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1 Introduction

This short note supplements the paper “Learning to Prune in Metric and Non-Metric Spaces” [3]. We
aim to provide a theoretical justification for applicability of our approach (the VP-tree with a learned
pruner) to a class of non-metric spaces, which includes the KL-divergence and the Itakura-Saito dis-
tance. In addition, we describe a simple algorithm to learn the decision function through sampling.

2 Applicability Conditions

Theorem 1. For any pivot π, probability α, and distance x 6= R, there exists a radius r > 0
such that, if two randomly selected points q (a potential query) and u (a potential nearest neighbor)
satisfy d(π, q) = x and d(u, q) ≤ r, then both p and q belong to the same partition (defined by π
and R) with a probability at least α.

Theorem 1, which is true for all metric spaces, holds in the case of KL-divergence and data points u
sampled randomly and uniformly from the simplex {xi|xi ≥ 0,

∑
xi = 1}.

Note 1. This theorem is trivially extended to many other non-negative distance functions d(x, y)
that satisfy:

• d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y;

• d(x, y) is continuous except for a set of measure zero;

In particular, the theorem holds for the Itakura-Saito distance. Note, though, that these conditions
are not sufficient, because one may need to make additional compactness requirements. For the
example, the proof for the KL-divergence relies on the fact that the distance is defined on the compact
Euclidean subset.

Proof. It is easy to show that for any α there exists ε > 0 such that all coordinates of the randomly
selected vector are ≥ ε with a probability at least α. Further, we consider the compact set of vectors
(it is compact with respect to L2):

S(ε) = {y|1 ≥ yi ≥ ε,
∑

yi = 1}

The KL-divergence is defined as:

KL(x, y) =
∑
i

xi log
xi
yi
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For any y ∈ S(ε), yi ≥ ε. Thus, KL(x, y) is a continuous function of both arguments on S × S.
Points outside S are encountered with probability 1 − α, which can be made arbitrarily small by
selecting a sufficiently small ε.

For the sake of contradiction, we assume that, no matter how small is the query radius, there is a
query ball with the center in S at distance r from the pivot. In addition, there are points inside query
balls that belong to both partitions as well as to S. This can be seen as an adversarial game, where
we select progressively decreasing radii rn → 0. For each rn our adversary finds the query ball with
the center qn ∈ S and the radius ≤ rn such that (1) KL(π, qn) = x and (2) the query ball intersects
both space partitions and S. To demonstrate the latter, our adversary provides us with points u+n and
u− that lie inside the query ball and belong to different space partitions. Note that qn, u+n , and u−
should all belong to S.

Formally, there exists a sequence of radii rn → 0, the sequence of query ball centers qn, and
sequences of points u+n , u−n such that:

KL(π, qn) = x,

KL(u+n , qn) ≤ rn and KL(u−n , qn) ≤ rn,

but
KL(π, u−n ) < R and KL(π, u+n ) > R. (1)

The sequence (qn, u
+
n , u

−
n ) is defined on a Cartesian product S × S × S, which is compact due to

Tychonoff’s theorem. Because the Cartesian product is compact, we can assume that (qn, u−n , u
+
n )

is a converging sequence and sequences qn, u−n , u+
n converge as well: 1:

(qn, u
−
n , u

+
n )→ (q, u−, u+) (2)

From Eq. 1-2 and continuity of the function KL(x, y) on S × S, we obtain:

KL(q, u+) = KL(q, u−) = 0, (3)

KL(π, u+) ≥ R, KL(π, u−) ≤ R. (4)

From properties of the KL-divergence and Eq. 2, it follows that u+ = q = u−. By applying
u+ = q = u− to Eq. 4, we get that R ≤ KL(π, q) ≤ R and, thus, that:

KL(π, q) = R. (5)

Again, from continuity of KL(x, y), KL(π, qn) = x and qn → q, we obtain that KL(π, q) = x.
Because x 6= R this conclusion contradicts to Eq. 5.

