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Abstract

Despite growing interest and practical use in various scientific areas, variable im-
portances derived from tree-based ensemble methods are not well understood from
a theoretical point of view. In this work we characterize the Mean Decrease Im-
purity (MDI) variable importances as measured by an ensemble of totally ran-
domized trees in asymptotic sample and ensemble size conditions. We derive a
three-level decomposition of the information jointly provided by all input vari-
ables about the output in terms of i) the MDI importance of each input variable, ii)
the degree of interaction of a given input variable with the other input variables,
iii) the different interaction terms of a given degree. We then show that this MDI
importance of a variable is equal to zero if and only if the variable is irrelevant
and that the MDI importance of a relevant variable is invariant with respect to
the removal or the addition of irrelevant variables. We illustrate these properties
on a simple example and discuss how they may change in the case of non-totally
randomized trees such as Random Forests and Extra-Trees.

1 Motivation

An important task in many scientific fields is the prediction of a response variable based on a set
of predictor variables. In many situations though, the aim is not only to make the most accurate
predictions of the response but also to identify which predictor variables are the most important
to make these predictions, e.g. in order to understand the underlying process. Because of their
applicability to a wide range of problems and their capability to both build accurate models and,
at the same time, to provide variable importance measures, Random Forests (Breiman, 2001) and
variants such as Extra-Trees (Geurts et al., 2006) have become a major data analysis tool used with
success in various scientific areas.

Despite their extensive use in applied research, only a couple of works have studied the theoretical
properties and statistical mechanisms of these algorithms. Zhao (2000), Breiman (2004), Biau et al.
(2008); Biau (2012), Meinshausen (2006) and Lin and Jeon (2006) investigated simplified to very
realistic variants of these algorithms and proved the consistency of those variants. Little is known
however regarding the variable importances computed by Random Forests like algorithms, and –
as far as we know – the work of Ishwaran (2007) is indeed the only theoretical study of tree-based
variable importance measures.

In this work, we aim at filling this gap and present a theoretical analysis of the Mean Decrease
Impurity importance derived from ensembles of randomized trees. The rest of the paper is organized
as follows: in section 2, we provide the background about ensembles of randomized trees and recall
how variable importances can be derived from them; in section 3, we then derive a characterization
in asymptotic conditions and show how variable importances derived from totally randomized trees
offer a three-level decomposition of the information jointly contained in the input variables about the
output; section 4 shows that this characterization only depends on the relevant variables and section 5
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discusses theses ideas in the context of variants closer to the Random Forest algorithm; section 6
then illustrates all these ideas on an artificial problem; finally, section 7 includes our conclusions
and proposes directions of future works.

2 Background

In this section, we first describe decision trees, as well as forests of randomized trees. Then, we
describe the two major variable importances measures derived from them – including the Mean
Decrease Impurity (MDI) importance that we will study in the subsequent sections.

2.1 Single classification and regression trees and random forests

A binary classification (resp. regression) tree (Breiman et al., 1984) is an input-output model
represented by a tree structure T , from a random input vector (X1, ..., Xp) taking its values in
X1 × ...× Xp = X to a random output variable Y ∈ Y . Any node t in the tree represents a subset
of the space X , with the root node being X itself. Internal nodes t are labeled with a binary test
(or split) st = (Xm < c) dividing their subset in two subsets1 corresponding to their two children
tL and tR, while the terminal nodes (or leaves) are labeled with a best guess value of the output
variable2. The predicted output Ŷ for a new instance is the label of the leaf reached by the instance
when it is propagated through the tree. A tree is built from a learning sample of size N drawn from
P (X1, ..., Xp, Y ) using a recursive procedure which identifies at each node t the split st = s∗ for
which the partition of the Nt node samples into tL and tR maximizes the decrease

∆i(s, t) = i(t)− pLi(tL)− pRi(tR) (1)

of some impurity measure i(t) (e.g., the Gini index, the Shannon entropy, or the variance of Y ),
and where pL = NtL/Nt and pR = NtR/Nt. The construction of the tree stops , e.g., when nodes
become pure in terms of Y or when all variables Xi are locally constant.

