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Abstract

For data assumed to come from a finite mixture with an unknown number of com-
ponents, it has become common to use Dirichlet process mixtures (DPMs) not
only for density estimation, but also for inferences about the number of compo-
nents. The typical approach is to use the posterior distribution on the number of
clusters — that is, the posterior on the number of components represented in the
observed data. However, it turns out that this posterior is not consistent — it does
not concentrate at the true number of components. In this note, we give an elemen-
tary proof of this inconsistency in what is perhaps the simplest possible setting: a
DPM with normal components of unit variance, applied to data from a “mixture”
with one standard normal component. Further, we show that this example exhibits
severe inconsistency: instead of going to 1, the posterior probability that there is
one cluster converges (in probability) to 0.

1 Introduction

It is well-known that Dirichlet process mixtures (DPMs) of normals are consistent for the density —
that is, given data from a sufficiently regular density p0 the posterior converges to the point mass at
p0 (see [1] for details and references). However, it is easy to see that this does not necessarily imply
consistency for the number of components, since for example, a good estimate of the density might
include superfluous components having vanishingly small weight.

Despite the fact that a DPM has infinitely many components with probability 1, it has become
common to apply DPMs to data assumed to come from finitely many components or “populations”,
and to apply the posterior on the number of clusters (in other words, the number of components used
in the process of generating the observed data) for inferences about the true number of components;
see [2, 3, 4, 5, 6] for a few prominent examples. Of course, if the data-generating process very
closely resembles the DPM model, then it is fine to use this posterior for inferences about the number
of clusters (but beware of misspecification; see Section 2). However, in the examples cited, the
authors evaluated the performance of their methods on data simulated from a fixed finite number of
components or populations, suggesting that they found this to be more realistic than a DPM for their
applications.

Therefore, it is important to understand the behavior of this posterior when the data comes from a
finite mixture — in particular, does it concentrate at the true number of components? In this note,
we give a simple example in which a DPM is applied to data from a finite mixture and the posterior
distribution on the number of clusters does not concentrate at the true number of components. In
fact, DPMs exhibit this type of inconsistency under very general conditions [7] — however, the aim
of this note is brevity and clarity. To that end, we focus our attention on a special case that is as
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Figure 1: Prior (red x) and estimated posterior (blue o) of the number of clusters in the observed
data, for a univariate normal DPM on n i.i.d. samples from (a)N (0, 1), and (b)

∑2
k=−2

1
5N (4k, 12 ).

The DPM had concentration parameter α = 1 and a Normal–Gamma base measure on the mean and
precision: N (µ | 0, 1/cλ)Gamma(λ | a, b) with a = 1, b = 0.1, and c = 0.001. Estimates were
made using a collapsed Gibbs sampler, with 104 burn-in sweeps and 105 sample sweeps; traceplots
and running averages were used as convergence diagnostics. Each plot shown is an average over 5
independent runs.

simple as possible: a “standard normal DPM”, that is, a DPM using univariate normal components
of unit variance, with a standard normal base measure (prior on component means).

The rest of the paper is organized as follows. In Section 2, we address several pertinent questions
and consider some suggestive experimental evidence. In Section 3, we formally define the DPM
model under consideration. In Section 4, we give an elementary proof of inconsistency in the case
of a standard normal DPM on data from one component, and in Section 5, we show that on standard
normal data, a standard normal DPM is in fact severely inconsistent.

2 Discussion

It should be emphasized that these results do not diminish, in any way, the utility of Dirichlet process
mixtures as a flexible prior on densities, i.e., for Bayesian density estimation. In addition to their
widespread success in empirical studies, DPMs are backed by theoretical guarantees showing that
in many cases the posterior on the density concentrates at the true density at the minimax-optimal
rate, up to a logarithmic factor (see [1] and references therein).

