
Analog Memories in a Balanced Rate-Based
Network of E-I Neurons

— Supplementary Material —

Dylan Festa Guillaume Hennequin Máté Lengyel
df325@cam.ac.uk gjeh2@cam.ac.uk m.lengyel@eng.cam.ac.uk

Computational & Biological Learning Lab, Department of Engineering
University of Cambridge, UK

1 Weight initialization

The initial weights prior to learning are set randomly, but with the requirement that the baseline rate
is already a stable attractor of the system. To achieve this, we first consider the system in terms
of average population activities, i.e. reducing it to 2 dimensions, one representing excitatory (E)
neurons and the other representing inhibitory (I) ones.(

τE 0

0 τI

)
d

dt

(
vE

vI

)
= −

(
vE

vI

)
+

(
W 2D

EE −W 2D
EI

W 2D
IE −W 2D

II

)(
g(vE)

g(vI)

)
+

(
h

h

)
(S1)

We fix the time constants to τE = 20 ms and τI = 10 ms, leaving a total of five free parameters (all
positive). The stationary points of the network solve the equation:(

ṽE

ṽI

)
=

(
W 2D

EE −W 2D
EI

W 2D
IE −W 2D

II

)(
g(ṽE)

g(ṽI)

)
+

(
h

h

)
(S2)

In addition, we have to ensure that this activity level is stable. The necessary and sufficient condition
for this is that the Jacobian calculated in the fixed point has negative eigenvalues. The Jacobian
matrix of the reduced model is:

J|v=ṽ =

(
τE 0
0 τI

)−1 [
−I+W2D

(
g′(ṽE) 0

0 g′(ṽI)

)]
(S3)

The conditions for having only negative eigenvalues in a 2-dimensional J are:
Tr(J|v=ṽ) < 0 and Det(J|v=ṽ) > 0 . (S4)

We picked values for our 6 free parameters in order to satisfy Eq. S2 and Eq. S4 within some margin
for reasonably low values of ṽE and ṽI (many combinations of values would work and promote
successful learning in the full-size system). The specific parameters used for the simulations are:

W2D =

(
2.5 −1.3
2.4 −1

)
h = 7 g(ṽ) =

(
rE,baseline
rI,baseline

)
≈
(

5
6.5

)
(S5)

To build the full-scale N-dimensional weight matrix, we sampled random values from an i.i.d.
gamma distribution with a shape parameter of 2 and a mean that depended on the neural pop-
ulations involved. If neuron i belongs to population α and neuron j belongs to population β
(where α, β ∈ {E , I}) the distribution mean is 〈Wij〉 = Wαβ/nβ . To avoid fluctuations in the
mean incoming weight on a single-cell basis, we further enforced the following normalization:

Wij ← Wij
W 2D
αβ∑

j∈{β}Wij
, ∀i ∈ {α}. Finally, the constant inputs hi in the large system were

all set to h.

Building the network in this way ensures that a baseline state of uniform, low firing rates across the
network is initially stable.

1

2 Recap: system dynamics and the Jacobian

The dynamics of the system is expressed by Eq. 3 of the main text, repeated here for convenience:

d vi
dt

=
1

τi

−vi + n∑
j=1

Wij g(vj) + hi

 (3)

To constrain the signs of the synaptic weight and thus enforce Dale’s law, we reparameterized the
weights as

Wij = (1− δij) sj log(1 + expβij) with sj =

{
+1 if j ≤ nE
−1 if otherwise

(2)

where the (1− δij) term prevents the existence of autapses. The single-neuron I/O gain function is
threshold-quadratic:

g(vi) = γ bvic2+ , with bxc+ =

{
x if x > 0

0 otherwise
(1)

The (i, j)th element of the Jacobian matrix J is:

Jij :=
∂

∂vj

{
dv

dt

}
i

=
1

τi
(−δij +Wij g

′(vj)) (S6)

3 Computation of the smoothed spectral abscissa (SSA) and its gradient

In this section we summarize the procedure employed to compute the SSA of the Jacobian, and its
gradient with respect to each matrix element. For a more thorough description, see the original paper
introducing the SSA [1]; for a more specific application to neuroscience and interpretation in terms
of network dynamics, see [2].

