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Abstract

Differential privacy is a cryptographically motivated definition of privacy which
has gained considerable attention in the algorithms, machine-learning and data-
mining communities. While there has been an explosion of work on differentially
private machine learning algorithms, a major barrier to achieving end-to-end dif-
ferential privacy in practical machine learning applications is the lack of an ef-
fective procedure for differentially private parameter tuning, or, determining the
parameter value, such as a bin size in a histogram, or a regularization parameter,
that is suitable for a particular application.

In this paper, we introduce a generic validation procedure for differentially private
machine learning algorithms that apply when a certain stability condition holds on
the training algorithm and the validation performance metric. The training data
size and the privacy budget used for training in our procedure is independent of
the number of parameter values searched over. We apply our generic procedure to
two fundamental tasks in statistics and machine-learning — training a regularized
linear classifier and building a histogram density estimator that result in end-to-
end differentially private solutions for these problems.

1 Introduction

Privacy-preserving machine learning algorithms are increasingly essential for settings where sensi-
tive and personal data are mined. The emerging standard for privacy-preserving computation for
the past few years is differential privacy [7]. Differential privacy is a cryptographically motivated
definition, which guarantees privacy by ensuring that the log-likelihood of any outcome does not
change by more than « due to the participation of a single individual; an adversary will thus have
difficulty inferring the private value of a single individual when « is small. This is achieved by
adding random noise to the data or to the result of a function computed on the data. The value « is
called the privacy budget, and measures the level of privacy risk allowed. As more noise is needed
to achieve lower a,the price of higher privacy is reduced utility or accuracy. The past few years
have seen an explosion in the literature on differentially private algorithms, and there currently exist
differentially private algorithms for many statistical and machine-learning tasks such as classifica-
tion [4, 15, 23, 10], regression [18], PCA [2, 5, 17, 12], clustering [2], density estimation [28, 19],
among others.

Many statistics and machine learning algorithms involve one or more parameters, for example, the
regularization parameter A in Support Vector Machines and the number of clusters in k-means.
Accurately setting these parameters is critical to performance. However there is no good apriori way
to set these parameters, and common practice is to run the algorithm for a few different plausible
parameter values on a dataset, and then select the output that yields the best performance on held-out
validation data. This process is often called parameter-tuning, and is an essential component of any
practical machine-learning system.



A major barrier to achieving end-to-end differential privacy in practical machine-learning appli-
cations is the absence of an effective procedure for differentially private parameter-tuning. Most
previous experimental works either assume that a good parameter value is known apriori [15, 5] or
use a heuristic to determine a suitable parameter value [19, 28]. Currently, parameter-tuning with
differential privacy is done in two ways. The first is to run the training algorithm on the same data
multiple times. However re-using the data leads to a degradation in the privacy guarantees, and thus
to maintain the privacy budget «, for each training, we need to use a privacy budget that shrinks
polynomially with the number of parameter values. The second procedure, used by [4], is to divide
the training data into disjoint sets and train for each parameter value using a different set. Both so-
lutions are highly sub-optimal, particularly, if a large number of parameter values are involved — the
first due to the lower privacy budget, and the second due to less data. Thus the challenge is to design
a differentially private validation procedure that uses the data and the privacy budget effectively, but
can still do parameter-tuning. This is an important problem, and has been mentioned as an open
question by [28] and [4].

In this paper, we show that it is indeed possible to do effective parameter-tuning with differential
privacy in a fairly general setting, provided the training algorithm and the performance measure
used to evaluate its output on the validation data together obey a certain stability condition. We
characterize this stability condition by introducing a notion of (31, 2, ¢)-stability; loosely speaking,
stability holds if the validation performance measure does not change very much when one person’s
private value in the training set changes, when exactly the same random bits are used in the training
algorithm in both cases or, when one person’s private value in the validation set changes. The second
condition is fairly standard, and our key insight is in characterizing the first condition and showing
that it can help in differentially private parameter tuning.

We next design a generic differentially private training and validation procedure that provides end-
to-end privacy provided this stability condition holds. The training set size and the privacy budget
used by our training algorithms are independent of k, the number of parameter values, and the
accuracy of our validation procedure degrades only logarithmically with k.

We apply our generic procedure to two fundamental tasks in machine-learning and statistics — train-
ing a linear classifier using regularized convex optimization, and building a histogram density esti-
mator. We prove that existing differentially private algorithms for these problems obey our notion
of stability with respect to standard validation performance measures, and we show how to combine
them to provide end-to-end differentially private solutions for these tasks. In particular, our appli-
cation to linear classification is based on existing differentially private procedures for regularized
convex optimization due to [4], and our application to histogram density estimation is based on the
algorithm variant due to [19].

Finally we provide an experimental evaluation of our procedure for training a logistic regression
classifier on real data. In our experiments, even for a moderate value of k, our procedure out-
performed existing differentially private solutions for parameter tuning, and achieved performance
only slightly worse than knowing the best parameter to use ahead of time. We also observed that
our procedure, in contrast to the other procedures we tested, improved the correspondence between
predicted probabilities and observed outcomes, often referred to as model calibration.

Related Work. Differential privacy, proposed by [7], has gained considerable attention in the algo-
rithms, data-mining and machine-learning communities over the past few years as there has been a
large explosion of theoretical and experimental work on differentially private algorithms for statis-
tical and machine-learning tasks [10, 2, 15, 19, 27, 28, 3] — see [24] for a recent survey of machine
learning methods with a focus on continuous data. In particular, our case study on linear classi-
fication is based on existing differentially private procedures for regularized convex optimization,
which were proposed by [4], and extended by [23, 18, 15]. There has also been a large body of
work on differentially private histogram construction in the statistics, algorithms and database liter-
ature [7, 19, 27, 28, 20, 29, 14]. We use the algorithm variant due to [19].

While the problem of differentially private parameter tuning has been mentioned in several works,
to the best of our knowledge, an efficient systematic solution has been elusive. Most previous
experimental works either assume that a good parameter value is known apriori [15, 5] or use a
heuristic to determine a suitable parameter value [19, 28]. [4] use a parameter-tuning procedure
where they divide the training data into disjoint sets, and train for a parameter value on each set. [28]



mentions finding a good bin size for a histogram using differentially private validation procedure as
an open problem.

Finally, our analysis uses ideas similar to the analysis of the Multiplicative Weights Method for
answering a set of linear queries [13].

2 Preliminaries

Privacy Definition and Composition Properties. We adopt differential privacy as our notion of
privacy.

Definition 1 A (randomized) algorithm A whose output lies in a domain S is said to be (a,0)-
differentially private if for all measurable S C S, for all datasets D and D' that differ in the value
of a single individual, it is the case that: Pr(A(D) € S) < e*Pr(A(D’) € S) + 6. An algorithm is
said to be a-differentially private if 6 = 0.