We obtained a contradiction, which demonstrates that (almost) all sufficiently small query balls at
distance r 6= R from the pivot lie (for the most part) in either the left or the right partition. The
exceptions are query balls centered outside S, or query ball parts that don’t belong to S. Yet, as
noted previously, it is possible to select S such that a probability of drawing a point from S will be
arbitrarily close to 1. This observation finishes the proof of the theorem.

3 Estimating Decision Function Dπ,R(x) Through Sampling

It is possible to estimate Dπ,R(x) (defined in Section 2.2 of [3]) through sampling. Note that the
resulting search method would not be exact. A straightforward sampling method involves random
and independent selection of points qi and ui from the data set. Two cases are possible depending on
whether qi and ui belong to the same partition. Consider the case when qi and ui belong to different
partitions. This represents the gray ball from Fig. 1. Thus, we learn that there may exist multiple
pairs of points (different from qi) within the distance r = d(ui, qi) from qi situated in different
partitions. Thus, we can be absolutely sure that Dπ,R(d(π, qi)) ≤ d(ui, qi).

1 If a space X is compact any sequence contains a converging subsequence with the limit in X .
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Figure 1: Three types of query balls in the
VP-tree. The black circle (centered at the
pivot π) is the sphere that divides the space.

In the case when ui is in the same parti-
tions as qi, we cannot, however, infer that
Dπ,R(d(π, qi)) > d(ui, qi). Indeed, there could
exist a nearest-neighbor uj , not encountered by
the sampling procedure, belonging to a different
space partition than qi, but, nevertheless, satisfying:
d(uj , qj) ≤ d(ui, qi). If we use qi as a query and set
Dπ,R(d(π, qi)) to be larger than d(ui, qi), the parti-
tion containing uj will be pruned and, consequently,
uj will not be found.

By repeating the sampling procedure multiple times
and smoothing results (e.g., by fitting a curve or learning a regression model), we can obtain an
estimate for the upper bound of Dπ,R(x). There are several problems with this approach. First,
due to the concentration of measure, d(π, qi) is close to R for most sampled points. Thus, Dπ,R(x)
will be properly estimated only for values x ≈ R. Second, it does not allow us to trade search
effectiveness for efficiency.

The underlying principle of an improved sampling method is to divide the xy-plane, which repre-
sents the plot of the functionDπ,R(x), into cells. This improved sampling method works as follows:

• We compile the distribution of distances d(π, qi) (using all data points) and divide it into
50-500 quantiles. These “horizontal” quantiles represent the division of the xy-plane into
vertical bars. Then, several pseudo-queries qi are randomly picked from each horizontal
quantile.

• For each pseudo-query qi, K ≈ 100 pseudo near-neighbors are randomly selected from the
data set. We also implemented an approach where K true near-neighbors are obtained by
exhaustively searching the data set (an idea proposed by Athitsos et al. [2]). This method
is computationally expensive, but it did not result in substantial improvements.

• Now each vertical bar contains a number of pseudo near neighbors. We compute the bar-
specific distributions of distances from qi to these points and divide each of the distributions
into 100-1000 “vertical” quantiles. This step finalizes a division of the xy-plane into rect-
angular cells.

To estimate Dπ,R(x), we find the vertical bar containing the point (x, 0). Then, we start scanning
the cells belonging to this bar in the bottom-up fashion. The algorithm keeps two counters. The first
counter Nall is a total number of of pseudo near neighbors contained in the visited cells. The sec-
ond counter Ndiff is the number neighbors that belong to a different partition than their respective
pseudo queries (i.e., the number of situations when we have the gray pseudo query ball, see Fig. 1.).
We stop when Ndiff becomes larger than γNall for some threshold value γ. A y-coordinate corre-
sponding to the last visited cell is used as an estimate for Dπ,R(x): One can use the minimum, the
maximum, or any intermediate y-coordinate of points inside the last visited cell. The threshold γ
is selected empirically. In that, highest recall values (and slowest speeds) are obtained for γ = 0.
Unlike previous efforts, see e.g. [1], our sampling algorithm estimates Dπ,R(x) for every pivot
π (rather than one global distribution) and, thus, it may better adapt to specifics of data partitions
induced by pivots.
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