Single trees typically suffer from high variance, which makes them not competitive in terms of
accuracy. A very efficient and simple way to address this flaw is to use them in the context of
randomization-based ensemble methods. Specifically, the core principle is to introduce random
perturbations into the learning procedure in order to produce several different decision trees from
a single learning set and to use some aggregation technique to combine the predictions of all these
trees. In Bagging (Breiman, 1996), trees are built on random bootstrap copies of the original data,
hence producing different decision trees. In Random Forests (Breiman, 2001), Bagging is extended
and combined with a randomization of the input variables that are used when considering candidate
variables to split internal nodes t. In particular, instead of looking for the best split s∗ among all
variables, the Random Forest algorithm selects, at each node, a random subset of K variables and
then determines the best split over these latter variables only.

2.2 Variable importances

In the context of ensembles of randomized trees, Breiman (2001, 2002) proposed to evaluate the
importance of a variable Xm for predicting Y by adding up the weighted impurity decreases
p(t)∆i(st, t) for all nodes t where Xm is used, averaged over all NT trees in the forest:

Imp(Xm) =
1

NT

∑
T

∑
t∈T :v(st)=Xm

p(t)∆i(st, t) (2)

and where p(t) is the proportion Nt/N of samples reaching t and v(st) is the variable used in split
st. When using the Gini index as impurity function, this measure is known as the Gini importance or
Mean Decrease Gini. However, since it can be defined for any impurity measure i(t), we will refer
to Equation 2 as the Mean Decrease Impurity importance (MDI), no matter the impurity measure
i(t). We will characterize and derive results for this measure in the rest of this text.

1More generally, splits are defined by a (not necessarily binary) partition of the range Xm of possible values
of a single variable Xm.

2e.g. determined as the majority class j(t) (resp., the average value ȳ(t)) within the subset of the leaf t.

2



In addition to MDI, Breiman (2001, 2002) also proposed to evaluate the importance of a variable
Xm by measuring the Mean Decrease Accuracy (MDA) of the forest when the values of Xm are
randomly permuted in the out-of-bag samples. For that reason, this latter measure is also known as
the permutation importance.

Thanks to popular machine learning softwares (Breiman, 2002; Liaw and Wiener, 2002; Pedregosa
et al., 2011), both of these variable importance measures have shown their practical utility in an
increasing number of experimental studies. Little is known however regarding their inner workings.
Strobl et al. (2007) compare both MDI and MDA and show experimentally that the former is biased
towards some predictor variables. As explained by White and Liu (1994) in case of single decision
trees, this bias stems from an unfair advantage given by the usual impurity functions i(t) towards
predictors with a large number of values. Strobl et al. (2008) later showed that MDA is biased as
well, and that it overestimates the importance of correlated variables – although this effect was not
confirmed in a later experimental study by Genuer et al. (2010). From a theoretical point of view,
Ishwaran (2007) provides a detailed theoretical development of a simplified version of MDA, giving
key insights for the understanding of the actual MDA.

3 Variable importances derived from totally randomized tree ensembles

Let us now consider the MDI importance as defined by Equation 2, and let us assume a set V =
{X1, ..., Xp} of categorical input variables and a categorical output Y . For the sake of simplicity
we will use the Shannon entropy as impurity measure, and focus on totally randomized trees; later
on we will discuss other impurity measures and tree construction algorithms.

Given a training sample L of N joint observations of X1, ..., Xp, Y independently drawn from the
joint distribution P (X1, ..., Xp, Y ), let us assume that we infer from it an infinitely large ensemble
of totally randomized and fully developed trees. In this setting, a totally randomized and fully
developed tree is defined as a decision tree in which each node t is partitioned using a variable Xi

picked uniformly at random among those not yet used at the parent nodes of t, and where each t is
split into |Xi| sub-trees, i.e., one for each possible value of Xi, and where the recursive construction
process halts only when all p variables have been used along the current branch. Hence, in such a
tree, leaves are all at the same depth p, and the set of leaves of a fully developed tree is in bijection
with the set X of all possible joint configurations of the p input variables. For example, if the input
variables are all binary, the resulting tree will have exactly 2p leaves.

Theorem 1. The MDI importance of Xm ∈ V for Y as computed with an infinite ensemble of fully
developed totally randomized trees and an infinitely large training sample is:

Imp(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

I(Xm;Y |B), (3)

where V −m denotes the subset V \ {Xm}, Pk(V −m) is the set of subsets of V −m of cardinality k,
and I(Xm;Y |B) is the conditional mutual information of Xm and Y given the variables in B.

Proof. See Appendix B.

