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Abstract

We present and study a distributed optimization algorithm by employing a stochas-
tic dual coordinate ascent method. Stochastic dual coordinate ascent methods en-
joy strong theoretical guarantees and often have better performances than stochas-
tic gradient descent methods in optimizing regularized loss minimization prob-
lems. It still lacks of efforts in studying them in a distributed framework. We
make a progress along the line by presenting a distributed stochastic dual coor-
dinate ascent algorithm in a star network, with an analysis of the tradeoff be-
tween computation and communication. We verify our analysis by experiments
on real data sets. Moreover, we compare the proposed algorithm with distributed
stochastic gradient descent methods and distributed alternating direction methods
of multipliers for optimizing SVMs in the same distributed framework, and ob-
serve competitive performances.

1 Introduction
In recent years of machine learning applications, the size of data has been observed with an unprece-
dented growth. In order to efficiently solve large scale machine learning problems with millions of
and even billions of data points, it has become popular to take advantage of the computational power
of multi-cores in a single machine or multi-machines on a cluster to optimize the problems in a par-
allel fashion or a distributed fashion [2].

In this paper, we consider the following generic optimization problem arising ubiquitously in super-
vised machine learning applications:

min
w∈Rd

P (w), where P (w) =
1

n

n∑
i=1

φ(w>xi; yi) + λg(w), (1)

where w ∈ Rd denotes the linear predictor to be optimized, (xi, yi), xi ∈ Rd, i = 1, . . . , n denote
the instance-label pairs of a set of data points, φ(z; y) denotes a loss function and g(w) denotes a
regularization on the linear predictor. Throughout the paper, we assume the loss function φ(z; y) is
convex w.r.t the first argument and we refer to the problem in (1) as Regularized Loss Minimization
(RLM) problem.

The RLM problem has been studied extensively in machine learning, and many efficient sequential
algorithms have been developed in the past decades [8, 16, 10]. In this work, we aim to solve
the problem in a distributed framework by leveraging the capabilities of tens of hundreds of CPU
cores. In contrast to previous works of distributed optimization that are based on either (stochastic)
gradient descent (GD and SGD) methods [21, 11] or alternating direction methods of multipliers
(ADMM) [2, 23], we motivate our research from the recent advances on (stochastic) dual coordinate
ascent (DCA and SDCA) algorithms [8, 16]. It has been observed that DCA and SDCA algorithms
can have comparable and sometimes even better convergence speed than GD and SGD methods.
However, it lacks efforts in studying them in a distributed fashion and comparing to those SGD-
based and ADMM-based distributed algorithms.
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In this work, we bridge the gap by developing a Distributed Stochastic Dual Coordinate Ascent
(DisDCA) algorithm for solving the RLM problem. We summarize the proposed algorithm and our
contributions as follows:

• The presented DisDCA algorithm possesses two key characteristics: (i) parallel computa-
tion over K machines (or cores); (ii) sequential updating of m dual variables per iteration
on individual machines followed by a “reduce” step for communication among processes.
It enjoys a strong guarantee of convergence rates for smooth or no-smooth loss functions.

• We analyze the tradeoff between computation and communication of DisDCA invoked by
m and K. Intuitively, increasing the number m of dual variables per iteration aims at
reducing the number of iterations for convergence and therefore mitigating the pressure
caused by communication. Theoretically, our analysis reveals the effective region of m,K
versus the regularization path of λ.

• We present a practical variant of DisDCA and make a comparison with distributed ADMM.
We verify our analysis by experiments and demonstrate the effectiveness of DisDCA by
comparing with SGD-based and ADMM-based distributed optimization algorithms run-
ning in the same distributed framework.

2 Related Work
Recent years have seen the great emergence of distributed algorithms for solving machine learning
related problems [2, 9]. In this section, we focus our review on distributed optimization techniques.
Many of them are based on stochastic gradient descent methods or alternating direction methods of
multipliers.

