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Abstract

We present a recurrent neuronal network, modeled as a continuous-time dynami-
cal system, that can solve constraint satisfaction problems. Discrete variables are
represented by coupled Winner-Take-All (WTA) networks, and their values are en-
coded in localized patterns of oscillations that are learned by the recurrent weights
in these networks. Constraints over the variables are encoded in the network con-
nectivity. Although there are no sources of noise, the network can escape from
local optima in its search for solutions that satisfy all constraints by modifying
the effective network connectivity through oscillations. If there is no solution that
satisfies all constraints, the network state changes in a seemingly random manner
and its trajectory approximates a sampling procedure that selects a variable assign-
ment with a probability that increases with the fraction of constraints satisfied by
this assignment. External evidence, or input to the network, can force variables to
specific values. When new inputs are applied, the network re-evaluates the entire
set of variables in its search for states that satisfy the maximum number of con-
straints, while being consistent with the external input. Our results demonstrate
that the proposed network architecture can perform a deterministic search for the
optimal solution to problems with non-convex cost functions. The network is
inspired by canonical microcircuit models of the cortex and suggests possible dy-
namical mechanisms to solve constraint satisfaction problems that can be present
in biological networks, or implemented in neuromorphic electronic circuits.

1 Introduction

The brain is able to integrate noisy and partial information from both sensory inputs and internal
states to construct a consistent interpretation of the actual state of the environment. Consistency
among different interpretations is likely to be inferred according to an internal model constructed
from prior experience [1]. If we assume that a consistent interpretation is specified by a proper con-
figuration of discrete variables, then it is possible to build an internal model by providing a set of
constraints on the configurations that these variables are allowed to take. Searching for consistent
interpretations under this internal model is equivalent to solving a max-constraint satisfaction prob-
lem (max-CSP). In this paper, we propose a recurrent neural network architecture with cortically
inspired connectivity that can represent such an internal model, and we show that the network dy-
namics solve max-CSPs by searching for the optimal variable assignment that satisfies the maximum
number of constraints, while being consistent with external evidence.

Although there are many efficient algorithmic approaches to solving max-CSPs, it is still not clear
how these algorithms can be implemented as biologically realistic dynamical systems. In particular,
a challenging problem in systems whose dynamics embody a search for the optimal solution of a
max-CSP is escaping from local optima. One possible approach is to formulate a stochastic neural
network that samples from a probability distribution in which the correct solutions have higher
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probability [2]. However, the stochastic network will continuously explore the solution space and
will not stabilize at fully consistent solutions. Another possible solution is to use simulated annealing
techniques [3]. Simulated annealing techniques, however, cannot be easily mapped to plausible
biological neural circuits due to the cooling schedule used to control the exploratory aspect of the
search process. An alternative deterministic dynamical systems approach for solving combinatorial
optimization problems is to formulate a quadratic cost function for the problem and construct a
Hopfield network whose Lyapunov function is this cost function [4]. Considerable parameter tuning
is needed to get such networks to converge to good solutions and to avoid local optima [5]. The
addition of noise [6] or the inclusion of an initial chaotic exploratory phase [7] in Hopfield networks
partially mitigate the problem of getting stuck in local optima.

The recurrent neural network we propose does not need a noise source to carry out the search pro-
cess. Its deterministic dynamics directly realize a form of “usable computation” [8] that is suitable
for solving max-CSPs. The form of computation implemented is distributed and “executive-free” [9]
in the sense that there is no central controller managing the dynamics or the flow of information. The
network is cortically inspired as it is composed of coupled Winner-Take-All (WTA) circuits. The
WTA circuit is a possible cortical circuit motif [10] as its dynamics can explain the amplification
of genico-cortical inputs that was observed in intracellular recordings in cat visual cortex [11]. In
addition to elucidating possible computational mechanisms in the brain, implementing “usable com-
putation” with the dynamics of a neural network holds a number of advantages over conventional
digital computation, including massive parallelism and fault tolerance. In particular, by follow-
ing such dynamical systems approach, we can exploit the rich behavior of physical devices such
as transistors to directly emulate these dynamics, and obtain more dense and power efficient com-
putation [12]. For example, the network proposed could be implemented using low-power analog
current-mode WTA circuits [13], or by appropriately coupling silicon neurons in neuromorphic Very
Large Scale Integration (VLSI) chips [14].

