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In this supplementary material, we will prove Theorem 1 in Section 1 and state the details of Maxide
algorithm in Section 2. We then give some additional experiments in Section 3.

1 Proof of Theorem 1

Our strategy is to first identify the deterministic conditions for Z0 to be the unique minimizer for
(2), which is given by Lemma 1. We then confirm that those deterministic conditions will hold with
high probabilities in Lemma 7, Lemma 10 and Lemma 11. Finally, Theorem 1 can be proved using
all these lemmas.

Before stating the detailed proof, we define a linear operator PT : Rn×m 7→ Rn×m as follows: for
any F ∈ Rn×m, PT maps F to a new matrix PT (F ) given by

PT (F ) = PUFPB + PAFPV − PUFPV , (4)

where PU , PV , PA and PB project a vector onto the subspace spanned by the column vectors in
U , V , A, and B, respectively. That is, if UA and UB are the left singular vectors of A and B
respectively, then

PU = UUT ∈ Rn×n,

PV = V V T ∈ Rm×m,

PA = UAU
T
A = AAT ∈ Rn×n,

PB = UBU
T
B = BBT ∈ Rm×m.

We note that the projection operator PT defined in (4) is different from that defined in [4] in that
we restrict the left invariant space to A and the right invariant space to B due to our assumptions.
Similarly, we define a linear operator PT⊥ as

PT⊥(F ) = (PA − PU )F (PB − PV ) = PA⊥FPB⊥ .

For convenience, we rewrite the definitions of Ω0, Ω1 and q0 in Theorem 1 here, which will make
our future statement easier,

q0 =
1

2
(1 + log2 ra − log2 r),

Ω0 =
128βµmax{µ1, µ}r(ra + rb) lnn

3
≥ 32βrµ2(ra + rb) lnn

3
,

Ω1 =
8βµ2(rarb + r2) lnn

3
.
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1.1 Deterministic Conditions for Z0 to Be the Unique Minimizer

In this subsection, we will give the lemma stating two deterministic conditions for Z0 to be the
unique minimizer of (2),
Lemma 1. We assume that there exists a matrix Y ∈ Rn×m such that

A1 RΩ(Y ) = Y, ∥PT (Y )− UV ⊤∥F ≤
√

r

2ra
, ∥PT⊥(Y )∥ <

1

2
.

We further assume that for any F ̸= 0, F ∈ Rn×m satisfying RΩ(F ) = 0 and F = PAFPB , we
have

A2 ∥PT (F )∥F ≤ γ∥PT⊥(F )∥F ,
where

γ ≤
√

ra
2r

. (5)

Then, Z0 is the unique minimizer to (2).

Proof. We prove by contradiction. Assume there exists another solution Z0 + E, with E ̸= 0. We
can further conclude that AEBT ̸= 0 (because if AEBT = 0, then ATAEBTB = IEI = 0 for A
and B are orthonormal, such that E = 0, leading to contradiction).

Z0+E is a solution to (2) means that RΩ(A(Z0+E)BT ) = RΩ(AZ0B
T ), ∥Z0+E∥tr ≤ ∥Z0∥tr,

and A(Z0 + E)BT = PA(A(Z0 + E)BT )PB . Evidently, we have AEBT = PA(AEBT )PB ,
RΩ(AEBT ) = 0. Because AEBT ̸= 0, with Condition A2, we have ∥PT (AEBT )∥F ≤
γ∥PT⊥(AEBT )∥F ≤ γ∥PT⊥(AEBT )∥tr. We will use this fact later.

Let U⊥ and V⊥ be the left and right singular vectors of PT⊥(AEBT ). Evidently, column vectors
in U⊥ are orthogonal to the column vectors in U , and column vectors in V⊥ are orthogonal to the
column vectors in V , that is UTU⊥ = 0 and V TV⊥ = 0. We have

∥Z0 + E∥tr
= ∥A(Z0 + E)BT ∥tr (6)

= ∥A(Z0 + E)BT ∥tr∥UV ⊤ + U⊥V
⊤
⊥ ∥ (7)

≥ ⟨A(Z0 + E)BT , UV ⊤ + U⊥V
⊤
⊥ ⟩ (8)

= ⟨AZ0B
T , UV ⊤⟩+ ⟨AZ0B

T , U⊥V
⊤
⊥ ⟩+ ⟨AEBT , UV ⊤ + U⊥V

⊤
⊥ ⟩

= ∥M∥tr + ⟨AEBT ,−Y + UV ⊤ + U⊥V
⊤
⊥ ⟩ (9)

= ∥M∥tr + ⟨AEBT , UV ⊤ − PT (Y ) + U⊥V
⊤
⊥ − PT⊥(Y )⟩

= ∥M∥tr + ⟨PT (AEBT ), UV ⊤ − PT (Y )⟩+ ⟨PT⊥(AEBT ), U⊥V
⊤
⊥ − PT⊥(Y )⟩

= ∥M∥tr + ⟨PT (AEBT ), UV ⊤ − PT (Y )⟩+ ⟨PT⊥(AEBT ), U⊥V
⊤
⊥ ⟩

−⟨PT⊥(AEBT ), PT⊥(Y )⟩
≥ ∥M∥tr − ∥PT (AEBT )∥F ∥UV ⊤ − PT (Y )∥F + ∥PT⊥(AEBT )∥tr (10)

−∥PT⊥(Y )∥∥PT⊥(AEBT )∥tr
= ∥M∥tr − ∥PT (AEBT )∥F ∥UV ⊤ − PT (Y )∥F + (1− ∥PT⊥(Y )∥) ∥PT⊥(AEBT )∥tr

> ∥M∥tr −
√

r

2ra
∥PT (AEBT )∥F +

1

2
∥PT⊥(AEBT )∥tr (11)

≥ ∥M∥tr + ∥PT⊥(AEBT )∥tr
(
1

2
− γ

√
r

2ra

)
(12)