Distributed SGD methods utilize the computing resources of multiple machines to handle a large
number of examples simultaneously, which to some extent alleviates the high computational load
per iteration of GD methods and also improve the performances of sequential SGD methods. The
simplest implementation of a distributed SGD method is to calculate the stochastic gradients on
multiple machines, and to collect these stochastic gradients for updating the solution on a master
machine. This idea has been implemented in a MapReduce framework [13, 4] and a MPI frame-
work [21, 11]. Many variants of GD methods have be deployed in a similar style [1]. ADMM
has been employed for solving machine learning problems in a distributed fashion [2, 23], due to
its superior convergences and performances [5, 23]. The original ADMM [7] is proposed for solv-
ing equality constrained minimization problems. The algorithms that adopt ADMM for solving
the RLM problems in a distributed framework are based on the idea of global variable consensus.
Recently, several works [19, 14] have made efforts to extend ADMM to its online or stochastic
versions. However, they suffer relatively low convergence rates.

The advances on DCA and SDCA algorithms [12, 8, 16] motivate the present work. These studies
have shown that in some regimes (e.g., when a relatively high accurate solution is needed), SDCA
can outperform SGD methods. In particular, S. Shalev-Shwartz and T. Zhang [16] have derived
new bounds on the duality gap, which have been shown to be superior to earlier results. However,
there still lacks of efforts in extending these types of methods to a distributed fashion and comparing
them with SGD-based algorithms and ADMM-based distributed algorithms. We bridge this gap by
presenting and studying a distributed stochastic dual ascent algorithm. It has been brought to our
attention that M. Takác et al. [20] have recently published a paper to study the parallel speedup of
mini-batch primal and dual methods for SVM with hinge loss and establish the convergence bounds
of mini-batch Pegasos and SDCA depending on the size of the mini-batch. This work differenti-
ates from their work in that (i) we explicitly take into account the tradeoff between computation
and communication; (ii) we present a more practical variant and make a comparison between the
proposed algorithm and ADMM in view of solving the subproblems, and (iii) we conduct empirical
studies for comparison with these algorithms. Other related but different work include [3], which
presents Shotgun, a parallel coordinate descent algorithm for solving `1 regularized minimization
problems.

There are other unique issues arising in distributed optimization, e.g., synchronization vs asynchro-
nization, star network vs arbitrary network. All these issues are related to the tradeoff between
communication and computation [22, 24]. Research in these aspects are beyond the scope of this
work and can be considered as future work.
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3 Distributed Stochastic Dual Coordinate Ascent
In this section, we present a distributed stochastic dual coordinate ascent (DisDCA) algorithm and
its convergence bound, and analyze the tradeoff between computation and communication. We also
present a practical variant of DisDCA and make a comparison with ADMM. We first present some
notations and preliminaries.

For simplicity of presentation, we let φi(w>xi) = φ(w>xi; yi). Let φ∗i (α) and g∗(v) be the convex
conjugate of φi(z) and g(w), respectively. We assume g∗(v) is continuous differentiable. It is easy
to show that the problem in (1) has a dual problem given below:

max
α∈Rn

D(α), where D(α) =
1

n

n∑
i=1

−φ∗i (−αi)− λg∗
(

1

λn

n∑
i=1

αixi

)
. (2)

Let w∗ be the optimal solution to the primal problem in (1) and α∗ be the optimal solution to the
dual problem in (2). If we define v(α) = 1

λn

∑n
i=1 αixi, and w(α) = ∇g∗(v), it can be verified

that w(α∗) = w∗, P (w(α∗)) = D(α∗). In this paper, we aim to optimize the dual problem (2)
in a distributed environment where the data are distributed evenly across over K machines. Let
(xk,i, yk,i), i = 1, . . . , nk denote the training examples on machine k. For ease of analysis, we
assume nk = n/K. We denote by αk,i the associated dual variable of xk,i, and by φk,i(·), φ∗k,i(·)
the corresponding loss function and its convex conjugate. To simplify the analysis of our algorithm
and without loss of generality, we make the following assumptions about the problem:

• φi(z) is either a (1/γ)-smooth function or a L-Lipschitz continuous function (c.f. the
definitions given below). Exemplar smooth loss functions include e.g., L2 hinge loss
φi(z) = max(0, 1 − yiz)2, logistic loss φi(z) = log(1 + exp(−yiz)). Commonly used
Lipschitz continuous functions are L1 hinge loss φi(z) = max(0, 1 − yiz) and absolute
loss φi(z) = |yi − z|.
• g(w) is a 1-strongly convex function w.r.t to ‖ · ‖2. Examples include `2 norm square

1/2‖w‖22 and elastic net 1/2‖w‖22 + µ‖w‖1.
• For all i, ‖xi‖2 ≤ 1, φi(z) ≥ 0 and φi(0) ≤ 1.