In the next section we describe the architecture of the proposed network and the models that we use
for the network elements. Section 3 contains simulation results showing how the proposed network
architecture solves a number of max-CSPs with binary variables. We discuss the network dynamics
in Section 4 and present our conclusions in Section 5.

2 Network Architecture

The basic building block of the proposed network is the WTA circuit in which multiple excitatory
populations are competing through a common inhibitory population as shown in Fig. 1a. When the
excitatory populations of the WTA network receive inputs of different amplitudes, their activity will
increase and be amplified due to the recurrent excitatory connections. This will in turn activate the
inhibitory population which will suppress activity in the excitatory populations until an equilibrium
is reached. Typically, the excitatory population that receives the strongest external input is the only
one that remains active (the network has selected a winner). By properly tuning the connection
strengths, it is possible to configure the network so that it settles into a stable state of activity (or an
attractor) that persists after input removal [15].

2.1 Neuronal and Synaptic Dynamics

The network that we propose is a population-level, rate-based network. Each population is modeled
as a linear threshold unit (LTU) which has the following dynamics:

τiẋi(t) + xi(t) = max(0,
∑
j

wji(t)xj(t)− Ti) (1)

where xi(t) is the average firing rate in population i,wji(t) is the connection weight from population
j to population i, and τi and Ti are the time constant and the threshold of population i respectively.
The steady state population activity in eq. 1 is a good approximation of the steady state average
firing rate in a population of integrate and fire neurons receiving noisy, uncorrelated inputs [16].
For a step increase in mean input, the actual average firing rate in a population settles into a steady
state after a number of transient modes have died out [17] but in eq. 1, we assume the firing rate
approaches steady state only through first order dynamics.
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Figure 1: (a) A single WTA network. (b) Three coupled WTA circuits form the network representa-
tion of a single binary variable. Circles labeled A,B,C, and D are excitatory populations. Red circles
on the right are inhibitory populations. (c) Simulation results of the network in (b) showing activity
in the four excitatory populations. Shaded rectangles indicate the time intervals in which the state of
the oscillator can be changed by external input. (d) Switching the state of the oscillator. The bottom
plot shows the activity of the A and B populations. External input is applied to the A population in
the time intervals denoted by the shaded rectangles. While the first input has no effect, the second
input is applied at the right time and triggers a change in the variable/oscillator state. The top plot
shows time evolution of the weights WA and WB.

The plastic connections in the proposed network obey a learning rule analogous to the Bienenstock-
Cooper-Munro (BCM) rule [18]:

ẇ(t) = Ku(t)

(
(w(t)− wmin)[vth − v(t)]−

τdep
+

(wmax − w(t))[v(t)− vth]+

τpot

)
(2)

where [x]+ = max(0, x), and [x]− = min(0, x). w(t) is the connection weight, and u(t) and v(t)
are the activities of the source and target populations respectively. The parameters wmin and wmax

are soft bounds on the weight, τdep and τpot are the depression and potentiation time constants
respectively, vth is a threshold on the activity of the target population that delimits the transition
between potentiation and depression, and K is a term that controls the overall speed of learning
or the plasticity rate. The learning rule captures the dependence of potentiation and depression
induction on the postsynaptic firing rate [19].

2.2 Variable Representation

Point attractor states in WTA networks like the one shown in Fig. 1a are computationally useful
as they enable the network to disambiguate the inputs to the excitatory populations by making a
categorical choice based on the relative strengths of these inputs. Point attractor dominated dynamics
promote noise robustness at the expense of reduced input sensitivity: external input has to be large
to move the network state out of the basin of attraction of one point attractor, and into the basin of
attraction of another.