Here « and § are privacy parameters where lower a and d imply higher privacy. Differential privacy
has been shown to have many desirable properties, such as robustness to side information [7] and
resistance to composition attacks [11].

An important property of differential privacy is that the privacy guarantees degrade gracefully if
the same sensitive data is used in multiple private computations. In particular, if we apply an a-
differentially private procedure & times on the same data, the result is ka-differential private as
well as (o, §)-differentially private for o' = ka(e® — 1) + 1/2klog(1/d)c [7, 8]. These privacy
composition results are the basis of existing differentially private parameter tuning procedures.

Training Procedure and Validation Score. Typical (non-private) machine learning algorithms
have one or more undetermined parameters, and standard practice is to run the machine learning
algorithm for a number of different parameter values on a training set, and evaluate the outputs on a
separate held-out validation dataset. The final output is the one which performs best on the validation
data. For example, in linear classification, we train logistic regression or SVM classifiers with
several different values of the regularization parameter A, and then select the classifier which has
the best performance on held-out validation data. Our goal in this paper is to design a differentially
private version of this procedure which uses the privacy budget efficiently.

The full validation process thus has two components — a training procedure, and a validation score
which evaluates how good the training procedure is.

We assume that training and validation data are drawn from a domain X, and the result of the
differentially private training algorithm lies in a domain C. For example, for linear classification, X’
is the set of all labelled examples (z,y) where z € R% and y € {—1,1}, and C is the set of linear
classifiers in d dimensions. We use n to denote the size of a training set, m to denote the size of a
held-out validation set, and © to denote a set of parameters.

A differentially private training procedure is a randomized algorithm, which takes as input a (sensi-
tive) training dataset, a parameter (of the training procedure), and a privacy parameter « and outputs
an element of C; the procedure is expected to be «-differentially private. For ease of exposition and
proof, we represent a differentially private training procedure 7 as a tuple 7 = (G, F'), where G is
a density over sequences of real numbers, and F' is a function, which takes as input a training set, a
parameter in the parameter set ©, a privacy parameter «, and a random sequence drawn from G, and
outputs an element of C. F' is thus a deterministic function, and the randomization in the training
procedure is isolated in the draw from G.

Observe that any differentially private algorithm can be represented as such a tuple. For example,
given x1,...,2z, € [0,1], an a-differentially private approximation to the sample mean Z is T +
%Z where Z is drawn from the standard Laplace distribution. We can represent this procedure
as a tuple T = (G, F) as follows: G is the standard Laplace density over reals, and for any 6,
F({z1,...,2n},0,,7) = T + . In general, more complicated procedures will require more
involved functions F'.

A validation score is a function ¢ : C x X™ — R which takes an object & in C and a validation
dataset V, and outputs a score which reflects the quality of h with respect to V. For example, a



common validation score used in linear classification is classification accuracy. In (non-private)
validation, if h; is obtained by running the machine learning algorithm with parameter 6;, then the
goal is to output the ¢ (or equivalently the h;) which maximizes ¢(h;, V'); our goal is to output
an 4 that approximately maximizes g(h;, V') while still preserving the privacy of V' as well as the
sensitive training data used in constructing the h;s.

3 Stability and Generic Validation Procedure

We now introduce and discuss our notion of stability, and provide a generic validation procedure
that uses the privacy budget efficiently when this notion of stability holds.

Definition 2 ((51, 32, 0)-Stability) A validation score q is said to be (81, B2, 0)-stable with respect
to a training procedure T = (G, F'), a privacy parameter «, and a parameter set © if the following
holds. There exists a set ¥ such that Prr.g(R € ¥) > 1 — §, and whenever R € %, the following
two conditions hold:

1. Training Stability: For all § € ©, V, and all training sets T and T' that differ in a single
entry. |q(F(T,6, 0, R),V) — q(F(T".0,0,R), V)| < 1.

2. Validation Stability: For all T, 6 € ©, and for all V and V' that differ in a single entry,
lg(F(T, 6,0, R), V) — q(F(T, 0,0, R),V")| < 2.

Condition (1), the training stability condition, bounds the change in the validation score g, when one
person’s private data in the training set 7' changes, and the validation set V' as well as the value of the
random variable R remains the same. Our validation procedure critically relies on this condition,
and our main contribution in this paper is to identify and exploit it to provide a validation procedure
that uses the privacy budget efficiently.

As F(T, 0, a, R) is a deterministic function, Condition (2), the validation stability condition, bounds
the change in ¢ when one person’s private data in the validation set V' changes, and the output of the
training procedure remains the same. We observe that (some version of) Condition (2) is a standard
requirement in existing differentially private algorithms that preserve the privacy of the validation
dataset while selecting a h € C that approximately maximizes ¢(h, V'), even if it is not required to
maintain privacy with respect to the training data.

Several remarks are in order. First, observe that Condition (1) is a property of the differentially
private training algorithm (in addition to ¢ and the non-private quantity being approximated). Even
if all else remains the same, different differentially private approximations to the same non-private
quantity will have different values of [3;.

Second, Condition (1) does not always hold for small 3; as an immediate consequence of differential
privacy of the training procedure. Differential privacy ensures that the probability of any outcome is
almost the same when the inputs differ in the value of a single individual; Condition (1) requires that
even when the same randomness is used, the validation score evaluated on the actual output of the
algorithm does not change very much when the inputs differ by a single individual’s private value.

In Section 6.1, we present an example of a problem and two a-differentially private training algo-
rithms which approximately optimize the same function; the first algorithm is based on exponential
mechanism, and the second on a maximum of Laplace random variables mechanism. We show
that while both provide «-differential privacy guarantees, the first algorithm does not satisfy train-
ing stability for 51 = o(n) and small enough § while the second one ensures training stability for
B1 = 1and § = 0. In Section 4, we present two case studies of commonly used differentially private
algorithms where Conditions (1) and (2) hold for constant 51 and [3s.

When the (81, 82, §)-stability condition holds, we can design an end-to-end differentially private
parameter tuning algorithm, which is shown in Algorithm 2. The algorithm first uses a validation
procedure to determine which parameter out of the given set © is (approximately) optimal based
on the held-out data (see Algorithm 1). In the next step, the training data is re-used along with the
parameter output by Algorithm 1 and fresh randomness to generate the final output. Note that we
use Exp(+y) to denote the exponential distribution with expectation .



Algorithm 1 Validate(©, 7, T, V, (1, B2, a1, o)

1: Inputs: Parameter list © = {6y,..., 60}, training procedure 7 = (G, F'), validation score ¢,
training set 7', validation set V/, stability parameters /31 and s, training privacy parameter o,
validation privacy parameter a.

2: fori=1,...,kdo

3:  Draw R; ~ G. Compute h; = F(T,0;, a1, R;).

4:  Let = max(8L, 22),

5

6

7

n’m
Lett; = q(hi, V) + 28Z;, where Z; ~ Exp(Z-).
: end for
: Output ¢* = argmax;t;.