Theorem 2. For any ensemble of fully developed trees in asymptotic learning sample size conditions
(e.g., in the same conditions as those of Theorem 1), we have that

p∑
m=1

Imp(Xm) = I(X1, . . . , Xp;Y ). (4)

Proof. See Appendix C.

Together, theorems 1 and 2 show that variable importances derived from totally randomized trees
in asymptotic conditions provide a three-level decomposition of the information I(X1, . . . , Xp;Y )
contained in the set of input variables about the output variable. The first level is a decomposition
among input variables (see Equation 4 of Theorem 2), the second level is a decomposition along the

3



degrees k of interaction terms of a variable with the other ones (see the outer sum in Equation 3 of
Theorem 1), and the third level is a decomposition along the combinations B of interaction terms of
fixed size k of possible interacting variables (see the inner sum in Equation 3).

We observe that the decomposition includes, for each variable, each and every interaction term
of each and every degree weighted in a fashion resulting only from the combinatorics of possible
interaction terms. In particular, since all I(Xm;Y |B) terms are at most equal to H(Y ), the prior
entropy of Y , the p terms of the outer sum of Equation 3 are each upper bounded by

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

H(Y ) =
1

Ck
p

1

p− k
Ck

p−1H(Y ) =
1

p
H(Y ).

As such, the second level decomposition resulting from totally randomized trees makes the p sub-
importance terms 1

Ck
p

1
p−k

∑
B∈Pk(V −m) I(Xm;Y |B) to equally contribute (at most) to the total

importance, even though they each include a combinatorially different number of terms.

4 Importances of relevant and irrelevant variables

Following Kohavi and John (1997), let us define as relevant to Y with respect to V a variableXm for
which there exists at least one subsetB ⊆ V (possibly empty) such that I(Xm;Y |B) > 0.3 Thus we
define as irrelevant to Y with respect to V a variable Xi for which, for all B ⊆ V , I(Xi;Y |B) = 0.
Remark that if Xi is irrelevant to Y with respect to V , then by definition it is also irrelevant to Y
with respect to any subset of V .
Theorem 3. Xi ∈ V is irrelevant to Y with respect to V if and only if its infinite sample size
importance as computed with an infinite ensemble of fully developed totally randomized trees built
on V for Y is 0.

Proof. See Appendix D.

Lemma 4. Let Xi /∈ V be an irrelevant variable for Y with respect to V . The infinite sample size
importance of Xm ∈ V as computed with an infinite ensemble of fully developed totally randomized
trees built on V for Y is the same as the importance derived when using V ∪ {Xi} to build the
ensemble of trees for Y .

Proof. See Appendix E.

Theorem 5. Let VR ⊆ V be the subset of all variables in V that are relevant to Y with respect
to V . The infinite sample size importance of any variable Xm ∈ VR as computed with an infinite
ensemble of fully developed totally randomized trees built on VR for Y is the same as its importance
computed in the same conditions by using all variables in V . That is:

Imp(Xm) =

p−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

I(Xm;Y |B)

=

r−1∑
l=0

1

Cl
r

1

r − l
∑

B∈Pl(V
−m
R )

I(Xm;Y |B)

(5)

where r is the number of relevant variables in VR.

Proof. See Appendix F.

Theorems 3 and 5 show that the importances computed with an ensemble of totally randomized
trees depends only on the relevant variables. Irrelevant variables have a zero importance and do not
affect the importance of relevant variables. Practically, we believe that such properties are desirable
conditions for a sound criterion assessing the importance of a variable. Indeed, noise should not be
credited of any importance and should not make any other variable more (or less) important.

3Among the relevant variables, we have the marginally relevant ones, for which I(Xm;Y ) > 0, the strongly
relevant ones, for which I(Xm;Y |V −m) > 0, and the weakly relevant variables, which are relevant but not
strongly relevant.
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5 Random Forest variants

In this section, we consider and discuss variable importances as computed with other types of en-
sembles of randomized trees. We first show how our results extend to any other impurity measure,
and then analyze importances computed by depth-pruned ensemble of randomized trees and those
computed by randomized trees built on random subspaces of fixed size. Finally, we discuss the case
of non-totally randomized trees.

5.1 Generalization to other impurity measures

Although our characterization in sections 3 and 4 uses Shannon entropy as the impurity measure,
we show in Appendix I that theorems 1, 3 and 5 hold for other impurity measures, simply substi-
tuting conditional mutual information for conditional impurity reduction in the different formulas
and in the definition of irrelevant variables. In particular, our results thus hold for the Gini index in
classification and can be extended to regression problems using variance as the impurity measure.