Given a square matrix J, our goal is to compute its SSA, denoted by α̃ε(J). For this purpose, a
function f : (Rn×n,R)→ R is defined as follows:

f(J, s) = Tr(Ps) (S7)

where Ps satisfies the following Lyapunov equation:

(J− sI)Ps +Ps(J− sI)T = −I (S8)

In Matlab, such equations can be solved using the lyap function, which uses the standard Bartels-
Stewart algorithm [3]. It is also convenient to define a second matrix Qs as the solution to the
Lyapunov equation dual to the previous one:

(J− sI)TQs +Qs(J− sI) = −I (S9)

The SSA, also denoted by α̃ε(J), corresponds to the scalar s that solves f(J, s) = 1/ε for some
ε > 0. There are no closed-form solutions, but the smoothness of f(J, s) makes it possible to use
standard root-finding methods, requiring the gradient w.r.t. s:

∂f(J, s)

∂s
= −2 Tr(QsPs) (S10)

Here, we used the standard Newton method to find the root of g(s) = f(J, s) − 1/ε, yielding the
SSA. Finally, once the value of α̃ε(J) is known, its gradient w.r.t. J can be computed as follows:

∂α̃ε(J)

∂J
=

Qα̃εPα̃ε
Tr(Qα̃εPα̃ε)

(S11)

Complexity The main computational bottleneck in computing the SSA and its gradient is solv-
ing the Lypunov equations, which is O(n3). It is worth noting that substantial acceleration can be
achieved by computing the Schur decomposition of J before starting iterating through the Newton al-
gorithm. Indeed, the Schur decomposition is the most expensive (O(n3)) part of the Bartels-Stewart
algorithm, and once it is computed, solving the Lyapunov equation takes only O(n2) operations.
Moreover, the upper-triangular Schur factor is common to all shifted versions J − sI, so it only
needs to be computed once.

2

4 The gradient of the cost function

The cost function is defined in Eq. 5 in the main text; we repeat it here for conveninence:

ψ ({βij}, {vµ}) =
m∑
µ=1

(
1

n
‖v̇‖2v=vµ + ηs α̃ε (J

µ)

)
+
ηF
n2
‖W‖2F (5)

where v̇ ≡ dv/dt.

We show here how to compute the gradient of Eq. 5 with respect to the parameters we are optimising
over. These parameters consist of the weight parameters βij and the activity vµi of each auxiliary
neuron i > nE in each attractor µ. In our simulations, we used nE = 100, nI = 50 and 30 memories,
yielding a total number of free parameters of 1502 + 30 · 50 = 24000.

We now proceed to compute the derivatives of each of the terms in ψ.

4.1 Fist term: velocity ‖v̇‖2

To simplify the notations, we consider a single attractor, and thus drop the ·µ superscript. We start
with the derivatives with respect to the weight parameters. Note that Wij depends only on βij , so
the application of the chain rule is straightforward:

∂‖v̇‖2

∂β`p
=
∂‖v̇‖2

∂W`p

∂W`p

∂β`p
= 2

∂W`p

∂β`p

∑
i

v̇i
∂v̇i
∂W`p

(S12)

The first partial derivative is solved starting from Eq. 2:

∂W`p

∂β`p
= sp

1

1 + exp(−β`p)
= sp(1− exp(−|W`p|)) (S13)

The second partial derivative is solved using Eq. 3:

∑
i

v̇i
∂v̇i
∂W`p

=
∑
i

v̇i
τi

∑
j

δi` δjp g(vj)


=
v̇`
τ`
g(vp) (S14)

Due to the absence of autapses, the value of Eq. S14 should be null for ` = p. We can safely ignore
this condition as the value of Eq. S13 is zero for null weights, so that the product in Eq. S12 is also
zero.