Many researchers (e.g. [8, 9], among others) have empirically observed that the DPM posterior on
the number of clusters tends to overestimate the number of components, in the sense that it tends to
put its mass on a range of values greater or equal to the true number. Figure 1 illustrates this effect for
univariate normals, and similar experiments with different families of component distributions yield
similar results. Thus, while our theoretical results in Sections 4 and 5 (and in [7]) are asymptotic in
nature, experimental evidence suggests that the issue is present even in small samples.

It is natural to think that this overestimation is due to the fact that the prior on the number of clusters
diverges as n → ∞, at a log n rate. However, this does not seem to be the main issue — rather,
the problem is that DPMs strongly prefer having some tiny clusters and will introduce extra clusters
even when they are not needed (see [7] for an intuitive explanation of why this is the case).
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In fact, many researchers have observed the presence of tiny extra clusters (e.g. [8, 9]), but the reason
for this has not previously been well understood, often being incorrectly attributed to the difficulty of
detecting components with small weight. These tiny extra clusters are rather inconvenient, especially
in clustering applications, and are often dealt with in an ad hoc way by simply removing them. It
might be possible to consistently estimate the number of components in this way, but this remains
an open question.

A more natural solution is the following: if the number of components is unknown, put a prior on
the number of components. For example, draw the number of components s from a probability
mass function p(s) on {1, 2, . . . } with p(s) > 0 for all s, draw mixing weights π = (π1, . . . , πs)
(given s), draw component parameters θ1, . . . , θs i.i.d. (given s and π) from an appropriate prior,
and drawX1, X2, . . . i.i.d. (given s, π, and θ1:s) from the resulting mixture. This approach has been
widely used [10, 11, 12, 13]. Under certain conditions, the posterior on the density has been shown
to concentrate at the true density at the minimax-optimal rate, up to a logarithmic factor, for any
sufficiently regular true density [14]. Strictly speaking, as defined, such a model is not identifiable,
but it is fairly straightforward to modify it to be identifiable by choosing one representative from
each equivalence class. Subject to a modification of this sort, it can be shown (see [10]) that under
very general conditions, when the data is from a finite mixture of the chosen family, such models are
(a.e.) consistent for the number of components, the mixing weights, the component parameters, and
the density. Also see [15] for an interesting discussion about estimating the number of components.

However, as a practical matter, when dealing with real-world data, one would not expect to find data
coming exactly from a finite mixture of a known family (except, perhaps, in rare circumstances).
Unfortunately, even for a model as in the preceding paragraph, the posterior on the number of com-
ponents will typically be highly sensitive to misspecification, and it seems likely that in order to
obtain robust estimators, the problem itself may need to be reformulated. We urge researchers inter-
ested in the number of components to be wary of this robustness issue, and to think carefully about
whether they really need to estimate the number of components, or whether some other measure of
heterogeneity will suffice.

3 Setup

In this section, we define the Dirichlet process mixture model under consideration.

3.1 Dirichlet process mixture model

The DPM model was introduced by Ferguson [16] and Lo [17] for the purpose of Bayesian den-
sity estimation, and was made practical through the efforts of several authors (see [18] and ref-
erences therein). We will use p(·) to denote probabilities under the DPM model (as opposed to
other probability distributions that will be considered in what follows). The core of the DPM is the
so-called Chinese restaurant process (CRP), which defines a certain probability distribution on par-
titions. Given n ∈ {1, 2, . . . } and t ∈ {1, . . . , n}, let At(n) denote the set of all ordered partitions
(A1, . . . , At) of {1, . . . , n} into t nonempty sets. In other words,

At(n) =
{

(A1, . . . , At) : A1, . . . , At are disjoint,
t⋃
i=1

Ai = {1, . . . , n}, |Ai| ≥ 1 ∀i
}
.