= ∥Z0∥tr + ∥PT⊥(AEBT )∥tr
(
1

2
− γ

√
r

2ra

)
, (13)

where

• (6) is because A and B are orthonormal;
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• (7) is because ∥UV ⊤ + U⊥V
⊤
⊥ ∥ = 1;

• (8) is because ⟨M1,M2⟩ ≤ ∥M1∥∥M2∥tr;

• (9) is because RΩ(Y ) = Y and RΩ(AEBT ) = 0 such that ⟨AEBT , Y ⟩ = 0;

• (10) is because ⟨M1,M2⟩ ≤ ∥M1∥∥M2∥tr, ⟨M1,M2⟩ ≤ ∥M1∥F ∥M2∥F and that
∥M∥tr =< M,UV T >, where U and V are left and right sigular vectors of M ;

• (11) is because of Condition A1;

• (12) is because of Condition A2 and that Frobenius norm is smaller than trace norm;

• (13) is the same as (6).

When
1

2
≥ γ

√
r

2ra
,

that is,

γ ≤
√

ra
2r

,

we have
∥Z0 + E∥tr > ∥Z0∥tr,

leading to the contradiction.

1.2 When will Condition A2 Hold with High Probability

In this section, we will give Lemma 7 stating when A2 will hold with high probability.

1.2.1 Noncommutative Bernstein Inequality and its Derivations

First, we rewrite the Bernstein Inequality (Theorem 3.2 in [4]) and its derivations, which will be
used later.
Theorem 2. (Theorem 3.2 in [4]) Let X1, . . . ,XL be independent zero-mean random matrices of
dimension d1 × d2. Suppose ρ2k = max{∥E[XkX

T
k ]∥, ∥E[XT

kXk]∥} and ∥Xk∥ ≤ M almost surely
for all k. Then for any τ > 0,

P

[∥∥∥∥∥
L∑

k=1

Xk

∥∥∥∥∥ > τ

]
≤ (d1 + d2) exp

(
−τ2/2∑L

k=1 ρ
2
k +Mτ/3

)
.

And we can easily have,
Lemma 2. Let X1, . . . ,XL be independent zero-mean random matrices of dimension d1 × d2.
Suppose max{∥E[XkX

T
k ]∥, ∥E[XT

kXk]∥} ≤ ρ2k and ∥Xk∥ ≤ M almost surely for all k. Then for
any τ > 0,

P

[∥∥∥∥∥
L∑

k=1

Xk

∥∥∥∥∥ > τ

]
≤ (d1 + d2) exp

(
−τ2/2∑L

k=1 ρ
2
k +Mτ/3

)
.

We then give a lemma derived from Lemma 2,
Lemma 3. Let X1, . . . ,XL be independent zero-mean random matrices of dimension d1 × d2.
Suppose max{∥E[XkX

T
k ]∥, ∥E[XT

kXk]∥} ≤ ρ2k and Xk ≤ M almost surely for all k. We assume
that

M2 ln
d1 + d2

δ
≤ 3

8

∑
ρ2k,

then with a probability at least 1− δ, we have,

∥
L∑

k=1

Xk∥ ≤

√√√√8

3
ln

d1 + d2
δ

L∑
k=1

ρ2k.
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Proof. Assume τ =
√

8
3 ln

d1+d2

δ

∑L
k=1 ρ

2
k (such that δ = (d1 + d2) exp

(
−3τ2

8
∑

ρ2
k

)
), then we have,

Mτ =

√√√√M2
8

3
ln

d1 + d2
δ

L∑
k=1

ρ2k

≤

√√√√3

8

∑
ρ2k

8

3

L∑
k=1

ρ2k

=
L∑

k=1

ρ2k,

such that

(d1 + d2) exp

(
−τ2/2∑
ρ2k +Mτ/3

)
≤ (d1 + d2) exp

(
−3τ2

8
∑

ρ2k

)
.

Based on the Lemma 2, we have,

P

[
∥

L∑
k=1

Xk∥ > τ

]
≤ (d1 + d2) exp

(
−τ2/2∑
ρ2k +Mτ/3

)
≤ (d1 + d2) exp

(
−3τ2

8
∑

ρ2k

)
= δ,

that is

P

∥ L∑
k=1

Xk∥ >

√√√√8

3
ln

d1 + d2
δ

L∑
k=1

ρ2k

 ≤ δ.

We then give Lemma 4 which is also derived from Lemma 2,
Lemma 4. Let X1, . . . ,XL be independent zero-mean random matrices of dimension d1 × d2.
Suppose max{∥E[XkX

T
k ]∥, ∥E[XT

kXk]∥} ≤ ρ2k and Xk ≤ M almost surely for all k. We assume
that

M2 ln
d1 + d2

δ
≥ 3

8

∑
ρ2k.

Then with a probability at least 1− δ, we have,

∥
L∑

k=1

Xk∥ ≤ 8

3
M ln

d1 + d2
δ

.

Proof. Assume τ = 8
3M ln d1+d2

δ (such that δ = (d1 + d2) exp
(−3τ
8M

)
), then we have,

Mτ =
8

3
M2 ln

d1 + d2
δ

≥
L∑

k=1

ρ2k,

such that

(d1 + d2) exp

(
−τ2/2∑
ρ2k +Mτ/3

)
≤ (d1 + d2) exp

(
−3τ

8M

)
= δ.

Based on Lemma 2, we have

P

[
∥

L∑
k=1

Xk∥ > τ

]
≤ (d1 + d2) exp

(
−τ2/2∑
ρ2k +Mτ/3

)
≤ (d1 + d2) exp

(
−3τ

8M

)
= δ,

that is

P

[
∥

L∑
k=1

Xk∥ >
8

3
M ln

d1 + d2
δ

]
≤ δ.
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1.2.2 Bounding ∥PT − mn
|Ω| PTRΩPT ∥

In this subsection, we will bound ∥PT − mn
|Ω| PTRΩPT ∥ in Lemma 5.