In this work, instead of using distinct point attractors to represent different variable values, we
use limit cycle attractors. To obtain limit cycle attractors, we asymmetrically couple a number of
WTA circuits to form a loop as shown in Fig. 1b. This has the effect of destroying the fixed point
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attractors in each WTA stage. As a consequence, persistent activity can no longer appear in a single
WTA stage if there is no input. If we apply a short input pulse to the bottom WTA stage of Fig. 1b,
we start oscillatory activity and we observe the following sequence of events: (1) the activity in
the bottom WTA stage ramps up due to recurrent excitation, and when it is high enough it begins
activating the middle WTA stage; (2) activity in the middle WTA stage ramps up and as activity in
the inhibitory population of this stage rises, it shuts down the bottom stage activity; activity in the
middle WTA stage keeps on increasing until it activates the top stage; (3) activity in the top WTA
stage increases, shuts down the middle stage, and provides input back into the bottom stage via the
plastic connections. As a consequence, a bump of activity continuously jumps from one WTA stage
to the next. Since the stages are connected in a loop, the network will exhibit oscillatory activity.
There are two stable limit cycles that the network trajectory can follow. The limit cycle chosen by the
network depends on the outcome of the winner selection process in the bottom WTA stage. The limit
cycles are stable as the weak coupling between the stages leaves the signal restoration properties of
the destroyed attractors intact allowing activity in each WTA stage to be restored to a point close
to that of the destroyed attractor. The winner selection process takes place at the beginning of each
oscillation period in the bottom WTA stage. In the absence of external input, the dynamics of the
winner selection process in the bottom stage will favor the population that receives the stronger
projection weight from D. These projection weights obey the plasticity rule given by eq. 2.

The oscillatory network in Fig. 1b can represent one binary variable whose value is encoded in the
identity of the winning population in the bottom WTA stage, which determines the limit cycle the
network follows. The identity of the winning population is a reflection of the relative strengths of WA
and WB. More than two values can be encoded by increasing the number of excitatory populations
in the bottom WTA stage. Fig. 1c shows the simulation results of the network in Fig. 1b when the
weight WB is larger than WA. This is expressed by a limit cycle in which populations B,C, and D
are periodically activated.

During the winner selection process in the bottom WTA stage, the WTA circuit is very sensitive to
external input, which can bias the competition towards a particular limit cycle. Once the winner
selection process is complete, i.e, activity in the winning population has ramped up to a high level,
the WTA circuit is relatively insensitive to external input. This is illustrated in Fig. 1d, where input
is applied in two different intervals. The first external input to population A arrives after the winner,
B, has already been selected so it is ineffective. A second external input having the same strength
and duration as the first input arrives during the winner selection phase and biases the competition
towards A. As soon as A wins, the plasticity rule in eq. 2 causes WA to potentiate and WB to depress
so that activity in the network continues to follow the new limit cycle even after the input is removed.

2.3 Constraint Representation

Each variable, as represented by the network in Fig. 1b, is a multi-stable oscillator. Pair-wise con-
straints can be implemented by coupling the excitatory populations of the bottom WTA stages of
two variables. Fig 2a shows the implementation of a constraint that requires two variables to be
unequal, i.e., one variable should oscillate in the cycle involving the A population, and the other
in the cycle involving the B population. Variable X1 will maximally affect X2 when the activity
peak in the bottom WTA stage of X1 coincides with the winner selection interval of X2 and vice
versa. The coupling of the middle and top WTA stages of the two variables in Fig. 2a is not related
to the constraint, but it is there to prevent coupled variables in large networks from phase locking.
We explain why this is important in the next section. We define the zero phase point of a variable as
the point at which activity in the winning excitatory population in the bottom WTA stage reaches a
peak and we assume the phase changes linearly during an oscillation period (from one peak to the
next). The phase difference between two coupled variables determines the direction and strength of
mutual influence. This can be seen in Fig. 2b. Initially the constraint is violated as both variables
are oscillating in the A cycle. X1 gradually begins to lead X2 until at a particular phase difference,
input fromX1 is able to bias the competition inX2 so that the B population inX2 wins even though
the A population is receiving a stronger projection from the D population in X2.