Algorithm 1 takes as input a training procedure 7, a parameter list ©, a validation score g, training
and validation datasets 7" and V', and privacy parameters «; and aw. It runs the training procedure
T on the same training set 7' with privacy budget a; for each parameter in © to generate outputs
hi,ha, ..., and then uses an «o-differentially private procedure to select the index ¢* such that
the validation score ¢(h;«, V') is (approximately) maximum. For simplicity, we use a maximum of
Exponential random variables procedure, inspired by [1], to find the approximate maximum; an
exponential mechanism [21] may also be used instead. Algorithm 2 then re-uses the training data
set 7' to train with parameter ;- to get the final output.

Algorithm 2 End-to-end Differentially Private Training and Validation Procedure

1: Inputs: Parameter list © = {61,..., 60}, training procedure 7 = (G, F'), validation score g,
training set 7', validation set V, stability parameters /3; and (32, training privacy parameter o,
validation privacy parameter a.

2: i* = Validate(@, T, T, ‘/, ﬁl, ﬂg, aq, O[Q).

3: Draw R ~ G. Output h = F(T, 0+, a1, R).

3.1 Performance Guarantees

Theorem 1 shows that Algorithm 1 is («aq, §)-differentially private, and Theorem 2 shows privacy
guarantees on Algorithm 2. Detailed proofs of both theorems are provided in the Supplementary
Material. We observe that Conditions (1) and (2) are critical to the proof of Theorem 1.

Theorem 1 (Privacy Guarantees for Validation Procedure) If the validation score q is
(81, B2, %)-smble with respect to the training procedure T, the privacy parameter o and the
parameter set ©, then, Algorithm 1 guarantees (a2, §)-differential privacy.

Theorem 2 (End-to-end Privacy Guarantees) If the conditions in Theorem 1 hold, and if T is
o ~differentially private, then Algorithm 2 is (1 + aa, 0)-differentially private.

Theorem 3 shows guarantees on the utility of the validation procedure — that it selects an index ¢*
which is not too suboptimal.

Theorem 3 (Utility Guarantees) Let hy, ..., hy be the output of the differentially private train-
ing procedure in Step (3) of Algorithm 1. Then, with probability > 1 — &g, q(hs,V) >

maxi<;<x ¢(hi, V) — 2510%@7(2’“/50)_

4 Case Studies

We next show that Algorithm 2 may be applied to design end-to-end differentially private training
and validation procedures for two fundamental statistical and machine-learning tasks — training a lin-
ear classifier, and building a histogram density estimator. In each case, we use existing differentially
private algorithms and validation scores for these tasks. We show that the validation score satisfies
the (31, B2, )-stability property with respect to the training procedure for small values of 3; and



(B2, and thus we can apply in Algorithm 2 with a small value of 3 to obtain end-to-end differential
privacy.

Details of the case study for regularized linear classification is shown in Section 4.1, and those for
histogram density estimation is presented in the Supplementary Material.

4.1 Linear Classification based on Logistic Regression and SVM

Given a set of labelled examples (z1,v1), - .-, (Zn,yn) Where z; € RY, ||z;|| < 1 for all 4, and
yi € {—1,1}, the goal in linear classification is to train a linear classifier that largely separates
examples from the two classes. A popular solution in machine learning is to find a classifier w* by
solving a regulared convex optimization problem:

w* = a'rgmlnwERd ||’LU||2 ZZ w xwyz (1)

Here A is a regularization parameter, and ¢ is a convex loss function. When ¢ is the logistic loss

function £(w, z,y) = log(1+ e—viw ), then we have logistic regression. When / is the hinge loss
{(w,r,y) = max(0,1 — y;w " z;), then we have Support Vector Machines. The optimal value of A
is data-dependent, and there is no good pre-defined way to select \ apriori. In practice, the optimal
A is determined by training a small number of classifiers with different A values, and picking the one
that has the best performance on a held-out validation dataset.

[4] present two algorithms for computing differentially private approximations to these regularized
convex optimization problems for fixed A: output perturbation and objective perturbation. We restate
output perturbation as Algorithm 4 (in the Supplementary Material) and objective perturbation as
Algorithm 3. It was shown by [4] that provided certain conditions hold on ¢ and the data, Algorithm 4
is a-differentially private; moreover, with some additional conditions on ¢, Algorithm 3 is o +
2log (1 + )\—‘;)—differentially private, where c is a constant that depends on the loss function ¢, and
A is the regularization parameter.

Algorithm 3 Objective Perturbation for Differentially Private Linear Classification

1: Inputs: Regularization parameter A, training set 7' = {(z;,y;),? = 1,...,n}, privacy parame-
ter a.

2: Let G be the following density over R%: pg(r) oc e~ lI"ll. Draw R ~ G.

3: Solve the convex optimization problem:

. . D U 2 -
w —argmlnweRd§||wH —l-g;E(w,xl,yl)—i-@R w (2)

4: Output w*.

In the sequel, we use the notation X to denote the set {z € R : ||z| < 1}.

Definition 3 A function g : R x X x {—1,1} — R is said to be L-Lipschitz if for all w,w' € R4,
forallxz € X, and for all y, |g(w, z,y) — g(w',z,y)| < L - ||lw—w'|.

Let V = {(Z;,9:),© = 1,...,m} be the validation dataset. For our validation score, we choose a
function of the form:

1 m
V) = T E g(w, Z;, v;) 3)
i=1

where ¢ is an L-Lipschitz loss function. In particular, the logistic loss and the hinge loss are 1-
Lipschitz, whereas the 0/1 loss is not L-Lipschitz for any L. Other examples of 1-Lipschitz but
non-convex losses include the ramp loss: g(w, z,y) = min(1, max(0,1 — yw ' z)).

The following theorem shows that any non-negative and L-Lipschitz validation score is stable with
respect to Algorithms 3 and 4 and a set of regularization parameters A; a detailed proof is provided
in the Supplementary Material. Thus we can use Algorithm 2 along with this training procedure



and any L-Lipschitz validation score to get an end-to-end differentially private algorithm for linear
classification.

Theorem 4 (Stability of differentially private linear classifiers) Ler A = {\1,...,\;} be a set
of regularization parameters, let Amin = minle Ai, and let g* = max(; y)ex weR? gw,x,y). If
L is convex and 1-Lipschitz, and if g is L-Lipschitz and non-negative, then, the validation score q in
Equation 3 is (31, B2, %)-smble with respect to Algorithms 3 and 4, o and A for:

)\min Amin an

Example. For example, if g is chosen to be the hinge loss, then 1 = 2 and =

Amin

- (1 + %‘ff/a)). This follows from the fact that the hinge loss is 1-Lipschitz, but may be

Amin @

unbounded for w of unbounded norm.

If g is chosen to be the ramp loss, then 5; = )\i and By = 1 (assuming that A3, < 1). This
follows from the fact that the ramp loss is 1-Lipschitz, but bounded at 1 for any w and (z,y) € X.