Definition 1. A function φ(z) : R → R is a L-Lipschitz continuous function, if for all a, b ∈ R
|φ(a) − φ(b)| ≤ L|a − b|. A function φ(z) : R → R is (1/γ)-smooth, if it is differentiable and its
gradient ∇φ(z) is (1/γ)-Lipschitz continuous, or for all a, b ∈ R, we have φ(a) ≤ φ(b) + (a −
b)>∇φ(b) + 1

2γ (a− b)2. A convex function g(w) : Rd → R is β-strongly convex w.r.t a norm ‖ · ‖,
if for any s ∈ [0, 1] and w1, w2 ∈ Rd, g(sw1 + (1 − s)w2) ≤ sg(w1) + (1 − s)g(w2) − 1

2s(1 −
s)β‖w1 − w2‖2.

3.1 DisDCA Algorithm: The Basic Variant

The detailed steps of the basic variant of the DisDCA algorithm are described by a pseudo code in
Figure 1. The algorithm deploys K processes running simultaneously on K machines (or cores)1,
each of which only accesses its associated training examples. Each machine calls the same proce-
dure SDCA-mR, where mR manifests two unique characteristics of SDCA-mR compared to SDCA.
(i) At each iteration of the outer loop,m examples instead of one are randomly sampled for updating
their dual variables. This is implemented by an inner loop that costs the most computation at each
outer iteration. (ii) After updating the m randomly selected dual variables, it invokes a function
Reduce to collect the updated information from all K machines that accommodates naturally to the
distributed environment. The Reduce function acts exactly like MPI::AllReduce if one wants to
implement the algorithm in a MPI framework. It essentially sends ∆vk = 1

λn

∑m
j=1 ∆αk,ijxij to a

process, adds all of them to vt−1, and then broadcasts the updated vt to allK processes. It is this step
that involves the communication among theK machines. Intuitively, smallerm yields less computa-
tion and slower convergence and therefore more communication and vice versa. In next subsection,
we would give a rigorous analysis about the convergence, computation and communication.

Remark: The goal of the updates is to increase the dual objective. The particular options presented
in routine IncDual is to maximize the lower bounds of the dual objective. More options are provided

1We use process and machine interchangeably.
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DisDCA Algorithm (The Basic Variant)
Start K processes by calling the following procedure SDCA-mR with input m and T

Procedure SDCA-mR
Input: number of iterations T , number of samples m at each iteration
Let: α0

k = 0, v0 = 0, w0 = ∇g∗(0)
Read Data: (xk,i, yk,i), i = 1, · · · , nk
Iterate: for t = 1, . . . , T

Iterate: for j = 1, . . . ,m
Randomly pick i ∈ {1, · · · , nk} and let ij = i
Find ∆αk,i by calling routine IncDual(w = wt−1, scl = mK)
Set αtk,i = αt−1

k,i + ∆αk,i
Reduce: vt : 1

λn

∑m
j=1 ∆αk,ijxk,ij → vt−1

Update: wt = ∇g∗(vt)

Routine IncDual(w, scl)
Option I:

Let ∆αk,i = max
∆α
−φ∗k,i(−(αt−1

k,i + ∆α))−∆αx>k,iw −
scl

2λn
(∆α)2‖xk,i‖22

Option II:
Let zt−1

k,i = −∂φk,i(x>k,iw)− αt−1
k,i

Let ∆αk,i = sk,iz
t−1
k,i where sk,i ∈ [0, 1] maximize

s(φ∗k,i(−αt−1
k,i ) + φk,i(x

>
k,iw

t−1) + zt−1
k,i x

>
k,iw) +

γs(1− s)
2

(zt−1
k,i )2 − scl

2λn
s2(zt−1

k,i )2‖xk,i‖22

Figure 1: The Basic Variant of the DisDCA Algorithm

in supplementary materials. The solutions to option I have closed forms for several loss functions
(e.g., L1, L2 hinge losses, square loss and absolute loss) [16]. Note that different from the options
presented in [16], the ones in Incdual use a slightly different scalar factor mK in the quadratic term
to adapt for the number of updated dual variables.