5.2 Pruning and random subspaces

In sections 3 and 4, we considered totally randomized trees that were fully developed, i.e. until all
p variables were used within each branch. When totally randomized trees are developed only up to
some smaller depth q ≤ p, we show in Proposition 6 that the variable importances as computed by
these trees is limited to the q first terms of Equation 3. We then show in Proposition 7 that these
latter importances are actually the same as when each tree of the ensemble is fully developed over a
random subspace (Ho, 1998) of q variables drawn prior to its construction.
Proposition 6. The importance of Xm ∈ V for Y as computed with an infinite ensemble of pruned
totally randomized trees built up to depth q ≤ p and an infinitely large training sample is:

Imp(Xm) =

q−1∑
k=0

1

Ck
p

1

p− k
∑

B∈Pk(V −m)

I(Xm;Y |B) (6)

Proof. See Appendix G.

Proposition 7. The importance of Xm ∈ V for Y as computed with an infinite ensemble of pruned
totally randomized trees built up to depth q ≤ p and an infinitely large training sample is identical
to the importance as computed for Y with an infinite ensemble of fully developed totally randomized
trees built on random subspaces of q variables drawn from V .

Proof. See Appendix H.

As long as q ≥ r (where r denotes the number of relevant variables in V ), it can easily be shown
that all relevant variables will still obtain a strictly positive importance, which will however differ
in general from the importances computed by fully grown totally randomized trees built over all
variables. Also, each irrelevant variable of course keeps an importance equal to zero, which means
that, in asymptotic conditions, these pruning and random subspace methods would still allow us
identify the relevant variables, as long as we have a good upper bound q on r.

5.3 Non-totally randomized trees

In our analysis in the previous sections, trees are built totally at random and hence do not directly
relate to those built in Random Forests (Breiman, 2001) or in Extra-Trees (Geurts et al., 2006). To
better understand the importances as computed by those algorithms, let us consider a close variant
of totally randomized trees: at each node t, let us instead draw uniformly at random 1 ≤ K ≤ p
variables and let us choose the one that maximizes ∆i(t). Notice that, for K = 1, this procedure
amounts to building ensembles of totally randomized trees as defined before, while, for K = p, it
amounts to building classical single trees in a deterministic way.

First, the importance of Xm ∈ V as computed with an infinite ensemble of such randomized trees
is not the same as Equation 3. For K > 1, masking effects indeed appear: at t, some variables are
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never selected because there always is some other variable for which ∆i(t) is larger. Such effects
tend to pull the best variables at the top of the trees and to push the others at the leaves. As a result,
the importance of a variable no longer decomposes into a sum including all I(Xm;Y |B) terms.
The importance of the best variables decomposes into a sum of their mutual information alone or
conditioned only with the best others – but not conditioned with all variables since they no longer
ever appear at the bottom of trees. By contrast, the importance of the least promising variables
now decomposes into a sum of their mutual information conditioned only with all variables – but
not alone or conditioned with a couple of others since they no longer ever appear at the top of
trees. In other words, because of the guided structure of the trees, the importance of Xm now takes
into account only some of the conditioning sets B, which may over- or underestimate its overall
relevance.

To make things clearer, let us consider a simple example. Let X1 perfectly explains Y and let X2 be
a slightly noisy copy of X1 (i.e., I(X1;Y ) ≈ I(X2;Y ), I(X1;Y |X2) = ε and I(X2;Y |X1) = 0).
Using totally randomized trees, the importances of X1 and X2 are nearly equal – the importance of
X1 being slightly higher than the importance of X2:

Imp(X1) =
1

2
I(X1;Y ) +

1

2
I(X1;Y |X2) =

1

2
I(X1;Y ) +

ε

2

Imp(X2) =
1

2
I(X2;Y ) +

1

2
I(X2;Y |X1) =

1

2
I(X2;Y ) + 0

In non-totally randomized trees, for K = 2, X1 is always selected at the root node and X2 is
always used in its children. Also, since X1 perfectly explains Y , all its children are pure and the
reduction of entropy when splitting on X2 is null. As a result, ImpK=2(X1) = I(X1;Y ) and
ImpK=2(X2) = I(X2;Y |X1) = 0. Masking effects are here clearly visible: the true importance
of X2 is masked by X1 as if X2 were irrelevant, while it is only a bit less informative than X1.