5 Experiments

In order to evaluate Algorithm 2 empirically, we compare the regularizer parameter values and per-
formance of regularized logistic regression classifiers the algorithm produces with those produced
by four alternative methods. We used datasets from two domains, and used 10 times 10-fold cross-
validation (CV) to reduce variability in the computed performance averages.

The Methods Each method takes input (o, ©,T, V'), where a denotes the allowed differential
privacy, T'is a training set, V' is a validation set, and © = {61, ..., 0} alist of k regularizer values.
Also, let oplr(a, A, T') denote the application of the objective perturbation training procedure given
in Algorithm 3 such that it yields «-differential privacy.

The first of the five methods we compare is Stability, the application of Algorithm 2 with oplr used
for learning classifiers, § chosen in an ad-hoc manner to be 0.01, average negative ramp loss used as
validation score ¢, and with a; = s = «/2.

The four other methods work by performing the following 4 steps: (1) for each 6; € O, train a
differentially private classifier f; = oplr(a;, 0;,T;), (2) determine the number of errors e; each f;
makes on validation set V, (3) randomly choose i* from {1, 2, ..., k} with probability P(i* = i|p;),
and (4) output (0;, fix).

What differentiates the four alternative methods is how «;, 7T;, and p; are determined. For
alphaSplit: o; = a/k, T; = T, p; x e aei/2, dataSplit: «; = «, partition T into k equally
sized sets T;, p; e—oei/2 (used in [4]), Random: a; = o, T; = T, p; < 1, and Control: o; = «,
T, =T, p; x 1(i = argmax, q(f;,V)). Note that for alphaSplit, o/k > o where o/ is the
solution of a = k(e® — 1)/ 4 /2k1log(1/8)c for all of our experimental settings, except when
a = 0.3, then a/k > o' — 0.0003. The method Control is not private, and serves to provide an
approximate upper bound on the performance of Stability. The three other alternative methods are
differentially private which we state in the following theorem.

Theorem 5 (Privacy of alternative methods) If T and V are disjoint, both alphaSplit and
dataSplit are o-differentially private. Random is « differentially private even if T and V are
not disjoint, in which case alphaSplit and dataSplit are 2a-differentially private.

Procedures and Data We performed 10 10-fold CV as follows. For round ¢ in each of the CV
experiments, fold ¢ was used as a test set W7 on which the produced classifiers were evaluated, fold
(¢ mod 10)+1 was used as V, and the remaining 8 folds were used as T". Furthermore & = 10 with
© = {0.001,0.112,0.223,0.334, 0.445,0.556, 0.667,0.778,0.889, 1}. Note that the order of © is
chosen such that ¢ < j implies 6; < ¢;. By Theorems 2 and 5, all methods except Control produce



a («, ¢)-differentially private classifier. Classifier performance was evaluated using the area under
the receiver operator curve [25] (AUC) as well as mean squared error (MSE). All computations
were done using the R environment [22], and data sets were scaled such that covariate vectors were
constrained to the unit ball. We used the following data available from the UCI Machine Learning
Repository [9]:

Adult — 98 predictors (14 original including categorical variables that needed to be recoded). The
data set describes measurements on cases taken from the 1994 Census data base. The classification is
whether or not a person has an annual income exceeding 50000 USD, which has a prevalence of 0.22.
Each experiment involves computing more than 24000 classifiers. In order to reduce computation
time, we selected 52 predictors using the step procedure for a model computed by g1m with family
binomial and logit link function.

Magic — 10 predictors on 19020 cases. The data set describes simulated high energy gamma par-
ticles registered by a ground-based atmospheric Cherenkov gamma telescope. The classification is
whether particles are primary gammas (signal) or from hadronic showers initiated by cosmic rays in
the upper atmosphere (background). The prevalence of primary gammas is 0.35.

Adult Magic Adult | Magic
AT pe—
~ 5 0.24
0.8~ y
R
0.22 Z
Y
faviy
07- = 0.204 T
i} L) y of
J/ 0.184 |
0.6- U U i U U i U U U U U '
< 0305 1.0 2.0 3.0 5.0 0305 1.0 20 3.0 5.0
¥ alpha
0305 10 20 30 50 0305 10 2o 30 50 Stability aIphaSpIit{}dataSpIitQRandom Control
alpha
(a) Averages of AUC for the two data sets. (b) Averages of MSE for the two data sets.

Figure 1: A summary of 10 times 10-fold cross-validation experiments for different privacy levels
«. Each point in the figure represents a summary of 100 data points. The error bars indiciate a
boot-strap sample estimate of the 95% confidence interval of the mean. A small amount of jitter was
added to positions on the x-axes to avoid over-plotting.

Results Figure 1 summarizes classifier performances and regularizer choices for the different val-
ues of the privacy parameter o, aggregated over all cross-validation runs. Figure 1a shows average
performance in terms of AUC, and Figure 1b shows average performance in terms of MSE.

Looking at AUC in our experiments, Stability significantly outperformed alphaSplit and dataSplit.
However, Stability only outperformed Random for o > 1 in the Magic data set, and was in fact out-
performed by Random in the Adult data set. In the Adult data set, regularizer choice did not seem
to matter as Random performed equally well to Control. For MSE on the other hand, Stability
outperformed the differentially private alternatives in all experiments. We suggest the following
intuition regarding these results. The calibration of a logistic regression model instance, i.e., the
difference between predicted probabilities and a 0/1 encoding of the corresponding labels, is not
captured well by AUC (or 0/1 error rate) as AUC is insensitive to all strictly monotonically increas-
ing transformations of the probabilities. MSE is often used as a measure of probabilistic model
calibration and can be decomposed into two terms: reliability (a calibration term), and refinement
(a discrimination measure) which is related to the AUC. In the Adult data set, the minor change
in AUC of Control and Random for a > 0.5, together with the apparent insensitivity of AUC
to regularizer value, suggests that any improvement in Stability performance can only come from
(the observed) improved calibration. Unlike in the Adult data set, there is a AUC performance gap
between Control and Random in the Magic data set. This means that regularizer choice matters for
discrimination, and we observe improvement for Stability in both discrimination and calibration.
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6 Appendix

6.1 An Example to Show Training Stability is not a Direct Consequence of Differential
Privacy

We now present an example to illustrate that training stability is a property of the training algorithm
and not a direct consequence of differential privacy. We present a problem and two a-differentially
private training algorithms which approximately optimize the same function; the first algorithm
is based on exponential mechanism, and the second on a maximum of Laplace random variables
mechanism. We show that while both provide a-differential privacy guarantees, the first algorithm
does not satisfy training stability while the second one does.

Leti e {1,...,{},and let f : X" x R — [0, 1] be a function such that for all i and all datasets D
and D’ of size n that differ in the value of a single individual, | f(D, i) — f(D’,i)| < L.