Lemma 5. With a probability at least 1− 2n−β+1, we have∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤

√
8βµ2r(ra + rb) lnn

3|Ω|
,

if

|Ω| ≥ 8β

3
µ2r(ra + rb) lnn,

and therefore, for any F ∈ Rn×m,

mn

|Ω|
⟨F, PTRΩPT (F )⟩ ≥ 1

2
∥PT (F )∥2F ,

if |Ω| ≥ Ω0.

Proof. For any F ∈ Rn×m, we have

PTRΩPT (F ) =
∑

(i,j)∈Ω

⟨PT (F ), eie
⊤
j ⟩PT (eie

⊤
j ) =

∑
(i,j)∈Ω

⟨F, PT (eie
⊤
j )⟩PT (eie

⊤
j ).

For any i ∈ [n] and j ∈ [m], define linear operator Ti,j as

Ti,j(F ) = ⟨F, PT (eie
⊤
j )⟩PT (eie

⊤
j ) = PTR(i,j)PT (F ),

where R(i,j)(F ) = eie
⊤
j Fi,j . We write PTRΩPT (F ) as

PTRΩPT (F ) =
∑

(i,j)∈Ω

PTR(i,j)PT (F ) =
∑

(i,j)∈Ω

Ti,j(F ).

Evidently, we have

1

|Ω|
E[PTRΩPT (F )] =

1

mn
PT (F ).

In this way, our objective, that is the spectral norm of PT − mn
|Ω| PTRΩPT , can be seen as the spectral

norm of a sum of |Ω| independent zero-mean random variables, i.e. 1
|Ω|PT − mn

|Ω|Ti,j , where we use
Lemma 3. In this way, We need to compute M and ρ2 as

∥ 1

|Ω|
PT − mn

|Ω|
Ti,j∥

≤ max{∥ 1

|Ω|
PT ∥, ∥

mn

|Ω|
Ti,j∥}

= max{∥ 1

|Ω|
PT ∥,

mn

|Ω|
argmax
∥F∥F=1

∥⟨F, PT (eie
⊤
j )⟩PT (eie

⊤
j )∥F }

= max{∥ 1

|Ω|
PT ∥,

mn

|Ω|
argmax
∥F∥F=1

⟨F, PT (eie
⊤
j )⟩∥PT (eie

⊤
j )∥F }

= max{∥ 1

|Ω|
PT ∥,

mn

|Ω|
∥PT (eie

⊤
j )∥2F }.
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Then our objective is to bound ∥PT (eie
⊤
j )∥2F ,

∥PT (eie
⊤
j )∥2F

= ⟨PT (eie
⊤
j ), eie

⊤
j ⟩

= ⟨PA(eie
⊤
j )PV , eie

⊤
j ⟩+ ⟨PU (eie

⊤
j )PB , eie

⊤
j ⟩ − ⟨PU (eie

⊤
j )PV , eie

⊤
j ⟩

= ∥PA(eie
⊤
j )PV ∥2F + ∥PU (eie

⊤
j )PB∥2F − ∥PU (eie

⊤
j )PV ∥2F

≤ ∥PAei∥2F ∥PV ej∥2F + ∥PUei∥2F ∥PBej∥2F
≤ raµAB

n

rµ0

m
+

rµ0

n

rbµAB

m

=
rµ0µAB(ra + rb)

mn
≤ rµ2(ra + rb)

mn
.

Thus

∥ 1

|Ω|
PT − mn

|Ω|
Ti,j∥ ≤ max{∥ 1

|Ω|
PT ∥,

mn

|Ω|
∥PT (eie

⊤
j )∥2F }

≤ max{∥ 1

|Ω|
PT ∥,

rµ2(ra + rb)

|Ω|
}

= max{ 1

|Ω|
,
rµ2(ra + rb)

|Ω|
}

=
rµ2(ra + rb)

|Ω|
= M.

Then we calculate ρ2i,j , that is

ρ2i,j = max{∥E[( 1

|Ω|
PT − mn

|Ω|
Ti,j)

T (
1

|Ω|
PT − mn

|Ω|
Ti,j)]∥, ∥E[(

1

|Ω|
PT − mn

|Ω|
Ti,j)(

1

|Ω|
PT − mn

|Ω|
Ti,j)

T ]∥}.

If we just consider one part of the max{}, we have

ρ2i,j = ∥E[( 1

|Ω|
PT − mn

|Ω|
Ti,j)

T (
1

|Ω|
PT − mn

|Ω|
Ti,j)]∥

= ∥E[ 1

|Ω|2
PTPT +

m2n2

|Ω|2
Ti,jTi,j −

2mn

|Ω|2
PTTi,j ]∥

= ∥E[ 1

|Ω|2
PTPT +

m2n2

|Ω|2
Ti,jTi,j −

2mn

|Ω|2
PTTi,j ]∥

= ∥ 1

|Ω|2
PT +

m2n2

|Ω|2
E[Ti,jTi,j ]−

2mn

|Ω|2
PTE[Ti,j ]∥

= ∥ 1

|Ω|2
PT +

m2n2

|Ω|2
E[Ti,jTi,j ]−

2mn

|Ω|2
PT

1

mn
PT ∥

= ∥m
2n2

|Ω|2
E[Ti,jTi,j ]−

1

|Ω|2
PT ∥ ≤ max{m

2n2

|Ω|2
E[∥Ti,jTi,j∥],

1

|Ω|2
}

= max{m
2n2

|Ω|2
E[∥PT (eie

⊤
j )∥2F ∥Ti,j∥],

1

|Ω|2
}

≤ max{m
2n2

|Ω|2
max(∥PT (eie

⊤
j )∥2F )E[∥Ti,j∥],

1

|Ω|2
}

≤ max{m
2n2

|Ω|2
rµ2(ra + rb)

mn

1

mn
∥PT ∥,

1

|Ω|2
}

=
rµ2(ra + rb)

|Ω|2
.
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Since Lemma 3, using M = rµ2(ra+rb)
|Ω| and ρ2 = rµ2(ra+rb)

|Ω|2 , we have, with a probability 1 −
2n−β+1, ∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤

√
8

3
ln

n+m

2n−β+1

rµ2(ra + rb)

|Ω|

≤

√
8βrµ2(ra + rb) lnn

3|Ω|
,

with the condition
r2µ4(ra + rb)

2

|Ω|2
ln

n+m

2n−β+1
≤ 3

8

rµ2(ra + rb)

|Ω|
,

that is

ln
n+m

2n−β+1
≤ 3|Ω|

8rµ2(ra + rb)
.

we can tight the condition to,

ln
2n

2n−β+1
≤ 3|Ω|

8rµ2(ra + rb)
,

that is

|Ω| ≥ 8βrµ2(ra + rb) lnn

3
.

If

|Ω| ≥ Ω0 ≥ 32βrµ2(ra + rb) lnn

3
,

that is to say, ∥∥∥∥PT − mn

|Ω|
PTRΩPT

∥∥∥∥ ≤

√
8βrµ2(ra + rb) lnn

3|Ω|
≤ 1

2
,

we can have, following the property of matrix norm, that

⟨F, PT (F )− mn

|Ω|
PTRΩPT (F )⟩ ≤ 1

2
∥PT (F )∥2F ,

from which we will have,

⟨F, PT (F )⟩ − ⟨F, mn

|Ω|
PTRΩPT (F )⟩ ≤ 1

2
∥PT (F )∥2F .

from which we will further have,
1

2
∥PT (F )∥2F ≤ mn

|Ω|
⟨F, PTRΩPT (F )⟩.

1.2.3 Bounding ∥PT⊥ − mn
|Ω| PT⊥RΩPT⊥∥

We will give the result of bounding ∥PT⊥ − mn
|Ω| PT⊥RΩPT⊥∥ in Lemma 6.

Lemma 6. With a probability at least 1− 2n−β+1, we have, if |Ω| ≤ 8βµ2(rarb+r2) lnn
3 = Ω1, then∥∥∥∥PT⊥ − mn

|Ω|
PT⊥RΩPT⊥

∥∥∥∥ ≤ 8βµ2(rarb + r2) lnn

3|Ω|
,

and thus for any Z ∈ Rm×n,

mn

|Ω|
⟨Z,PT⊥RΩPT⊥(Z)⟩ ≤ 16βµ2(rarb + r2) lnn

3|Ω|
∥PT⊥(Z)∥2F .

7



Proof. Similar to the proof of Lemma 5, we have

PT⊥RΩPT⊥(F ) =
∑

(i,,j)∈Ω

PT⊥R(i,j)PT⊥(F ) =
∑

(i,j)∈Ω

Ti,j(F ),

where Ti,j = PT⊥R(i,j)PT⊥ . Evidently, we have

E[PT⊥RΩPT⊥ ] =
|Ω|
mn

PT⊥ .

Now our objective, that is PT⊥ − mn
|Ω| PT⊥RΩPT⊥ , can be seen as a sum of |Ω| independent zero-

mean variables, i.e., 1
|Ω|PT⊥ − mn

|Ω|Ti,j . In this way, we compute M and ρ2 as,

∥ 1

|Ω|
PT⊥ − mn

|Ω|
Ti,j∥ ≤ max{ 1

|Ω|
∥PT⊥∥, mn

|Ω|
∥Ti,j∥}

≤ max{ 1

|Ω|
∥PT⊥∥, mn

|Ω|
∥PT⊥(eie

T
j )∥2F },

and

∥PT⊥(eie
T
j )∥2F = ∥PA(eie

T
j )PB∥2F + ∥PU (eie

T
j )PV ∥2F − ∥PA(eie

T
j )PV ∥2F − ∥PU (eie

T
j )PB∥2F

≤ ∥PA(eie
T
j )PB∥2F + ∥PU (eie

T
j )PV ∥2F

≤ µABra
n

µABrb
m

+
µ0r

n

µ0r

m

=
µ2
ABrarb + µ2

0r
2

mn

≤ µ2(rarb + r2)

mn
,

such that

M = max{ 1

|Ω|
,
mn

|Ω|
µ2(rarb + r2)

mn
} =

µ2(rarb + r2)

|Ω|
.

In the same way,

ρ2 = ∥E[( 1

|Ω|
PT⊥ − mn

|Ω|
Ti,j)

T (
1

|Ω|
PT⊥ − mn

|Ω|
Ti,j)]∥

= ∥m
2n2

|Ω|2
E[Ti,jTi,j ]−

1

|Ω|2
PT⊥∥

≤ max{m
2n2

|Ω|2
µ2(rarb + r2)

mn

1

mn
,

1

|Ω|2
}

=
µ2(rarb + r2)

|Ω|2
.

Using Lemma 3, we have, with probability at least 1− 2n−β+1, we have, if

µ4(rarb + r2)2

|Ω|2
ln

2n

2n−β+1
≥ 3

8

µ2(rarb + r2)

|Ω|
,

that is

|Ω| ≤ 8βµ2(rarb + r2) lnn

3
= Ω1,

we have, ∥∥∥∥PT⊥ − mn

|Ω|
PT⊥RΩPT⊥

∥∥∥∥ ≤ 8

3

µ2(rarb + r2)

|Ω|
ln

2n

2n−β+1

=
8βµ2(rarb + r2) lnn

3|Ω|
.
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And due to the property of matrix norm, we further have,

−8βµ2(rarb + r2) lnn

3|Ω|
∥PT⊥(F )∥2F ≤ ⟨F, PT⊥(F )− mn

|Ω|
PT⊥RΩPT⊥(F )⟩

= ⟨F, PT⊥(F )⟩ − ⟨F, mn

|Ω|
PT⊥RΩPT⊥(F )⟩

= ∥PT⊥(F )∥2F − ⟨F, mn

|Ω|
PT⊥RΩPT⊥(F )⟩,

thus

⟨F, mn

|Ω|
PT⊥RΩPT⊥(F )⟩ ≤ (1 +

8βµ2(rarb + r2) lnn

3|Ω|
)∥PT⊥(F )∥2F .