3.2 Convergence Analysis: Tradeoff between Computation and Communication

In this subsection, we present the convergence bound of the DisDCA algorithm and analyze the
tradeoff between computation, convergence or communication. The theorem below states the con-
vergence rate of DisDCA algorithm for smooth loss functions (The omitted proofs and other deriva-
tions can be found in supplementary materials) .
Theorem 1. For a (1/γ)-smooth loss function φi and a 1-strongly convex function g(w), to obtain
an εp duality gap of E[P (wT )−D(αT )] ≤ εP , it suffices to have

T ≥
(

n

mK
+

1

λγ

)
log

((
n

mK
+

1

λγ

)
1

εP

)
.

Remark: In [20], the authors established a convergence bound of mini-batch SDCA for L1-SVM
that depends on the spectral norm of the data. Applying their trick to our algorithmic framework is
equivalent to replacing the scalarmK in DisDCA algorithm with βmK that characterizes the spectral
norm of sampled data across all machines XmK = (x11, . . . x1m, . . . , xKm). The resulting conver-
gence bound for (1/γ)-smooth loss functions is given by substituting the term 1

λγ with βmK
mK

1
λγ .

The value of βmK is usually smaller than mK and the authors in [20] have provided an expression
for computing βmK based on the spectral norm σ of the data matrix X/

√
n = (x1, . . . xn)/

√
n.

However, in practice the value of σ cannot be computed exactly. A safe upper bound of σ = 1
assuming ‖xi‖2 ≤ 1 gives the value mK to βmK , which reduces to the scalar as presented in Fig-
ure 1. The authors in [20] also presented an aggressive variant to adjust β adaptively and observed
improvements. In Section 3.3 we develop a practical variant that enjoys more speed-up compared to
the basic variant and their aggressive variant.

Tradeoff between Computation and Communication We are now ready to discuss the tradeoff
between computation and communication based on the worst case analysis as indicated by Theo-
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rem 1. For the analysis of tradeoff between computation and communication invoked by the number
of samples m and the number of machines K, we fix the number of examples n and the number of
dimensions d. When we analyze the tradeoff involving m, we fix K and vice versa. In the follow-
ing analysis, we assume the size of model to be communicated is fixed d and is independent of m,
though in some cases (e.g., high dimensional sparse data) one may communicate a smaller size of
data that depends on m.

It is notable that in the bound of the number of iterations, there is a term 1/(λγ). To take this term
into account, we first consider an interesting region of λ for achieving a good generalization error.
Several pieces of works [17, 18, 6] have suggested that in order to obtain an optimal generalization
error, the optimal λ scales like Θ(n−1/(1+τ)), where τ ∈ (0, 1]. For example, the analysis in [18]
suggests λ = Θ

(
1√
n

)
for SVM.

First, we consider the tradeoff involving the number of samples m by fixing the number pro-
cesses K. We note that the communication cost is proportional to the number of iterations
T = Ω

(
n
mK + n1/(1+τ)

γ

)
, while the computation cost per node is proportional to mT =

Ω
(
n
K + mn1/(1+τ)

γ

)
due to that each iteration involves m examples. When m ≤ Θ

(
nτ/(1+τ)

K

)
,

the communication cost decreases as m increases, and the computation costs increases as m in-
creases, though it is dominated by Ω(n/K). When the value of m is greater than Θ

(
nτ/(1+τ)

K

)
,

the communication cost is dominated by Ω
(
n1/(1+τ)

γ

)
, then increasing the value of m will become

less influential on reducing the communication cost; while the computation cost would blow up
substantially.

Similarly, we can also understand how the number of nodes K affects the tradeoff between the com-
munication cost, proportional to Ω̃(KT ) = Ω̃

(
n
m + Kn1/(1+τ)

γ

)
2, and the computation cost, pro-

portional to Ω
(
n
K + mn1/(1+τ)

γ

)
. When K ≤ Θ

(
nτ/(1+τ)

m

)
, as K increases the computation cost

would decrease and the communication cost would increase. When it is greater than Θ
(
nτ/(1+τ)

m

)
,

the computation cost would be dominated by Ω
(
mn1/(1+τ)

γ

)
and the effect of increasing K on

reducing the computation cost would diminish.