As a direct consequence of the example above, for K > 1, it is no longer true that a variable is
irrelevant if and only if its importance is zero. In the same way, it can also be shown that the
importances become dependent on the number of irrelevant variables. Let us indeed consider the
following counter-example: let us add in the previous example an irrelevant variableXi with respect
to {X1, X2} and let us keep K = 2. The probability of selecting X2 at the root node now becomes
positive, which means that ImpK=2(X2) now includes I(X2;Y ) > 0 and is therefore strictly larger
than the importance computed before. For K fixed, adding irrelevant variables dampens masking
effects, which thereby makes importances indirectly dependent on the number of irrelevant variables.

In conclusion, the importances as computed with totally randomized trees exhibit properties that do
not possess, by extension, neither random forests nor extra-trees. With totally randomized trees, the
importance of Xm only depends on the relevant variables and is 0 if and only if Xm is irrelevant.
As we have shown, it may no longer be the case for K > 1. Asymptotically, the use of totally
randomized trees for assessing the importance of a variable may therefore be more appropriate. In
a finite setting (i.e., a limited number of samples and a limited number of trees), guiding the choice
of the splitting variables remains however a sound strategy. In such a case, I(Xm;Y |B) cannot be
measured neither for all Xm nor for all B. It is therefore pragmatic to promote those that look the
most promising – even if the resulting importances may be biased.

6 Illustration on a digit recognition problem

In this section, we consider the digit recognition problem of (Breiman et al., 1984) for illustrating
variable importances as computed with totally randomized trees. We verify that they match with our
theoretical developments and that they decompose as foretold. We also compare these importances
with those computed by an ensemble of non-totally randomized trees, as discussed in section 5.3,
for increasing values of K.

Let us consider a seven-segment indicator displaying numerals using horizontal and vertical lights
in on-off combinations, as illustrated in Figure 1. Let Y be a random variable taking its value in
{0, 1, ..., 9} with equal probability and let X1, ..., X7 be binary variables whose values are each
determined univocally given the corresponding value of Y in Table 1.

Since Table 1 perfectly defines the data distribution, and given the small dimensionality of the prob-
lem, it is practicable to directly apply Equation 3 to compute variable importances. To verify our
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X1

X2 X3

X4

X5 X6

X7

Figure 1: 7-segment display

y x1 x2 x3 x4 x5 x6 x7
0 1 1 1 0 1 1 1
1 0 0 1 0 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1

Table 1: Values of Y,X1, ..., X7

Eqn. 3 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
X1 0.412 0.414 0.362 0.327 0.309 0.304 0.305 0.306
X2 0.581 0.583 0.663 0.715 0.757 0.787 0.801 0.799
X3 0.531 0.532 0.512 0.496 0.489 0.483 0.475 0.475
X4 0.542 0.543 0.525 0.484 0.445 0.414 0.409 0.412
X5 0.656 0.658 0.731 0.778 0.810 0.827 0.831 0.835
X6 0.225 0.221 0.140 0.126 0.122 0.122 0.121 0.120
X7 0.372 0.368 0.385 0.392 0.387 0.382 0.375 0.372∑

3.321 3.321 3.321 3.321 3.321 3.321 3.321 3.321

Table 2: Variable importances as computed with an ensemble of randomized trees, for increasing values of K.
Importances at K = 1 follow their theoretical values, as predicted by Equation 3 in Theorem 1. However, as K
increases, importances diverge due to masking effects. In accordance with Theorem 2, their sum is also always
equal to I(X1, . . . , X7;Y ) = H(Y ) = log2(10) = 3.321 since inputs allow to perfectly predict the output.

theoretical developments, we then compare in Table 2 variable importances as computed by Equa-
tion 3 and those yielded by an ensemble of 10000 totally randomized trees (K = 1). Note that
given the known structure of the problem, building trees on a sample of finite size that perfectly
follows the data distribution amounts to building them on a sample of infinite size. At best, trees
can thus be built on a 10-sample dataset, containing exactly one sample for each of the equiprobable
outcomes of Y . As the table illustrates, the importances yielded by totally randomized trees match
those computed by Equation 3, which confirms Theorem 1. Small differences stem from the fact
that a finite number of trees were built in our simulations, but those discrepancies should disappear
as the size of the ensemble grows towards infinity. It also shows that importances indeed add up to
I(X1, ...X7;Y ), which confirms Theorem 2. Regarding the actual importances, they indicate that
X5 is stronger than all others, followed – in that order – by X2, X4 and X3 which also show large
importances. X1, X7 and X6 appear to be the less informative. The table also reports importances
for increasing values of K. As discussed before, we see that a large value of K yields importances
that can be either overestimated (e.g., at K = 7, the importances of X2 and X5 are larger than at
K = 1) or underestimated due to masking effects (e.g., at K = 7, the importances of X1, X3, X4