Because of

|Ω| ≤ 8βµ2(rarb + r2) lnn

3
= Ω1,

we can have

(1 +
8βµ2(rarb + r2) lnn

3|Ω|
) ≤ 16βµ2(rarb + r2) lnn

3|Ω|
,

thus

⟨F, mn

|Ω|
PT⊥RΩPT⊥(F )⟩ ≤ 16βµ2(rarb + r2) lnn

3|Ω|
∥PT⊥(F )∥2F .

1.2.4 Proof of A2 Holding with High Probability

Based on Lemma 5 and 6, we can give the result stating when A2 will hold with high probability,
Lemma 7. With a probability 1− 4n−β+1, for any F ̸= 0, F ∈ Rn×m satisfying RΩ(F ) = 0 and
F = PAFPB , we have

∥PT (F )∥F ≤ γ∥PT⊥(F )∥F ,
where γ is given in (5), provided

Ω0 ≤ |Ω| ≤ Ω1.

Proof. Since RΩ(F ) = 0 and F = PAFPB , we have RΩPT (F ) = −RΩPT⊥(F ). Thus we have
mn

|Ω|
⟨F, PTRΩPT (F )⟩ = mn

|Ω|
⟨F, PT⊥RΩPT⊥(F )⟩.

First, according to Lemma 5, and Lemma 6, with a probability at least 1− 4n−β+1, we have

1

2
∥PT (F )∥2F ≤ mn

|Ω|
⟨F, PTRΩPT (F )⟩ =

mn

|Ω|
⟨F, PT⊥RΩPT⊥(F )⟩

≤ 16βµ2(rarb + r2) lnn

3|Ω|
∥PT⊥(Z)∥2F

≤ 16βµ2(rarb + r2) lnn

3Ω0
∥PT⊥(Z)∥2F

=
1

2
∥PT⊥(Z)∥2F ,

such that

∥PT (F )∥F ≤ 1√
2
∥PT⊥(Z)∥F .

When r ≪ ra, surely we have 1√
2
≤
√

ra
2r , thus completing our proof.
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1.3 When will Condition A1 Hold with High Probability

Before showing the result when will condition A1 hold with high probability, we will bound the
following two values mn

|Ω| ∥PT⊥RΩPT (F )∥ and ∥PT (F )− mn
|Ω| PTRΩPT (F )∥∞ where ∥ · ∥∞ is the

maximum entry of a matrix, in Lemma 8 and 9 respectively.
Lemma 8. For a fixed F ∈ Rn×m, with a probability 1− 2n−β+1, we have,

mn

|Ω|
∥PT⊥RΩPT (F )∥ ≤ ∥PT (F )∥∞

√
8βmnµra lnn

3|Ω|
,

if |Ω| ≥ Ω0.

Proof. Similar to the proof for Lemma 5, we write

PT⊥RΩPT (F ) =
∑

(i,j)∈Ω

⟨F, PT (eie
⊤
j )⟩PT⊥(eie

⊤
j ) =

∑
(i,j)∈Ω

Ti,j ,

where
Ti,j(F ) = ⟨F, PT (eie

⊤
j )⟩PT⊥(eie

⊤
j ).

Evidently,
E[PT⊥RΩPT (F )] = 0.

To use Lemma 3, we compute M and ρ2 as,

M = max
i∈[n],j∈[m]

∥Ti,j∥

≤ max
i∈[n],j∈[m]

max
∥F∥F=1

∥⟨F, PT (eie
⊤
j )⟩PT⊥(eie

⊤
j )∥F

≤ max
i∈[n],j∈[m]

⟨F, PT (eie
⊤
j )⟩∥PT⊥(eie

⊤
j )∥

≤ max
i∈[n],j∈[m]

Ri,jPT (F )∥PT⊥(eie
⊤
j )∥

≤ ∥PT (F )∥∞ max
i∈[n],j∈[m]

∥PT⊥(eiej)∥

≤ ∥PT (F )∥∞

√
µ2(rarb + r2)

mn
,

and

ρ2i,j = max
{
∥E[Ti,jT

∗
i,j ]∥, ∥E[T∗

i,jTi,j ]∥
}

= ∥PT (F )∥2∞ max
{∥∥E [[PT⊥(eie

⊤
j )]

⊤[PT⊥(eie
⊤
j )]
]∥∥ , ∥∥E [[PT⊥(eie

⊤
j )][PT⊥(eie

⊤
j )]

⊤]∥∥}
= ∥PT (F )∥2∞ max

(
∥E[PB⊥eje

⊤
i PA⊥eie

⊤
j PB⊥ ]∥, ∥E[PA⊥eie

⊤
j PB⊥eje

⊤
i PA⊥ ]∥

)
≤ ∥PT (F )∥2∞ max

(µABra
n

∥E[PB⊥eje
⊤
j PB⊥ ]∥, µABrb

m
∥E[PA⊥eie

⊤
i PA⊥ ]∥

)
≤ ∥PT (F )∥2∞ max

(µABra
n

∥PB⊥E[eje
⊤
j ]PB⊥∥, µABrb

m
∥PA⊥E[eie

⊤
i ]PA⊥∥

)
≤ ∥PT (F )∥2∞ max

(µABra
mn

∥PB⊥PB⊥∥, µABrb
nm

∥PA⊥PA⊥∥
)

≤ ∥PT (F )∥2∞
µAB max{ra, rb}

mn
.