According to the above analysis, we can conclude that when mK ≤ Θ (nλγ), to which we refer as
the effective region of m and K, the communication cost can be reduced by increasing the number
of samples m and the computation cost can be reduced by increasing the number of nodes K.
Meanwhile, increasing the number of samples m would increase the computation cost and similarly
increasing the number of nodes K would increase the communication cost. It is notable that the
larger the value of λ the wider the effective region ofm andK, and vice versa. To verify the tradeoff
of communication and computation, we present empirical studies in Section 4. Although the smooth
loss functions are the most interesting, we present in the theorem below about the convergence of
DisDCA for Lipschitz continuous loss functions.

Theorem 2. For a L-Lipschitz continuous loss function φi and a 1-strongly convex function g(w),
to obtain an εP duality gap E[P (w̄T )−D(ᾱT )] ≤ εP , it suffices to have

T ≥ 4L2

λεP
+ T0 +

n

mK
≥ 20L2

λεP
+ max

(
0,

n

mK
log

(
λn

2mKL2

))
+

n

mK
,

where w̄T =
∑T−1
t=T0

wt/(T − T0), ᾱT =
∑T−1
t=T0

αt/(T − T0).

Remark: In this case, the effective region of m and K is mK ≤ Θ(nλεP ) which is narrower than
that for smooth loss functions, especially when εP � γ. Similarly, if one can obtain an accurate
estimate of the spectral norm of all data and use βmK in place of mK in Figure 1, the convergence
bound can be improved with 4L2

λεP

βmK
mK in place of 4L2

λεP
. Again, the practical variant presented in next

section yields more speed-up.

2We simply ignore the communication delay in our analysis.
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the practical updates at the t-th iteration
Initialize: u0

t = wt−1

Iterate: for j = 1, . . . ,m
Randomly pick i ∈ {1, · · · , nk} and let ij = i

Find ∆αk,i by calling routine IncDual(w = uj−1
t , scl = k)

Update αtk,i = αt−1
k,i + ∆αk,i and update ujt = uj−1

t + 1
λnk

∆αk,ixk,i

Figure 2: the updates at the t-th iteration of the practical variant of DisDCA

3.3 A Practical Variant of DisDCA and A Comparison with ADMM

In this section, we first present a practical variant of DisDCA motivated by intuition and then we
make a comparison between DisDCA and ADMM, which provides us more insight about the prac-
tical variant of DisDCA and differences between the two algorithms. In what follows, we are par-
ticularly interested in `2 norm regularization where g(w) = ‖w‖22/2 and v = w.

A Practical Variant We note that in Algorithm 1, when updating the values of the following sam-
pled dual variables, the algorithm does not use the updated information but instead wt−1 from last
iteration. Therefore a potential improvement would be leveraging the up-to-date information for
updating the dual variables. To this end, we maintain a local copy of wk in each machine. At
the beginning of the iteration t, all w0

k, k = 1, · · · ,K are synchronized with the global wt−1.
Then in individual machines, the j-th sampled dual variable is updated by IncDual(wj−1

k , k) and
the local copy wjk is also updated by wjk = wj−1

k + 1
λnk

∆αk,ijxk,ij for updating the next dual
variable. At the end of the iteration, the local solutions are synchronized to the global variable
wt = wt−1 + 1

λn

∑K
k=1

∑m
j=1 ∆αtk,ijxk,ij . It is important to note that the scalar factor in IncDual

is now k because the dual variables are updated incrementally and there are k processes running
parallell. The detailed steps are presented in Figure 2, where we abuse the same notation ujt for the
local variable at all processes. The experiments in Section 4 verify the improvements of the practical
variant vs the basic variant. It still remains an open problem to us what is the convergence bound
of this practical variant. However, next we establish a connection between DisDCA and ADMM
that sheds light on the motivation behind the practical variant and the differences between the two
algorithms.