and X6 are smaller than at K = 1, as if they were less important). It can also be observed that
masking effects may even induce changes in the variable rankings (e.g., compare the rankings at
K = 1 and at K = 7), which thus confirms that importances are differently affected.

To better understand why a variable is important, it is also insightful to look at its decomposition into
its p sub-importances terms, as shown in Figure 2. Each row in the plots of the figure corresponds
to one the p = 7 variables and each column to a size k of conditioning sets. As such, the value at
row m and column k corresponds the importance of Xm when conditioned with k other variables
(e.g., to the term 1

Ck
p

1
p−k

∑
B∈Pk(V −m) I(Xm;Y |B) in Equation 3 in the case of totally randomized

trees). In the left plot, for K = 1, the figure first illustrates how importances yielded by totally
randomized trees decomposes along the degrees k of interactions terms. We can observe that they
each equally contribute (at most) the total importance of a variable. The plot also illustrates why
X5 is important: it is informative either alone or conditioned with any combination of the other
variables (all of its terms are significantly larger than 0). By contrast, it also clearly shows why
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Figure 2: Decomposition of variable importances along the degrees k of interactions of one variable with the
other ones. At K = 1, all I(Xm;Y |B) are accounted for in the total importance, while at K = 7 only some
of them are taken into account due to masking effects.

X6 is not important: neither alone nor combined with others X6 seems to be very informative
(all of its terms are close to 0). More interestingly, this figure also highlights redundancies: X7

is informative alone or conditioned with a couple of others (the first terms are significantly larger
than 0), but becomes uninformative when conditioned with many others (the last terms are closer
to 0). The right plot, for K = 7, illustrates the decomposition of importances when variables are
chosen in a deterministic way. The first thing to notice is masking effects. Some of the I(Xm;Y |B)
terms are indeed clearly never encountered and their contribution is therefore reduced to 0 in the
total importance. For instance, for k = 0, the sub-importances of X2 and X5 are positive, while
all others are null, which means that only those two variables are ever selected at the root node,
hence masking the others. As a consequence, this also means that the importances of the remaining
variables is biased and that it actually only accounts of their relevance when conditioned to X2

or X5, but not of their relevance in other contexts. At k = 0, masking effects also amplify the
contribution of I(X2;Y ) (resp. I(X5;Y )) since X2 (resp. X5) appears more frequently at the root
node than in totally randomized trees. In addition, because nodes become pure before reaching
depth p, conditioning sets of size k ≥ 4 are never actually encountered, which means that we can no
longer know whether variables are still informative when conditioned to many others. All in all, this
figure thus indeed confirms that importances as computed with non-totally randomized trees take
into account only some of the conditioning sets B, hence biasing the measured importances.

7 Conclusions

In this work, we made a first step towards understanding variable importances as computed with
a forest of randomized trees. In particular, we derived a theoretical characterization of the Mean
Decrease Impurity importances as computed by totally randomized trees in asymptotic conditions.
We showed that they offer a three-level decomposition of the information jointly provided by all
input variables about the output (Section 3). We then demonstrated (Section 4) that MDI importances
as computed by totally randomized trees exhibit desirable properties for assessing the relevance of
a variable: it is equal to zero if and only if the variable is irrelevant and it depends only on the
relevant variables. We discussed the case of Random Forests and Extra-Trees (Section 5) and finally
illustrated our developments on an artificial but insightful example (Section 6).

There remain several limitations to our framework that we would like address in the future. First, our
results should be adapted to binary splits as used within an actual Random Forest-like algorithm. In
this setting, any node t is split in only two subsets, which means that any variable may then appear
one or several times within a branch, and thus should make variable importances now dependent on
the cardinalities of the input variables. In the same direction, our framework should also be extended
to the case of continuous variables. Finally, results presented in this work are valid in an asymptotic
setting only. An important direction of future work includes the characterization of the distribution
of variable importances in a finite setting.
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