Without loss of generality, we assume rb ≤ ra, such that we have,

ρ2i,j ≤ ∥PT (F )∥2∞
µABra
mn

≤ ∥PT (F )∥2∞
µra
mn

.

Use Lemma 3, we have, if

∥PT (F )∥2∞
µ2(rarb + r2)

mn
ln

2n

2n−β+1
≤ 3

8
∥PT (F )∥2∞

µra|Ω|
mn

,
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that is

8µ(rarb + r2)β lnn

3ra
≤ |Ω|, (14)

we have, with a probability 1− 2n−β+1,

mn

|Ω|
∥PT⊥RΩPT (F )∥ ≤ mn

|Ω|
∥PT (F )∥∞

√
8βρ2|Ω| lnn

3

≤ mn

|Ω|
∥PT (F )∥∞

√
8βµra|Ω| lnn

3mn

= ∥PT (F )∥∞

√
8βmnµra lnn

3|Ω|
.

To prove (14) holds, we will using the condition |Ω| ≥ Ω0 (in Lemma 7). More specifically, we
have,

|Ω| ≥ Ω0 ≥ 32βrµ2(ra + rb) lnn

3
≥ 8µ(rarb + r2)β lnn

3ra
,

where the third inequality is because that 4µ(ra + rb) ≥ rb + r2/ra, which is true because µ ≥ 1,
ra ≥ rb and ra ≫ r.

Thus under the condition |Ω| ≥ Ω0, we complete our proof.

Lemma 9. For a fixed Z ∈ Rn×m, with a probability 1− 2n−β+2, we have∥∥∥∥(PT − mn

|Ω|
PTRΩPT

)
(F )

∥∥∥∥
∞

≤

√
8βrµ2(ra + rb) lnn

3|Ω|
∥PT (F )∥∞,

and therefore ∥∥∥∥(PT − mn

|Ω|
PTRΩPT

)
(F )

∥∥∥∥
∞

≤ 1

2
∥PT (F )∥∞,

if |Ω| ≥ Ω0.

Proof. This lemma can be proved by the standard Bernstein Inequality. For each matrix index (a, b),
sample (i, j) uniformly at random to define the random variable

ξa,b = [mnPTRi,jPT (F )− PT (F )]a,b.

We have

E[ξa,b] = 0,

|ξa,b| ≤ ∥PTRi,jPT − PT ∥∥PT (F )∥∞ ≤ rµ2(ra + rb)∥PT (F )∥∞,

and

E[ξ2a,b] = E[([mnPTRi,jPT (F )− PT (F )]a,b)
2]

= E[[m2n2PTRi,jPT (F )]2a,b] + [PT (F )]2a,b − 2mnE[[PT (F )]a,b[PTRi,jPT (F )]a,b]

= m2n2E[[PTRi,jPT (F )]2a,b]− [PT (F )]2a,b

= m2n2E
[(
⟨eae⊤b , PT (eie

⊤
j )⟩⟨F, PT (eie

⊤
j )⟩
)2]− [PT (F )]2a,b

= mn∥PT (F )∥2F ∥PT (eaeb)∥2F − [PT (F )]2a,b

≤ ∥PT (F )∥2∞rµ2(ra + rb).
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Using the standard Bernstein’s inequality, we have,

P

|[mnPTRΩPT (F )− |Ω|PT (F )]a,b| >

√
8|Ω|∥PT (F )∥2∞rµ2(ra + rb) ln

2
2n−β

3

 ≤ 2n−β ,

that is,

P

[∣∣∣∣[mn

|Ω|
PTRΩPT (F )− PT (F )]a,b

∣∣∣∣ >
√

8rβµ2(ra + rb) lnn

3|Ω|
∥PT (F )∥∞

]
≤ 2n−β ,

if

(rµ2(ra + rb)∥PT (F )∥∞)2β lnn ≤ 3

8
|Ω|∥PT (F )∥2∞rµ2(ra + rb),

which is,

(8rµ2(ra + rb))β lnn

3
≤ |Ω|.

Take the union bound, we have, with a probability at least 1− 2n−β+2∥∥∥∥mn

|Ω|
PTRΩPT (F )− PT (F )

∥∥∥∥
∞

≤

√
8rβµ2(ra + rb) lnn

3|Ω|
∥PT (F )∥∞.

If |Ω| ≥ Ω0, we have,∥∥∥∥mn

|Ω|
PTRΩPT (F )− PT (F )

∥∥∥∥
∞

≤ 1

2
∥PT (F )∥∞.

To verify there exists a matrix Y that satisfies the conditions in A1, we follow the idea in [4] and
construct Y as follows. We randomly select qΩ0 entries from Ω, where the value of q will be
discussed later, and divide the set of selected entries into q subsets, denoted by Ω1, . . . ,Ωq , with

|Ωi| = Ω0, i = 1, . . . , q.

We generate a sequence of Yt, t = 1, . . . , q as follows

Yt =
mn

Ω0

t∑
i=1

RΩi(Wi),

where W1 = UV ⊤ and Wt+1 is defined inductively as,

Wt+1 = PT (UV ⊤ − Yt) = Wt −
mn

Ω0
PTRΩt(Wt)

=

(
PT − mn

Ω0
PTRΩtPT

)
Wt (This is because PT (Wt) = Wt).