A Comparison with ADMM First we note that the goal of the updates at each iteration in DisDCA
is to increase the dual objective by maximizing the following objective:

max
α

1

nk

m∑
i=1

−φ∗i (−αi)−
λ

2

∥∥∥∥∥ŵt−1 + 1/(λnk)

m∑
i=1

αixi

∥∥∥∥∥
2

2

, (3)

where ŵt−1 = wt−1− 1/(λnk)
∑m
i=1 α

t−1
i xi and we suppress the subscript k associated with each

machine. The updates presented in Algorithm 1 are solutions to maximizing the lower bounds of
the above objective function by decoupling the m dual variables. It is not difficult to derive that the
dual problem in (3) has the following primal problem (a detailed derivation and others can be found
in supplementary materials):

DisDCA: min
w

1

nk

m∑
i=1

φi(x
>
i w) +

λ

2

∥∥∥∥∥w −
(
wt−1 − 1/(λnk)

m∑
i=1

αt−1
i xi

)∥∥∥∥∥
2

2

. (4)

We refer to ŵt as the penalty solution. Second let us recall the updating scheme in ADMM. The
(deterministic) ADMM algorithm at iteration t solves the following problems in each machine:

ADMM: wtk = arg min
w

1

nk

nk∑
i=1

φi(x
>
i w) +

ρK

2
‖w − (wt−1 − ut−1

k )︸ ︷︷ ︸
ŵt−1

‖22, (5)

where ρ is a penalty parameter and wt−1 is the global primal variable updated by

wt =
ρK(w̄t + ūt−1)

ρK + λ
, with w̄t =

1

K

K∑
k=1

wtk, ū
t−1 =

1

K

K∑
k=1

ut−1
k ,
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and ut−1
k is the local “dual” variable updated by utk = ut−1

k + wtk − wt. Comparing the subprob-
lem (4) in DisDCA and the subproblem (5) in ADMM leads to the following observations. (1) Both
aim at solving the same type of problem to increase the dual objective or decrease the primal ob-
jective. DisDCA uses only m randomly selected examples while ADMM uses all examples. (2)
However, the penalty solution ŵt−1 and the penalty parameter are different. In DisDCA, ŵt−1 is
constructed by subtracting from the global solution the local solution defined by the dual variables
α, while in ADMM it is constructed by subtracting from the global solution the local Lagrangian
variables u. The penalty parameter in DisDCA is given by the regularization parameter λ while that
in ADMM is a parameter that is needed to be specified by the user.

Now, let us explain the practical variant of DisDCA from the viewpoint of inexactly solving the
subproblem (4). Note that if the optimal solution to (3) is denoted by α∗i , i = 1, . . . ,m, then
the optimal solution u∗ to (4) is given by u∗ = ŵt−1 + 1

λnk

∑m
i=1 α

∗
i xi. In fact, the updates

at the t-th iteration of the practical variant of DisDCA is to optimize the subproblem (4) by the
SDCA algorithm with only one pass of the sampled data points and an initialization of α0

i =
αt−1
i , i = 1 . . . ,m. It means that the initial primal solution for solving the subproblem (3) is
u0 = ŵt−1 + 1

λnk

∑m
i=1 α

t−1
i xi = wt−1. That explains the initialization step in Figure 2.

In a recent work [23] of applying ADMM to solving the L2-SVM problem in the same distributed
fashion, the authors exploited different strategies for solving the subproblem (5) associated with
L2-SVM, among which the DCA algorithm with only one pass of all data points gives the best
performance in terms of running time (e.g., it is better than DCA with several passes of all data
points and is also better than a trusted region Newton method). This from another point of view
validates the practical variant of DisDCA.

Finally, it is worth to mention that unlike ADMM whose performance is significantly affected by
the value of the penalty parameter ρ, DisDCA is a parameter free algorithm.

4 Experiments
In this section, we present some experimental results to verify the theoretical results and the empir-
ical performances of the proposed algorithms. We implement the algorithms by C++ and openMPI
and run them in cluster. On each machine, we only launch one process. The experiments are per-
formed on two large data sets with different number of features, covtype and kdd. Covtype data
has a total of 581, 012 examples and 54 features. Kdd data is a large data used in kdd cup 2010,
which contains 19, 264, 097 training examples and 29, 890, 095 features. For covtype data, we use
522, 911 examples for training. We apply the algorithms to solving two SVM formulations, namely
L2-SVM with hinge loss square and L1-SVM with hinge loss, to demonstrate the capabilities of
DisDCA in solving smooth loss functions and Lipschitz continuous loss functions. In the legend of
figures, we use DisDCA-b to denote the basic variant, DisDCA-p to denote the practical variant, and
DisDCA-a to denote the aggressive variant of DisDCA [20].