Consider the following training and validation problem. Given a sensitive dataset D, the private
training procedure A outputs a tuple (i*,¢1,...,1;), where i* is the output of the «/2-differentially
private exponential mechanism [21] run to approximately maximize f(D, 1), and each ¢; is equal to
f(D, 1) plus an independent Laplace random variable with standard dev1at10n . For any validation
dataset V, the validation score q((i*,t1,...,8), V) = t;«.

It follows from standard results that A is a-differentially private. Moreover, A can be represented
by a tuple Ty = (Ga, Fa), where G4 is the following density over sequences of real numbers of

length | 4 1:
Ga(ro,r1,- ... 11) = Logry<y - ore” M IFIralttind)

Thus G4 is the product of the uniform density on [0, 1] and ! standard Laplace densities. Consider
the following map Ey. For r € [0, 1], let

naf(D,7)/4 naf(D,j)/4
3o el 4J>/ e 5, enef .a>/
>, ened D)/ S, enel D)/

EQ(T) = i, if

In other words, Ey(r) is the map that converts a random number  drawn from the uniform distribu-
tion on [0, 1] to the «/2-differentially private exponential mechanism distribution that approximately
maximizes f(D,i). Given al + 1-tuple R = (Ry, R1,. .., R;), F4 is now the following map:

2[R,y
an

Fa(D, o, R) = (E(Ro),f(D,l) + ,f(D,2) + 2éi27...,f(D,l) + 25;[)

Let I = 2 and D and D’ be two datasets that differ in the value of a single individual. Suppose it
is the case that f(D,1) = 1, f(D,2) = 3 and f(D',1) = 1— 1, f(D',2) = § + +. Observe

" e/
that for D, the exponential mechanism picks 1 with probability W’

na/S ’ (n a/4
W’ where as for D', it picks 1 with probability —— l)a/4+e(n+2)a/8 and 2 with proba-

- e(nt2)a/s p(n—1)a/4 .
bility e(n,l)a/4+e(n+2)a/8. Thus, if R lies in the interval [e<n,1)a/4+e(n+2)a/g, em/4_~_em/g], then,

F4(D,a,R) = t; whereas F4(D’,a, R) = t5. When n is large enough, with high probabil-

and 2 w1th probability

na/4

ity, |t1 — ta] > %; thus, the training stability condition does not hold for A for 5; = o(n) and
e'rLu/S(ea/Q_l)

o < (eﬂ,a/8+1)(enn/8+ea/2)'

Consider a different algorithm A’ which computes t1, . . ., ¢; first, and then outputs the index ¢* that

maximizes t;-. Then A’ can be represented by a tuple T4 = (Gas, Fas), where G 4 is a density
over sequences of real numbers of length [ as follows:

1 — {7 r
Galry,...,r) = ?e (Ir1 ]+ +lrl)

and Fy is the map:

lRl lRl lR2 ZRZ
D)+ S f(D2) 4 S0+ )

Fy(D,o,R) = <argmaxi(f(D,i) +
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For the same value of Ry, ..., Ry, if ¢* = i on input dataset D and if 7* = ¢/ on input dataset D’,
then, | f(D,i) — f(D,i")| < L; this implies that

) . 1

|a(Far (D, R), V) = (Far (D' o, R), V)| = [t = tor| = [f(D, i) = f(D", )] <
with probability 1 over G 4/. Thus the training stability condition holds for 5; = 1 and 6 = 0.
6.2 Output Perturbation Algorithm

We present the output perturbation algorithm for regularized linear classification.

Algorithm 4 Output Perturbation for Differentially Private Linear Classification

1: Inputs: Regularization parameter A, training set T = {(x;,y;),i = 1,...,n}, privacy parame-
ter a.

2: Let G be the following density over R%: pg(r) o< e~ I"ll. Draw R ~ G.

3: Solve the convex optimization problem:

* : 1 2, 1y
w :argmmweRd§)\||wH +g;£(w,xi,yi) 4)

. 2
4: Output w* + - R.

6.3 Case Study: Histogram Density Estimation

Our second case study is developing an end-to-end differentially private solution for histogram-
based density estimation. In density estimation, we are given n samples z1,...,z, drawn from
an unknown density f, and our goal is to build an approximation f to f. In a histogram density
estimator, we divide the range of the data into equal-sized bins of width h; if n; out of n of the input

samples lie in bin 4, then f is the density function: f(z) = lei}{ 7% . 1(x € Bin 7).

A critical parameter while constructing the histogram density estimator is the bin size h. There is
much theoretical literature on how to choose h — see [16, 26] for surveys. However, the choice
of h is usually data-dependent, and in practice, the optimal h is often determined by building a
histogram density estimator for a few different values of h, and selecting the one which has the best
performance on held-out validation data.

The most popular measure to evaluate the quality of a density estimator is the Lo-distance or the
Integrated Square Error (ISE) between the density estimate and the true density:

1F = fle = [ (f@) = @)2de = [ Pes [ a2 [ f@iwie ©)

f is typically unknown, so the ISE cannot be computed exactly. Fortunately it is still possible to

compare multiple density estimates based on this distance. The first term in the right hand side of
Equation 5 depends only on f, and is equal for all f. The second term is a function of f only and can

thus be computed. The third term is 2E. ;[ f(z)], and even though it cannot be computed exactly
without knowledge of f, we can estimate it based on a held out validation dataset. Thus, given a

density estimator f and a validation dataset V = {#z1,...,2m}, we will use the following function
to evaluate the quality of f on V:

a(f,V)=- / Fa)dz + % Z f(z) (6)

A higher value of ¢ indicates a smaller distance || f — f||2, and thus a higher quality density estimate.
For other measures, see [6].

In the sequel, we assume that the data lies in the interval [0, 1] and that this interval is known in
advance. For ease of notation, we also assume without loss of generality that % is an integer. For
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ease of exposition, we confine ourselves to one-dimensional data, although the general techniques
can be easily extended to higher dimensions. Given n samples and a bin size h, several works,
including [7, 19, 27, 28, 20, 29, 14] have shown different ways of constructing and sampling from
differentially private histograms. The most basic approach is to construct a non-private histogram
and then add Laplace noise to each cell, followed by some post-processing. Algorithm 5 presents a
variant of a differentially private histogram density estimator due to [19] in our framework.

Algorithm 5 Differentially Private Histogram Density Estimator

1: Inputs: Bin size h (such that 1/h is an integer), data T = {x1, ..., x, }, privacy parameter c.
2: fori=1,...,+ do

3:  Draw R; independently from the standard Laplace density: pg(r) = %e""“'.

4:  Letl; = [%, %) Define: n; = -7, 1(z; € I;), and let 7i; = max (0,m; + 282).

5: end for A )

6: Let = ), n;. Return the density estimator: f(z) = ij{ 1w € 1)

The following theorem shows stability guarantees on the differentially private histogram density
estimator described in Algorithm 5.