We construct Y as the last element of the sequence, i.e. Y = Yq . Evidently, we have,

Y = RΩ(Y ). (15)

The following two lemmas show that Y satisfies the other two properties in assumption A1.
Lemma 10. With a probability 1− 2qn−β+1, we have

∥PT (Y )− UV ⊤∥ ≤
√

r

2ra
,

if q ≥ q0.
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Proof. Since
Wt+1 = (PT − mn

Ω0
PTRΩtPT )Wt,

we have

∥PT (Y )− UV ⊤∥ ≤ Πq
i=1

∥∥∥∥PT − mn

Ω0
PTRΩiPT

∥∥∥∥ .
Using Lemma 5, we have, with a probability 1− 2qn−β+1,

∥PT (Y )− UV ⊤∥ ≤ 1

2q
,

and by choosing q = q0 = 1
2 (1 + log2 ra − log2 r), we have ∥PT (Y )− UV ⊤∥ ≤

√
r/2ra.

Lemma 11. With a probability 1− 2qn−β+1 − 2qn−β+2, we have

∥PT⊥(Y )∥ ≤ 1

2
.

Proof. Because of Lemma 9 and Wt+1 = (PT − mn
Ω0

PTRΩtPT )Wt, we have

∥Wt+1∥∞ = ∥(PT − mn

Ω0
PTRΩtPT )Wt∥∞ ≤ 1

2
∥Wt∥∞.

To bound ∥PT⊥(Y )∥, we have,

∥PT⊥(Y )∥ ≤
q∑

i=1

mn

Ω0
∥PT⊥RΩiPT (Wi)∥

≤ α

q∑
i=1

∥Wi∥∞ (Lemma 8)

≤ α∥W1∥∞
q∑

i=1

1

2i−1

= 2α∥W1∥∞

≤ 2×

√
8βmnµra lnn

3|Ω|
×
√

u1r

mn

≤ 2×

√
8µ1rβµra lnn

3|Ω|
,

such that to bound ∥PT⊥(Y )∥ ≤ 1
2 we need,

|Ω| ≥ 128µ1rβµra lnn

3
,

which is surely true when

|Ω| ≥ 128βµmax{µ1, µ}r(ra + rb) lnn

3
= Ω0.

1.4 Proof of Theorem 1

Proof. Through Eq. 15, Lemma 10 and 11, condition A1 in Lemma 1 is satisfied. Through Lemma 7,
condition A2 in Lemma 1 is satisfied. By the conclusion of Lemma 1 and union bound, we finish
the proof.

Notice our condition here requires
q0Ω0 ≤ Ω1,

that is
(1 + log2 ra − log2 r)(8r(ra + rb)) ≤ (rarb + r2),

which holds when ra ≫ r and rb ≫ a.
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Algorithm 1 Maxide (Matrix Completion with Side Information)
1: Initialization: θ1 = θ2 ∈ (0, 1], Z1 = Z2, L, γ > 1, and stopping criterion ϵ
2: k = 2;
3: while L(Zk+1) ≤ (1− ϵ)L(Zk) do
4: Yk = Zk + θk(θ

−1
k−1 − 1)(Zk − Zk−1)

5: Zk+1 = argminZ λ∥Z∥tr +Qk(Z)
6: while E(Zk+1)− E(Yk) ≥ Hk(L) do
7: L = L ∗ γ
8: Zk+1 = argminZ λ∥Z∥tr +Qk(Z)
9: end while

10: θk+1 = (
√

θ4k + 4θ2k − θ2k)/2
11: k = k + 1
12: end while

2 The Maxide Algorithm

Algorithm 1 gives the key steps for solving the optimization problem in (3), where E(Z), Qk(Z)
and Hk are given by

E(Z) =
1

2
∥RΩ(AZB⊤ −M)∥2F , (16)

Qk(Z) =
L

2

∥∥∥∥Z −
(
Yk − 1

L
A⊤RΩ(AYkB −M)B

)∥∥∥∥2
F

, (17)

Hk(L) = Tr((Zk+1 − Yk)
⊤A⊤RΩ(AYkB

⊤ −M)) +
L

2
∥Zk+1 − Yk∥2F . (18)

It is based on the accelerated gradient descent method [5] that achieved a convergence of O(1/T 2),
where T is the number of iterations, by explicitly exploiting the smoothness of the objective function.
The stopping criteria ϵ is set to be a small constant. Besides the variable Z, Algorithm 1 introduces
an auxiliary variable Y , which is updated based on a linear combination of Zk and Zk−1 (Line 4).
The singular value thresholding method [1] is used to solve Zk+1 = argminZ λ∥Z∥tr + Qk(Z)
(Line 5 and Line 8). Finally, instead of using the estimated upper bound for the smoothness of the
objective function, which tends to be loss in practice, Algorithm 1 finds the best smoothness constant
L for the objective function by performing a line search (line 6-9) that terminates till the condition
∥RΩ(AZk+1B

⊤ −M)∥2F −∥RΩ(AYkB
⊤ −M)∥2F ≤ Hk(L) is satisfied. This idea was originally

proposed in [3] and was adopted in [2, 5] to speed up the convergence of matrix completion.

3 Additional Experiments

Here the settings are the same as Section 4.2, but we provide the Average Precision measured on the
whole data, instead of only on test instances. The results are provided in Table 3. We can see that
our proposal either gets the best result, or it is comparable with the best result. Our proposal again
achieves the best result on two big data sets, saying, NUS-WIDE and Flickr.
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Table 3: Results on transductive incomplete multi-label learning. Algo. specifies the name of the algorithms.
Time is the CPU time measured in seconds. AP is Average Precision measured based on all data; the higher the
AP, the better the performance. ω% represents the percentage of training instances with observed label assign-
ment for each label. The best result and its comparable ones (pairwise single-tailed t-test at 95% confidence
level) are bolded.