The CRP with concentration parameter α > 0 defines a probability mass function on A(n) =⋃n
t=1At(n) by setting

p(A) =
αt

α(n) t!

t∏
i=1

(|Ai| − 1)!

for A ∈ At(n), where α(n) = α(α + 1) · · · (α + n − 1). Note that since t is a function of A,
we have p(A) = p(A, t). (It is more common to see this distribution defined in terms of unordered
partitions {A1, . . . , At}, in which case the t! does not appear in the denominator — however, for our
purposes it is more convenient to use the distribution on ordered partitions (A1, . . . , At) obtained
by uniformly permuting the parts. This does not affect the prior or posterior on t.)
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Consider the hierarchical model

p(A, t) = p(A) =
αt

α(n) t!

t∏
i=1

(|Ai| − 1)!, (3.1)

p(θ1:t | A, t) =

t∏
i=1

π(θi), and

p(x1:n | θ1:t, A, t) =

t∏
i=1

∏
j∈Ai

pθi(xj),

where π(θ) is a prior on component parameters θ ∈ Θ, and {pθ : θ ∈ Θ} is a parametrized family
of distributions on x ∈ X for the components. Typically, X ⊂ Rd and Θ ⊂ Rk for some d and k.
Here, x1:n = (x1, . . . , xn) with xi ∈ X , and θ1:t = (θ1, . . . , θt) with θi ∈ Θ. This hierarchical
model is referred to as a Dirichlet process mixture (DPM) model.

The prior on the number of clusters t under this model is pn(t) =
∑
A∈At(n)

p(A, t). We use Tn
(rather than T ) to denote the random variable representing the number of clusters, as a reminder
that its distribution depends on n. Note that we distinguish between the terms “component” and
“cluster”: a component is part of a mixture distribution (e.g. a mixture

∑∞
i=1 πipθi has components

pθ1 , pθ2 , . . . ), while a cluster is the set of indices of data points coming from a given component
(e.g. in the DPM model above, A1, . . . , At are the clusters).

Since we are concerned with the posterior distribution p(Tn = t | x1:n) on the number of clusters,
we will be especially interested in the marginal distribution on (x1:n, t), given by

p(x1:n, Tn = t) =
∑

A∈At(n)

∫
p(x1:n, θ1:t, A, t) dθ1:t

=
∑

A∈At(n)

p(A)

t∏
i=1

∫ ( ∏
j∈Ai

pθi(xj)
)
π(θi) dθi

=
∑

A∈At(n)

p(A)

t∏
i=1

m(xAi
) (3.2)

where for any subset of indices S ⊂ {1, . . . , n}, we denote xS = (xj : j ∈ S) and let m(xS)
denote the single-cluster marginal of xS ,

m(xS) =

∫ (∏
j∈S

pθ(xj)
)
π(θ) dθ. (3.3)

3.2 Specialization to the standard normal case

In this note, for brevity and clarity, we focus on the univariate normal case with unit variance, with
a standard normal prior on means — that is, for x ∈ R and θ ∈ R,

pθ(x) = N (x | θ, 1) =
1√
2π

exp(− 1
2 (x− θ)2), and

π(θ) = N (θ | 0, 1) =
1√
2π

exp(− 1
2θ

2).

It is a straightforward calculation to show that the single-cluster marginal is then

m(x1:n) =
1√
n+ 1

p0(x1:n) exp
(1

2

1

n+ 1

( n∑
j=1

xj

)2)
, (3.4)

where p0(x1:n) = p0(x1) · · · p0(xn) (and p0 is the N (0, 1) density). When pθ(x) and π(θ) are as
above, we refer to the resulting DPM as a standard normal DPM.
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4 Simple example of inconsistency

In this section, we prove the following result, exhibiting a simple example in which a DPM is
inconsistent for the number of components: even when the true number of components is 1 (e.g.
N (µ, 1) data), the posterior probability of Tn = 1 does not converge to 1. Interestingly, the result
applies even when X1, X2, . . . are identically equal to a constant c ∈ R. To keep it simple, we set
α = 1; for more general results, see [7].
Theorem 4.1. If X1, X2, . . . ∈ R are i.i.d. from any distribution with E|Xi| < ∞, then with
probability 1, under the standard normal DPM with α = 1 as defined above, p(Tn = 1 | X1:n) does
not converge to 1 as n→∞.