Theorem 6 (Stability of Private Histogram Density Estimator) Let H = {hy,..., hi} be a set

of bin sizes, and let hyi, = min; h;. For any fixed ¢, if the sample size n > 1 + %\/fi/@, then,

the validation score q in Equation 6 is (31, Ba, %)-Stable with respect to Algorithm 5 and H for:
2 21n(4k/3)

here: v = .
Pronin” WV naTomin

ﬂl = (1_V6)hmin7 52 =

6.4 Proofs of Theorems 1, 2 and 3

We now present the proofs of Theorems 1, 2 and 3. Our proofs involve ideas similar to those in
the analysis of the multiplicative weights update method for answering a set of linear queries in a
differentially private manner [13].

Let A(D) denote the output of Algorithm 1 when the input is a sensitive dataset D = (T, V'), where
T is the training part and V is the validation part. Let D’ = (7", V') where T and 7" differ in the
value of a single individual, and let D" = (T, V') where V and V" differ in the value of a single
individual. The proof of Theorem 1 is a consequence of the following two lemmas.

Lemma 1 Suppose that the conditions in Theorem 1 hold. Then, for all D = (T,V), all D' =
(T, V), such that T and T" differ in the value of a single individual, and for any set of outcomes S

Pr(A(D) € §) < ¢®2 Pr(A(D') € S) + 0 )

Lemma 2 Suppose that the conditions in Theorem 1 hold. Then, for all D = (T,V), all D" =
(T, V") such that V and V' differ in the value of a single individual, and for any set of outcomes S,

Pr(A(D) € S) < ¢®2 Pr(A(D") € §) + 6 ®)

PROOF: (Of Lemma 1) Let S = (I, C'), where I C [k] is a set of indices and C' C C. Let E be the
event that all of Rq,..., R lie in the set 3. We will first show that conditioned on F, for all i, it
holds that:

Pr(i* =i|D,E) < e Pr(i* =i|D', E) 9)
Since Pr(E) > 1 — ¢, from the conditions in Theorem 1, for any subset I of indices, we can write:

Pr(i* € I|D) < Pi(i* € I|D, E)Pr(E) + (1 — Pr(E))
< e Pr(i* € I|D', E)Pr(E) + 6
< e Pr(i* € [,E|D') + 6
< e Pr(i* €I|D')+46 (10)
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We will now prove Equation 9. For this purpose, we adopt the following notation. We use the

notation Z\; to denote the random variables 21, ..., Z; 1, Z;y1,. .., Z) and 2\; to denote the set of
values z1,...,2i—1, Zi+1, - - - , 2. We also use the notation A(-) to represent the density induced on
the random variables 71, . .., Zj by Algorithm 1. In addition, we use the notation R to denote the

vector (Ry, ..., Ry). We first fix a value 2\; for Z\;, and a value of R such that Ry, ..., Ry all lie
in X, and consider the ratio of probabilities:

PT(Z* = Z‘Z\Z = Z\ia D,7 R)

Observe that this ratio of probabilities is equal to:
Pr(Zl + q(F(T7 eia ai, Rl)v V) > SUp;; 24 + Q(F(Ta 9j7 aq, Rj)a V))
PI‘(ZZ* + q(F(T', 91‘, o1, Rl>, V) > SUpP,+; Zj + (](F(T/, Gj, aq, Rj), V))

which is in turn equal to:
PI‘(ZZ* > SUpP;£; Zj + q(F(T, Hj, aq, Rj), V) — q(F(T, 9,‘, o, Rl), V))

Pr(Z; > supj; 2 + q(F (17,05, a1, R;), V) — q(F(T",0;, 1, R;), V)
Observe that from the stability condition,
|(q(F(T7 6]7 aq, R])) V) - q(F(T7 eia aq, R’L)a V)) - (q(F(Tla eja aq, R])a V) - q(F(T/a 01" g, Rl)7 V))'
|q(F(T7 9]7 aq, R])a V) - Q(F(Tl7 e]a aq, Rj)7 Vl)' + ‘Q(F(T7 9’” aq, RZ)7 V) - q(F(T/7 927 aq, R’L)a V)‘
261

n

IN

IN

— <2p

Thus, the ratio of the probabilities is at most the ratio Pr(Z; > ~)/Pr(Z; > v + 20) where
v = sup,; zj+q(F(T,0;, a1, R;),V)—q(F(T,0;, a1, R;), V'), which is at most e“2 by properties
of the exponential distribution. Thus, we have established that for all 2\is for all Rin XF,
Pr(i* =i|Z\; = 2\;, D, R) < e** - Pr(i* =i|Z\; = z;, D', R)

Equation 9 follows by integrating over 2\; and 2. The lemma follows. [
PROOF:(Of Lemma 2) Let S = (I, C), where I C [k] is a set of indices and C' C C. Let E be the
event that all of Ry, ..., Ry lie in 2. We will first show that conditioned on F/, for all 7, it holds that:

Pr(i* =i|D, E) < e* Pr(i* =i|D",E) (11)

Since Pr(E) > 1 — 4, from the conditions in Theorem 1, for any subset I of indices, we can write:

Pr(i* € I|D) < Pr(i* € I|D,E)Pr(E) + (1 — Pr(E))
< e Pr(i* € I|D",E)Pr(E) +6
< e Pr(i* € I,E|D")+ 4
< e Pr(i* €I|D")+46 (12)

We will now focus on showing Equation 11. We first consider the case when event I holds, that is,
R; € R, for j = 1,...,k. In this case, the stability definition and the conditions of the theorem
imply that for all §; € O,

In what follows, we use the notation Z\ ; to denote the random variables Z1, ..., Z; 1, Zit1, ..., 2y
and z\; to denote the set of values 21,...,2;_1,Ziy1,...,2r. We also use the notation h(-) to
represent the density induced on the random variables Zy, . .., Zj by Algorithm 1. In addition, we
use the notation R to denote the vector (R, ..., Rx). We first fix a value 2\; for Z\;, and a value of
R such that E holds, and consider the ratio of probabilities:

PI‘(Z* = Z|Z\l = Z\Z‘, D, R)
Pr(i* = i|Zy; = 24, D", R)

13



Observe that this ratio of probabilities is equal to:
Pr(Z; + q(F(T,0;, 01, R;), V) > sup; 4, zj + q(F(T, 05, a1, R;),V))
Pr(Zi + q(F(T,0;, 1, Ry), V') > sup;z; 25 + q(F (T, 05,1, R;), V"))
which is in turn equal to:
Pr(Z; > sup;; zj + q(F(T,0;,a1, R;), V) — q(F(T,0;, a1, R;),V))
Pr(Z; > sup;; zj + q(F(T,0;, a1, R;), V') — q(F(T,0;, 01, R;), V"))
Observe that from Equation 13,

|(q(F(T7 ejv aq, Rj)a V)_q(F(Tv 0i7 aq, Ri)a V))_(q(F(Ta 9j7 aq, Rj)a V/)_q(F(T7 g’ia ay, R1)7 V/))
Thus, the ratio of the probabilities is at most the ratio Pr(Z; > v)/Pr(Z; > v+ 2p) for vy =

sup;z; zj + q(F(T,0;,01,75),V) — q(F(T,0;,1,7;),V), which is at most e** by properties of
the exponential distribution. Thus, we have established that when R € ¥k for all 7