The derivative with respect to the activity of each auxiliary neuron ` (again dropping the ·µ super-
script for convenience) is the following:

∂‖v̇‖2

∂v`
= 2

∑
i

v̇i
∂v̇i
∂v`

= 2
∑
i

v̇i
τi

−δi` +∑
j

Wij δj` g
′(v`)


= 2

∑
i

v̇i
τi

(−δi` +Wi` g
′(v`)) (S15)

4.2 Second term: SSA of the Jacobian

The Jacobian matrix is given by Eq. S6. Section 3 illustrates how the SSA and all the partial deriva-
tives are computed. Our free parameters, however, are not the Jij terms: calculating the gradient

3

with respect to weight and rate parameters requires the use of the chain rule. Once again, for sim-
plicity, we consider a single attractor, and we start from the derivative with respect to the weight
parameters:

∂α̃ε (J)

∂β`p
=
∑
ij

∂α̃ε (J)

∂Jij

∂Jij
∂W`p

∂W`p

∂β`p
(S16)

The fist term is given by Eq. S11, the third term has already been computed in Eq. S13, so only the
middle term needs to be computed. Using Eq. S6:

∂Jij
∂W`p

=
1

τi
δi` δjp g

′(vj) (S17)

For the no-autapses condition, this value should be zero for l = m, but once again this condition is
covered by the third term of Eq. S16. By virtue of the delta-functions, the sum in Eq S16 simplifies
as follows:

∂α̃ε (J)

∂β`p
=

1

τ`
g′(vp)

∂α̃ε (J)

∂J`p

∂W`p

∂β`p
(S18)

The derivative w.r.t. the activity of each auxiliary neuron ` > nE is as follows:

∂α̃ε (J)

∂v`
=
∑
ij

∂α̃ε (J)

∂Jij

∂Jij
∂v`

; using Eq. S6
∂Jij
∂v`

=
1

τi
Wij δj` g

′′(v`) (S19)

This leads to:
∂α̃ε (J)

∂u`
=
∑
i

1

τi
Wi` g

′′(v`)
∂α̃ε (J)

∂Ji`
(S20)

4.3 Third term: weight penalty

The only term left in Eq. 5 is the penalty on large weights, expressed as the squared Frobenius norm
of the W matrix.

‖W‖2F :=
∑
ij

W 2
ij (S21)

The only non-zero derivatives are, of course, those with respect to the weight parameters:

∂‖W‖2F
∂β`p

= 2W`p
∂W`p

∂β`p
(S22)

4.4 Complete gradients

We can now write the partial derivatives of the total cost function, Eq. 5. The derivative with respect
to the weight parameters is given by Eq. S12 to S14, Eq. S18 and Eq. S22

∂

∂β`p
ψ ({βij}, {vµ}) =

= 2 sp(1− exp(−|W`p|))

[
1

m τ`

m∑
µ=1

(
v̇µ`
n
g
(
vµp
)
+ ηs

∂α̃ε (J)

∂J`p
g′
(
vµp
))

+
ηF W`p

n2

] (S23)

The derivative with respect to the rate of an auxiliary neuron for a specific attractor is given by
Eqs. S15 and S20:

∂

∂vµ`
ψ ({βij}, {vµ}) =

=
2

m

∑
i

1

τi

(
v̇i
n

(−δi` +Wi` g
′(vµ`)) + ηs Wi` g

′′(vµ`)
∂α̃ε (J)

∂Ji`

) (S24)

4

References
[1] J. Vanbiervliet, B. Vandereycken, W. Michiels, S. Vandewalle, and M. Diehl, “The smoothed spectral

abscissa for robust stability optimization,” SIAM Journal on Optimization, vol. 20, no. 1, pp. 156–171,
2009.

[2] G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of transient dynamics in balanced networks
supports generation of complex movements,” Neuron, vol. 82, no. 6, pp. 1394–1406, 2014.

[3] R. H. Bartels and G. W. Stewart, “Solution of the matrix equation AX+XB=C,” Communications of the
ACM, vol. 15, pp. 820–826, 1972.

5

	Weight initialization
	Recap: system dynamics and the Jacobian
	Computation of the smoothed spectral abscissa (SSA) and its gradient
	The gradient of the cost function
	Fist term: velocity "026B30D "026B30D 2
	Second term: SSA of the Jacobian
	Third term: weight penalty
	Complete gradients