Proof. Let n ∈ {2, 3, . . . }. Let x1, . . . , xn ∈ R, A ∈ A2(n), and ai = |Ai| for i = 1, 2.
Define sn =

∑n
j=1 xj and sAi

=
∑
j∈Ai

xj for i = 1, 2. Using Equation 3.4 and noting that
1/(n+ 1) ≤ 1/(n+ 2) + 1/n2, we have

√
n+ 1

m(x1:n)

p0(x1:n)
= exp

(1

2

s2n
n+ 1

)
≤ exp

(1

2

s2n
n+ 2

)
exp

(1

2

s2n
n2

)
.

The second factor equals exp( 1
2x

2
n), where xn = 1

n

∑n
j=1 xj . By the convexity of x 7→ x2,( sn

n+ 2

)2
≤ a1 + 1

n+ 2

( sA1

a1 + 1

)2
+
a2 + 1

n+ 2

( sA2

a2 + 1

)2
,

and thus, the first factor is less or equal to

exp
(1

2

s2A1

a1 + 1
+

1

2

s2A2

a2 + 1

)
=
√
a1 + 1

√
a2 + 1

m(xA1)m(xA2)

p0(x1:n)
.

Hence,

m(x1:n)

m(xA1)m(xA2)
≤
√
a1 + 1

√
a2 + 1√

n+ 1
exp( 1

2x
2
n). (4.1)

Consequently, we have

p(x1:n, Tn = 2)

p(x1:n, Tn = 1)

(a)
=

∑
A∈A2(n)

n p(A)
m(xA1)m(xA2)

m(x1:n)

(b)
≥

∑
A∈A2(n)

n p(A)

√
n+ 1√

|A1|+ 1
√
|A2|+ 1

exp(− 1
2x

2
n)

(c)
≥

∑
A∈A2(n):
|A1|=1

n
(n− 2)!

n! 2!

√
n+ 1√
2
√
n

exp(− 1
2x

2
n)

(d)
≥ 1

2
√

2
exp(− 1

2x
2
n),

where step (a) follows from applying Equation 3.2 to both numerator and denominator, plus using
Equation 3.1 (with α = 1) to see that p(A) = 1/n when A = ({1, . . . , n}), step (b) follows from
Equation 4.1 above, step (c) follows since all the terms in the sum are nonnegative and p(A) =
(n− 2)!/n! 2! when |A1| = 1 (by Equation 3.1, with α = 1), and step (d) follows since there are n
partitions A ∈ A2(n) such that |A1| = 1.

If X1, X2, . . . ∈ R are i.i.d. with µ = EXj finite, then by the law of large numbers, Xn =
1
n

∑n
j=1Xj → µ almost surely as n→∞. Therefore,

p(Tn = 1 | X1:n) =
p(X1:n, Tn = 1)∑∞
t=1 p(X1:n, Tn = t)

≤ p(X1:n, Tn = 1)

p(X1:n, Tn = 1) + p(X1:n, Tn = 2)

≤ 1

1 + 1
2
√
2

exp(− 1
2X

2

n)

a.s.−−→ 1

1 + 1
2
√
2

exp(− 1
2µ

2)
< 1.

Hence, almost surely, p(Tn = 1 | X1:n) does not converge to 1.
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5 Severe inconsistency

In the previous section, we showed that p(Tn = 1 | X1:n) does not converge to 1 for a standard
normal DPM on any data with finite mean. In this section, we prove that in fact, it converges to 0, at
least on standard normal data. This vividly illustrates that improperly using DPMs in this way can
lead to entirely misleading results. The key step in the proof is an application of Hoeffding’s strong
law of large numbers for U-statistics.

Theorem 5.1. If X1, X2, . . . ∼ N (0, 1) i.i.d. then

p(Tn = 1 | X1:n)
Pr−→ 0 as n→∞

under the standard normal DPM with concentration parameter α = 1.

Proof. For t = 1 and t = 2 define

Rt(X1:n) = n3/2
p(X1:n, Tn = t)

p0(X1:n)
.