Tradeoff between Communication and Computation To verify the convergence analysis, we
show in Figures 3(a)∼3(b), 3(d)∼3(e) the duality gap of the basic variant and the practical variant
of the DisDCA algorithm versus the number of iterations by varying the number of samples m per
iteration, the number of machines K and the values of λ. The results verify the convergence bound
in Theorem 1. At the beginning of increasing the values of m or K, the performances are improved.
However, when their values exceed certain number, the impact of increasing m or K diminishes.
Additionally, the larger the value of λ the wider the effective region ofm andK. It is notable that the
effective region of m and K of the practical variant is much larger than that of the basic variant. We
also briefly report a running time result: to obtain an ε = 10−3 duality gap for optimizing L2-SVM
on covtype data with λ = 10−3, the running time of DisDCA-p with m = 1, 10, 102, 103 by fixing
K = 10 are 30, 4, 0, 5 seconds 3, respectively, and the running time with K = 1, 5, 10, 20 by fixing
m = 100 are 3, 0, 0, 1 seconds, respectively. The speed-up gain on kdd data by increasing m is even
larger because the communication cost is much higher. In supplement, we present more results on
visualizing the communication and computation tradeoff.

The Practical Variant vs The Basic Variant To further demonstrate the usefulness of the practical
variant, we present a comparison between the practical variant and the basic variant for optimizing

30 second means less than 1 second. We exclude the time for computing the duality gap at each iteration.
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Figure 3: (a,b): duality gap with varying m; (d,e): duality gap with varying K; (c, f) comparison of
different algorithms for optimizing SVMs. More results can be found in supplementary materials.

the two SVM formulations in supplementary material. We also include the performances of the ag-
gressive variant proposed in [20], by applying the aggressive updates on the m sampled examples in
each machine without incurring additional communication cost. The results show that the practical
variant converges much faster than the basic variant and the aggressive variant.

Comparison with other baselines Lastly, we compare DisDCA with SGD-based and ADMM-
based distributed algorithms running in the same distributed framework. For optimizing L2-SVM,
we implement the stochastic average gradient (SAG) algorithm [15], which also enjoys a linear con-
vergence for smooth and strongly convex problems. We use the constant step size (1/Ls) suggested
by the authors for obtaining a good practical performance, where the Ls denotes the smoothness
parameter of the problem, set to 2R+λ given ‖xi‖22 ≤ R,∀i. For optimizing L1-SVM, we compare
to the stochastic Pegasos. For ADMM-based algorithms, we implement a stochastic ADMM in [14]
(ADMM-s) and a deterministic ADMM in [23] (ADMM-dca) that employes the DCA algorithm for
solving the subproblems. In the stochastic ADMM, there is a step size parameter ηt ∝ 1/

√
t. We

choose the best initial step size among [10−3, 103]. We run all algorithms on K = 10 machines and
setm = 104, λ = 10−6 for all stochastic algorithms. In terms of the parameter ρ in ADMM, we find
that ρ = 10−6 yields good performances by searching over a range of values. We compare DisDCA
with SAG, Pegasos and ADMM-s in Figures 3(c), 3(f) 4, which clearly demonstrate that DisDCA is
a strong competitor in optimizing SVMs. In supplement we compare DisDCA by setting m = nk
against ADMM-dca with four different values of ρ = 10−6, 10−4, 10−2, 1 on kdd. The results show
that the performances deteriorate significantly if the ρ is not appropriately set, while DisDCA can
produce comparable performance without additional efforts in tuning the parameter.

5 Conclusions
We have presented a distributed stochastic dual coordinate descent algorithm and its convergence
rates, and analyzed the tradeoff between computation and communication. The practical variant has
substantial improvements over the basic variant and other variants. We also make a comparison with
other distributed algorithms and observe competitive performances.

4The primal objective of Pegasos on covtype is above the display range.
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