PI'(’L* = Z|Z\Z = Z\Z,D,R)

asz
Pr(i* = i‘Z\i = Z\i,D”,R) -
Thus for any such R, we can write:
Pr(i* =i|D,R)  J., Pr" =ilZ = 2, D, R)A(z\)da -,
Pr(i* =i|D",R) fz\_ Pr(i* = i|Z\; = 2;, D", R)h(z\;)dz; ~

Equation 11 now follows by integrating R over E. [

PROOF:(Of Theorem 1) The proof of Theorem 1 follows from a combination of Lemmas 1 and 2.
d

PROOF:(Of Theorem 2) The proof of Theorem 2 follows from privacy composition; Theorem 1
ensures that Step (2) of Algorithm 2 is («w, §)-differentially private; moreover the training procedure
T is a;-differentially private. The theorem follows by composing these two results. [

PROOF:(Of Theorem 3) Observe that:

Pr (q(hi*, V) < max q(h;, V) — M

> < Pr <3j s.t. Z; > 1"5(/“/50)>
1<i<k .

Q2

By properties of the exponential distribution, for any fixed j, Pr(Z; > %) < %. Thus the
theorem follows by an Union Bound. [J

6.5 Proof of Theorem 4

PROOEF: (Of Theorem 4 for Output Perturbation) Let 7' and T” be two training sets which differ in
a single labelled example ((zy, yn) vs. (2, y.,)), and let w*(T") and w*(T") be the solutions to the
regularized convex optimization problem in Equation 1 when the inputs are T and 7" respectively.
‘We observe that for fixed A\, o and R,

F(T,\,a,R) — F(T',\,a, R) = w*(T) — w*(T")

When the training sets are 7" and 7", the objective functions in the regularized convex optimization
problems are both A-strongly convex, and they differ by L (¢(w, z,, yn) — €(w, x,, y,)). Combining
this fact with Lemma 1 of [4], and using the fact that ¢ is 1-Lipschitz, we have that for all A and R,

2
|F(T,\, o, R) — F(T', \, o, R)|| < o
n
Since g is L-Lipschitz, this implies that for any fixed validation set V, and for all A, @ and R,
2L
|Q(F(T7>‘aO‘aR)7V) *(](F(T’,)\,O{,R),V)l S m (14)
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Now let V and V' be two validation sets that differ in the value of a single labelled example
(T, Ym)- Since g > 0 for all inputs, for any such V' and V', and for a fixed A, « and R,
lq(F(T,\,a, R),V) — q(F(T, A\, R),V')| < 9=2x where

Jmax = Sup g(F(T7 )‘7 (62 R)a z, y)
(z,y)eX

By definition, gnax < g*. Moreover, as g is L-Lipschitz,
Y9max < L- HF(T,)\,O&,R)”

Now, let E be the event that || R|| < dlog(dk/d). From Lemma 4 of [4], Pr(E) > 1 — §/k. Thus,
provided E holds, we have that:

. dlog(dk/3)

F(T,\, o, R)| < [|Jw*
IET A 0, R)| < ] + =25

<1y =
A o no

dlog(dk/é) 1 dlog(dk/9)
Aan A (1 + )

where the bound on ||w*|| follows from an application of Lemma 1 of [4] on the functions $A||w||?
';md %/\>|\|w||2 + L5 (w, z;,y;). This implies that provided E holds, for all training sets 7', and
or all A,

(PN 0, R),V) = a(FT N ..V < s (14 SRR ) as)

The theorem now follows from a combination of Equations 14 and 15, and the definition of g*. [

PROOF: (Of Theorem 4 for Objective Perturbation) Let 7" and T’ be two training sets which differ in
a single labelled example (z,,, y,, ). We observe that for a fixed R and ), the objective of the regular-
ized convex optimization problem in Equation 2 differs in the term < ({(w, 2y, ) — £(w, 2}, yh)).
Combining this with Lemma 1 of [4], and using the fact that £ is 1-Lipschitz, we have that for all A,
o, R,

2
|F(T,\,a, R) — F(T',\,a, R)|| < o
n

Since g is L-Lipschitz, this implies that for any fixed validation set V', and for all A and r,

2L
< =

|q(F(T7 )\7 O[, R)7 V) - q(F(TI7 )\7 a7 R)7 V)| = )\
n

(16)

Now let V and V' be two validation sets that differ in the value of a single labelled example
(Zrm, Um,)- Since g > 0, for any such V and V', |¢(F(T,\, e, R),V) — q(F (T, \,a, R), V)| <
Imox where

m

9max = SUup g(F(Tv )\v «, R)a z, y)
(z,y)eX

By definition gmax < g*. Moreover, as g is L-Lipschitz,
9max S L- ||F‘(T‘7 )\,Oé,R)H

Let E be the event that ||R|| < dlog(dk/J). From Lemma 4 of [4], Pr(E) > 1 — 6/k. Thus,
provided E holds, we have that:

L+ |[BI/(am) 1 () dlog(dk/3)
|F(T, N\ o, R)|| < — =3 (1+ m)

This implies that provided E holds, for all training sets 7', and for all A,
L dlog(dk/é
G(F(T,\ 0, R), V) — g(F(T, \, 0, R), V')] < (1 | dlog(dk/d) )) a7
m no

The theorem now follows from a combination of Equations 16 and 17, and the definition of g*. [
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6.6 Proof of Theorem 6

Lemma 3 (Concentration of Sum of Laplace Random Variables) Ler Z1,...,Z; be s > 2 iid
standard Laplace random variables, and let Z = Z1 + ... + Zg. Then, for any 0,

1 —S
Pr(Z > 0) < (1 — ) e 0/V5 < 4e=0/V5
s

PROOF: The proof follows from using the method of generating functions. The generating function
for the standard Laplace distribution is: 1(X) = E[e!X] = = Lz for |t| < 1. As Zy,..., Z, are

independently distributed, the generating function for Z is E[e*?] = (1 —t2)~*. Now, we can write:
Pr(Z >0) = Pr(e'? > e
E[etZ]

_ e—t(~) . (1 _ t2)—s

= T

Plugging in ¢t = ﬁ, we get that:

1 —S
Pr(Z > 0) < (1 - ) e Vs
The lemma follows by observing that for s > 2, (1 — 1) >