Our method of proof is as follows. We will show that

R2(X1:n)
Pr−−−−→

n→∞
∞

(or in other words, for any B > 0 we have P(R2(X1:n) > B) → 1 as n → ∞), and we will show
that R1(X1:n) is bounded in probability:

R1(X1:n) = OP (1)

(or in other words, for any ε > 0 there exists Bε > 0 such that P(R1(X1:n) > Bε) ≤ ε for all
n ∈ {1, 2, . . . }). Putting these two together, we will have

p(Tn = 1 | X1:n) =
p(X1:n, Tn = 1)∑∞
t=1 p(X1:n, Tn = t)

≤ p(X1:n, Tn = 1)

p(X1:n, Tn = 2)
=
R1(X1:n)

R2(X1:n)

Pr−−−−→
n→∞

0.

First, let’s show thatR2(X1:n)→∞ in probability. For S ⊂ {1, . . . , n} with |S| ≥ 1, define h(xS)
by

h(xS) =
m(xS)

p0(xS)
=

1√
|S|+ 1

exp
(1

2

1

|S|+ 1

(∑
j∈S

xj

)2)
,

wherem is the single-cluster marginal as in Equations 3.3 and 3.4. Note that when 1 ≤ |S| ≤ n−1,
we have

√
nh(xS) ≥ 1. Note also that Eh(XS) = 1 since

Eh(XS) =

∫
h(xS) p0(xS) dxS =

∫
m(xS) dxS = 1,

using the fact that m(xS) is a density with respect to Lebesgue measure. For k ∈ {1, . . . , n}, define
the U-statistics

Uk(X1:n) =
1(
n
k

) ∑
|S|=k

h(XS)

where the sum is over all S ⊂ {1, . . . , n} such that |S| = k. By Hoeffding’s strong law of large
numbers for U-statistics [19],

Uk(X1:n)
a.s.−−−−→

n→∞
Eh(X1:k) = 1
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for any k ∈ {1, 2, . . . }. Therefore, using Equations 3.1 and 3.2 we have that for anyK ∈ {1, 2, . . . }
and any n > K,

R2(X1:n) = n3/2
∑

A∈A2(n)

p(A)
m(XA1)m(XA2)

p0(X1:n)

= n
∑

A∈A2(n)

p(A)
√
nh(XA1

)h(XA2
)

≥ n
∑

A∈A2(n)

p(A)h(XA1
)

= n

n−1∑
k=1

∑
|S|=k

(k − 1)! (n− k − 1)!

n! 2!
h(XS)

=

n−1∑
k=1

n

2k(n− k)

1(
n
k

) ∑
|S|=k

h(XS)

=

n−1∑
k=1

n

2k(n− k)
Uk(X1:n)

≥
K∑
k=1

n

2k(n− k)
Uk(X1:n)

a.s.−−−−→
n→∞

K∑
k=1

1

2k
=
HK

2
>

logK

2

where HK is the Kth harmonic number, and the last inequality follows from the standard bounds
[20] on harmonic numbers: logK < HK ≤ logK + 1. Hence, for any K,

lim inf
n→∞

R2(X1:n) >
logK

2
almost surely,

and it follows easily that
R2(X1:n)

a.s.−−−−→
n→∞

∞.

Convergence in probability is implied by almost sure convergence.

Now, let’s show that R1(X1:n) = OP (1). By Equations 3.1, 3.2, and 3.4, we have

R1(X1:n) = n3/2
p(X1:n, Tn = 1)

p0(X1:n)
=
√
n
m(X1:n)

p0(X1:n)

=

√
n√

n+ 1
exp

(1

2

n

n+ 1

( 1√
n

n∑
i=1

Xi

)2)
≤ exp(Z2

n/2)

where Zn = (1/
√
n)
∑n
i=1Xi ∼ N (0, 1) for each n ∈ {1, 2, . . . }. Since Zn = OP (1) then we

conclude that R1(X1:n) = OP (1). This completes the proof.
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