split proposal can then be expressed as:

q(β|z, v̂, v̂)

q(β̂|ẑ, v, v)
=

βa

Dir(β̂b/βa, β̂c/βa; m̂·b, m̂·c)
(25)

= βa
Γ( ˆ̃m·b)Γ( ˆ̃m·c)

Γ( ˆ̃m·b + ˆ̃m·c)

(
β̂b
βa

)1− ˆ̃m·b
(
β̂c
βa

)1− ˆ̃m·c

(26)

=
Γ( ˆ̃m·b)Γ( ˆ̃m·c)

Γ( ˆ̃m·b + ˆ̃m·c)

β̂
1− ˆ̃m·b
b β̂

1− ˆ̃m·c
c

β1− ˆ̃m·b− ˆ̃m·c
a

(27)

Combining these expressions results in the following Hastings ratio for a local split

HS =
p(β̂, ẑ, x)

p(β, z, x)

QMK+1

QSK

q(β|z, v̂, v̂)

q(β̂|ẑ, v, v)

1

q(ẑ|v, v)
(28)

=
γβa

β̂bβ̂c

 D∏
j=1

Γ(αβa)

Γ(αβa + nj·a)

∏
k∈{b,c}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

 p(x|ẑ)
p(x|z)

×
QMK+1

QSK

Γ( ˆ̃m·b)Γ( ˆ̃m·c)

Γ( ˆ̃m·b + ˆ̃m·c)

β̂
1− ˆ̃m·b
b β̂

1− ˆ̃m·c
c

β1− ˆ̃m·b− ˆ̃m·c
a

1

q(ẑ|v, v)
(29)

=
γΓ( ˆ̃m·b)Γ( ˆ̃m·c)

Γ( ˆ̃m·b + ˆ̃m·c)

β
ˆ̃m·b− ˆ̃m·c
a

β̂
ˆ̃m·b
b β̂

ˆ̃m·c
c

p(x|ẑ)
p(x|z)

1

q(ẑ|v, v)

QMK+1

QSK

D∏
j=1

Γ(αβa)

Γ(αβa + nj·a)

∏
k∈{b,c}

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
,

(30)

which matches Equation 19 in the main paper. Similarly, it can be shown that the Hastings ratio for
a local merge is

HM =
Γ(m̃·b + m̃·c)

γΓ(m̃·b)Γ(m̃·c)

β
m̃·b
b β

m̃·c
c

β̂m̃·b−m̃·c
a

p(x|z)
p(x|ẑ)

q(ẑ|v, v)
QSK−1

QMK

D∏
j=1

Γ(αβ̂a + nj·a)

Γ(αβ̂a)

∏
k∈{b,c}

Γ(αβk)

Γ(αβk + n̂j·k)
,

(31)

where m̃ is a function of the original z.

4 Hastings Ratios for Global Proposals

For the proposed global split of topic a, all β’s and z’s change. Instead of denoting the empty β with
βK+1, we use the notation βE here. The ratio of posteriors for the global split can be expressed as

p(β̂, ẑ, x)

p(β, z, x)
=

[
β̂E
βE

]γ−1
p(x|ẑ)
p(x|z)

γ
K∏
k=1

βk

K+1∏
k=1

β̂−1
k

D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K+1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

(32)

The proposal ratio for the z’s is
q(z|v̂, v̂)

q(ẑ|v, v)
q(θ̃a|z) (33)
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We follow in the same steps as the previous local proposals by calculating the proposal ratio for the
β’s.

q(β|z)
q(β̂|ẑ)

=
Dir(β1, . . . , βK , βE ; m̃·1, . . . , m̃·K , γ)

Dir(β̂1, . . . , β̂K+1, β̂E ; ˆ̃m·1, . . . , ˆ̃m·(K+1), γ)
(34)

=
Γ(γ + m̃··)

Γ(γ + ˆ̃m··)

(
βE

β̂E

)γ−1 K∏
k=1

βm̃·k−1
k

Γ(m̃·k)

K+1∏
k=1

Γ( ˆ̃m·k)

β̂
ˆ̃m·k−1
k

(35)

Combining these expressions, we arrive at the following Hastings ratio for a global split

HS =
p(β̂, ẑ, x)

p(β, z, x)

QMK+1

QSK

q(β|z, v̂, v̂)

q(β̂|ẑ, v, v)

q(z|v̂, v̂)

q(ẑ|v, v)
q(θ̃a|z)

=

[
β̂E
βE

]γ−1
p(x|ẑ)
p(x|z)

γ
K∏
k=1

βk

K+1∏
k=1

β̂−1
k

D∏
j=1

K∏
k=1

Γ(αβk)

Γ(αβk + nj·k)

K+1∏
k=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)

×
QMK+1

QSK

q(z|v̂, v̂)

q(ẑ|v, v)
q(θ̃a|z)

Γ(γ + m̃··)

Γ(γ + ˆ̃m··)

(
βE

β̂E

)γ−1 K∏
k=1

βm̃·k−1
k

Γ(m̃·k)

K+1∏
k=1

Γ( ˆ̃m·k)

β̂
ˆ̃m·k−1
k

=
γΓ(γ + m̃··)

Γ(γ + ˆ̃m··)

p(x|ẑ)
p(x|z)

q(z|v̂, v̂)

q(ẑ|v, v)

q(θ̃a|x, z)
1

QMK+1

QSK

×
K∏
k=1

βm̃·k
k

Γ(m̃·k)

D∏
j=1

Γ(αβk)

Γ(αβk + nj·k)
×
K+1∏
k=1

Γ( ˆ̃m·k)

β̂
ˆ̃m·k
k

D∏
j=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
, (36)

which matches Equation 24 in the main paper. Similarly, it can be shown that the Hastings ratio for
a global merge is

HM =
Γ (γ + m̃··)

γΓ
(
γ + ˆ̃m··

) p(x|ẑ)
p(x|z)

q(z|v̂, v̂)

q(ẑ|v, v)

1

q(θ̃c|x, ẑ)
QSK−1

QMK
(37)

×
K∏
k=1

β
m̃·k(z)
k

Γ(m̃·k(z))

D∏
j=1

Γ(αβk)

Γ(αβk + nj·k)
×
K−1∏
k=1

Γ( ˆ̃m·k)

β̂
ˆ̃m·k
k

D∏
j=1

Γ(αβ̂k + n̂j·k)

Γ(αβ̂k)
,

5 Topic Visualization

The word clouds at the end of this document summarize the inferred topics for a single sample path
in the dataset of New York Times Articles. The topics are ordered in decreasing values of β, with
highest likely topics appearing first.
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