PROOF: (Of Theorem 6) Let V' = {z1,..., 2y} be a validation dataset, and let V' be a valida-
tion dataset that differs from V in a single sample (z,, vs z,). We use the notation R to denote
the sequence of values R = (Ri, Ra,..., Ry/;). Given an input sample 7', a bin size h, a pri-

vacy parameter «, and a sequence R, we use the notation fT, h,a,Rr to denote the density estimator
F(T,h,a, R). For all such T, all h, all « and all R, we can write:

2

(g(F(T by, R), V) = a(F(T, b0, R,V = = (frnen(zm) = frner(z1n))
2 ~ max; n; 2
< — < — 18
- m hnn  — mh (18)
For a fixed value of h, we define the following event E:

1/h
n(4k/é

ZRZ > A

Vh

Using the symmetry of Laplace random varlables and Lemma 3, we get that Pr(F) > 1 — §/k. We
observe that provided the event £ holds,
1/h

n>n—ZR> 21“%’“%/5) n(l—v) (19)

Let T" and 7" be two input datasets that differ in a single sample (z,, vs z/,). We fix a bin size h, a
value of o, and a sequence R, and for these fixed values, we use the notation 7; and 7, to denote the
value of 72; in Algorithm 5 when the inputs are 7" and 7" respectively. Similarly, we use n. = >, 7;
andn’ =), nl.

For any V', we can write:

g(F(T,h,a, R),V) = q(F(T',h,a, R),V) = Z fromer(2) = fr nor(2))
1/h =9 <2
n; ny
- Zh <h2fz2 - h2ﬁ/2> (20)

i=1

We now look at bounding the right hand side of Equation 20 term by term. Suppose 7" is obtained
rom T' by moving a single sample x,, from bin a to bin b in the histogram. Then, depending on the
relative values of n, and 7, there are four cases:
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|
=il

1. 7, = flq — 1,7 = Ay + 1. Thus /' = 7.
2. @l =i, = 0,7 =y + 1. Thus 7/ = 72 + 1.
3. 7, =g — 1,7, = fp = 0. Thus 2’ = 72 — 1.
4. 7/, =g = 0,7, = np = 0. Thus 7/ = 7.

In the fourth case, fTJm’ R= ng h,a,R» and thus the right hand side of Equation 20 is 0. Moreover,
the second and the third cases are symmetric. We thus focus on the first two cases.

In the first case, the first term in the right hand side of Equation 20 can be written as:

m 1/h i m 1/h
Eyuen ()| = [ L e en M
j=11i=1 j=11i=1
2 n o2
- m hn = hn
The second term on the right hand side of Equation 20 can be written as:
&% 72 ’ AR — (e — 1)% — (i + 1)?
th hn’2 N hn?
g — 20y — 2 2
hn? ~ hn

where the last step follows from the fact that 7 = 7, + 1 < @. Thus, for the first case, the right
hand side of Equation 20 is at most %

We now consider the second case. The first term on the right hand side of Equation 20 can be written
as:

m l/h

9 7
Z 1(z; € I}) i ‘
!m YY1 en (1)
Jj=11i=1
m 1/h y
= Y en). ( i)\
i n n+1
< 2 L a4 1) — gl 757+ 1) — 7 + 1))
— hm ﬁ(ﬁ+1) 1 1 ) (A 1
2! (N p—
Ty max((ng)s (N —ngl) S g
B AR+ 1) eI TR = B ET

where the last step follows from the fact that max(|7;|, |2 — 7;|) < 7. The second term on the right
hand side of Equation 20 can be written as:

]%}f n; o D> ao__ )| (ﬁb+1)2‘
B2 i < \hi?  h(n+1)? hi2 (R +1)2
. 2n+1 Z 2 ’nb—fl)(2flbﬁ+7~l+flb)‘
T ha2(a+1)2 hi2(n +1)2

2n +1 n~2n(n+1)< 4
h(n+1)2  ha%2(n+1)2 — h(n+1)
Thus, in the second case, the right hand side of Equation 20 is at most % We observe that the

third case is symmetric to the second case, and thus we can carry out very similar calculations in
the third case to show that the right hand side is at most ;>-. Thus, we have that for any 7" and 7",
provided the event E holds,

lg(F(T,h,a, R), V) — q(F(T',h,a, R), V)| < 21

<0
hn
The theorem now follows by combining Equation 21 with Equation 19. [J
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6.7 Proof of Theorem 5

Lemma 4 (Parallel construction) Let A = { Ay, Ao, ..., Ay} be a list of k independently random-
ized functions, and let A; be o;-differentially private. Let {D1, Da, ..., Dy} be k subsets of a set
D suchthati # j = D; N D; = 0. Algorithm B(D,A) = (A1(D1), A2(D2), ..., Ax(Dy)) is
max <<k o-differentially private.

PROOF: Let D, D’ be two datasets such that their symmetric difference contains one element. We
have that
P(B(D,A) € S) P(B(D,A) € S; x -+ x Sk) P(A1(D1) € 51)--- P(Ar(Dg) € Sk)

PB(D',A)eS) PB(D',A)e S x---xS;) P(A(D;) € S): P(Ax(D,) € Sk)
(22)

by independence of randomness in the A;. Since ¢ # j == D, N D, = (), there exists at most one
index j such that D; # D;-. If j does not exist, (22) reduces to e? < e™a¥1<i<k % et j exist, then
P(B(D,A) € S) _ P(A;(D;) € 5j)

— S et S emaxlgigk oy

P(B(D',A) € S)  P(A;(D}) € S;) ’

which concludes the proof. [

PROOF: (Theorem 5) We begin by separating task (a) of producing the f; in step 1. from the task
(b) of computing e; in step 2. and selecting ¢* in step 3.

From the parallel construction Lemma 4 it follows that (a) in dataSplit is a-differentially private.
From standard composition of privacy it follows that (a) in alphaSplit is a-differentially private.

Task (b) is for both alphaSplit and dataSplit an application of the exponential mechanism [21],
which for choosing with a probability proportional to €(—e; ) yields 2e A-differential privacy, where
A is the sensitivity of e;. Since a single change in V' can change the number of errors any fixed
classifier can make by at most 1 = A, we get that task (b) is a-differentially private for e = «/2.

If T and V are disjoint, we get by parallel construction that both alphaSplit and dataSplit yield
a-differential privacy. If 7" and V are not disjoint, by standard composition of privacy we get that
both alphaSplit and dataSplit yield 2a-differential privacy.

In Random, the results of step 2. in task (b) are never used in step 3. Step 3 is done without looking
at the input data and does not incur loss of differential privacy. We can therefore simulate Random
by first choosing ¢* uniformly at random, and then computing f; at a-differential privacy, which by
standard privacy composition is a-differentially private. [

6.8 Experimental selection of regularizer index
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Figure 2: A summary of 10 times 10-fold cross-validation selection of regularizer index ¢ into ©
for different privacy levels .. Each point in the figure represents a summary of 100 data points.
The error bars indiciate a boot-strap sample estimate of the 95% confidence interval of the mean. A
small amount of jitter was added to positions on the x-axes to avoid over-plotting.
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