Data Algo. ω% = 10% ω% = 20% ω% = 40%
time AP time AP time AP

Arts Maxide 3.09 × 100 0.575 3.60 × 100 0.616 4.42 × 100 0.665
MC-b 2.47 × 104 0.456 1.59 × 104 0.556 9.54 × 103 0.692
MC-1 2.39 × 104 0.473 2.05 × 104 0.588 1.27 × 104 0.585
BR-R 1.63 × 101 0.573 2.98 × 101 0.609 5.71 × 101 0.658
BR-1 1.77 × 101 0.572 3.07 × 101 0.609 7.10 × 101 0.657

Business Maxide 3.24 × 100 0.866 3.89 × 100 0.872 5.04 × 100 0.890
MC-b 2.94 × 104 0.861 1.83 × 104 0.862 1.08 × 104 0.879
MC-1 3.25 × 104 0.871 2.18 × 104 0.901 1.21 × 104 0.935
BR-R 1.02 × 101 0.856 1.78 × 101 0.867 3.32 × 101 0.887
BR-1 1.19 × 101 0.856 1.96 × 101 0.868 4.30 × 101 0.887

Computers Maxide 4.67 × 100 0.659 5.81 × 100 0.701 7.79 × 100 0.749
MC-b 5.58 × 104 0.604 3.38 × 104 0.627 1.87 × 104 0.712
MC-1 6.56 × 104 0.649 4.40 × 104 0.684 2.30 × 104 0.772
BR-R 2.34 × 101 0.660 4.13 × 101 0.699 7.68 × 101 0.746
BR-1 2.70 × 101 0.659 4.50 × 101 0.70 8.25 × 101 0.745

Education Maxide 4.40 × 100 0.60 5.41 × 100 0.632 6.73 × 100 0.677
MC-b 3.82 × 104 0.538 2.40 × 104 0.539 1.32 × 104 0.683
MC-1 4.68 × 104 0.538 3.02 × 104 0.622 1.55 × 104 0.750
BR-R 1.77 × 101 0.575 3.16 × 101 0.614 6.01 × 101 0.669
BR-1 1.94 × 101 0.575 3.28 × 101 0.614 6.94 × 101 0.668

Entertainment Maxide 2.77 × 100 0.653 3.41 × 100 0.690 4.56 × 100 0.737
MC-b 4.86 × 104 0.517 3.13 × 104 0.594 1.73 × 104 0.506
MC-1 4.40 × 104 0.527 4.15 × 104 0.604 2.27 × 104 0.703
BR-R 1.89 × 101 0.652 3.38 × 101 0.687 6.47 × 101 0.733
BR-1 2.04 × 101 0.652 3.44 × 101 0.687 6.41 × 101 0.733

Health Maxide 4.31 × 100 0.746 5.36 × 100 0.778 7.11 × 100 0.811
MC-b 4.98 × 104 0.612 2.99 × 104 0.648 1.71 × 104 0.763
MC-1 5.82 × 104 0.665 3.82 × 104 0.711 2.03 × 104 0.813
BR-R 2.03 × 101 0.748 3.61 × 101 0.774 6.83 × 101 0.805
BR-1 2.16 × 101 0.748 3.59 × 101 0.774 7.05 × 101 0.805

Recreation Maxide 2.75 × 100 0.584 3.38 × 100 0.638 4.44 × 100 0.694
MC-b 3.56 × 104 0.418 2.41 × 104 0.521 1.30 × 104 0.670
MC-1 3.48 × 104 0.434 3.25 × 104 0.523 1.90 × 104 0.506
BR-R 1.97 × 101 0.584 3.48 × 101 0.633 6.53 × 101 0.690
BR-1 2.24 × 101 0.584 3.74 × 101 0.632 6.86 × 101 0.689

Reference Maxide 5.11 × 100 0.662 6.47 × 100 0.703 8.49 × 100 0.759
MC-b 9.38 × 104 0.563 5.38 × 104 0.564 2.75 × 104 0.632
MC-1 1.11 × 105 0.608 6.53 × 104 0.606 3.22 × 104 0.563
BR-R 2.28 × 101 0.673 3.89 × 101 0.716 7.08 × 101 0.764
BR-1 2.71 × 101 0.673 4.34 × 101 0.716 7.48 × 101 0.764

Science Maxide 6.21 × 100 0.547 7.67 × 100 0.601 1.02 × 101 0.675
MC-b 6.80 × 104 0.453 3.94 × 104 0.409 2.06 × 104 0.499
MC-1 8.50 × 104 0.457 4.97 × 104 0.558 2.52 × 104 0.457
BR-R 2.93 × 101 0.548 5.06 × 101 0.605 9.30 × 101 0.674
BR-1 3.60 × 101 0.547 5.91 × 101 0.604 1.04 × 102 0.673

Social Maxide 7.18 × 100 0.740 9.09 × 100 0.769 1.21 × 101 0.813
MC-b 1.71 × 105 0.629 9.65 × 104 0.611 4.56 × 104 0.697
MC-1 2.22 × 105 0.642 1.17 × 105 0.662 5.41 × 104 0.613
BR-R 3.09 × 101 0.749 5.35 × 101 0.781 9.74 × 101 0.820
BR-1 3.71 × 101 0.749 6.00 × 101 0.781 1.02 × 102 0.821

Society Maxide 3.69 × 100 0.599 4.54 × 100 0.636 5.80 × 100 0.691
MC-b 4.75 × 104 0.547 2.93 × 104 0.591 1.62 × 104 0.716
MC-1 4.14 × 104 0.570 3.65 × 104 0.638 2.04 × 104 0.770
BR-R 2.50 × 101 0.602 4.54 × 101 0.636 8.59 × 101 0.689
BR-1 2.84 × 101 0.602 4.92 × 101 0.635 9.58 × 101 0.688

NUS-WIDE Maxide 1.47 × 103 0.517 2.10 × 103 0.522 3.53 × 103 0.526
BR-1 1.24 × 102 0.335 2.38 × 102 0.403 4.81 × 102 0.473

Flickr Maxide 1.33 × 104 0.124 1.89 × 104 0.124 2.67 × 104 0.124
BR-1 2.48 × 104 0.065 4.74 × 104 0.075 1.11 × 105 0.078
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