A constraint involving more than two variables can be implemented by introducing an intermediate
variable which will in general have a higher cardinality than the variables in the constraint (the
cardinality of a variable is reflected in the number of excitatory populations in the bottom WTA
stage; the middle and top WTA stages have the same structure irrespective of cardinality). An
example is shown in Fig. 2c where three binary variables are related by an XOR relation and the
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Figure 2: (a) Coupling X1 and X2 to implement the constraint X1 6= X2. (b) Activity in the
A and B populations of X1 and X2 that are coupled as shown in (a). (c) Constraint involving
three variables: X1XORX2 = X3. Only the bottom WTA stages of the four variables and the
inter-variable connections coupling the bottom WTA stages are shown.

intermediate variable has four possible states. The tertiary XOR constraint has been effectively
broken down into three pair-wise constraints. The only states, or oscillatory modes, of X1, X2, and
X3 that are stable under arbitrary phase relations with the intermediate variable are the states which
satisfy the constraint X1 XOR X2 = X3.

3 Solving max-CSPs

From simulations, we observe that the phase differences between the variables/oscillators are highly
irregular in large networks comprised of many variables and constraints. These irregular phase re-
lations enable the network to search for the optimal solution of a max-CSP. The weight attached
to a constraint is an analogue quantity that is a function of the phase differences between the vari-
ables in the constraint. The phase differences also determine which of the variables in a violated
constraint changes in order to satisfy the constraint (see Fig. 2b). The irregular phase relations result
in a continuous perturbation of the strengths of the different constraints by modulating the effec-
tive network connectivity embodying these constraints. This is what allows the network to escape
from the local optima of the underlying max-CSP. At a local optimum, the ongoing perturbation of
constraint strengths will eventually lead to a configuration that de-emphasizes the currently satisfied
constraints and emphasizes the unsatisfied constraints. The transiently dominant unsatisfied con-
straints will reassign the values of the variables in their domain and pull the network out of the local
optimum. The network thus searches for optimal solutions by effectively perturbing the underlying
max-CSP. Under this search scheme, states that satisfy all constraints are dynamically stable since
any perturbation of the strengths of the constraints defining the max-CSP will result in a constraints
configuration that reinforces the current fully consistent state of the network.

In principle, if some variables/oscillators phase-lock, then the weights of the constraint(s) among
these variables will not change anymore, which will impact the ability of the network to find good
solutions. In practice, however, we see that this happens only in very small networks, and not in
large ones, such as the networks described in the following sections.

3.1 Network Behavior in the Presence of a Fully Consistent Variable Assignment

We simulated a recurrent neuronal network that represents a CSP that has ten binary variables and
nine tertiary constraints (see Fig. 3a). Each variable is represented by the network in Fig. 1b. Each
tertiary constraint is implemented by introducing an intermediate variable and using a coupling
scheme similar to the one in Fig. 2c. We constructed the problem so that only two variable as-
signments are fully consistent. The problem is thus at the boundary between over-constrained and
under-constrained problems which makes it difficult for a search algorithm to find the optimum [20].

We ran 1000 trials starting from random values for the synaptic weights within each variable (each
variable effectively starts with a random value). The network always converges to one of the optimal
variable assignments. Fig. 3b shows a histogram of the number of oscillation cycles needed to
converge to an optimal solution in the 1000 trials. The number of cycles is averaged over the ten
variables as the number of cycles needed to converge to an optimal solution is not the same for
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Figure 3: Solving a CSP with ten binary variables and nine tertiary constraints. (a) CSP definition.
(b) Histogram of the number of cycles needed for convergence, averaged over all ten variables,
in 1000 trials. (c) Evolution of network state in a sample trial. The top plot shows the number
of constraints violated by the variable assignment decoded from the network state. The bottom
plot shows the Hamming distance between the decoded variable assignment to each of the two fully
consistent solutions. (d) One variable is externally forced to take a value that is incompatible with the
current fully consistent variable assignment. The search resumes to find a fully consistent variable
assignment that is compatible with the external input.

all variables. Although the sub-networks representing the variables are identical, each oscillates
at a different instantaneous frequency due to the non-uniform coupling and switching dynamics.
Fig. 3c shows how the network state evolves in a sample trial. Due to the continuous perturbation
of the weights caused by the irregular phase relations between the variables/oscillators, the network
sometimes takes steps that lead to the violation of more constraints. This prevents the network from
getting stuck in local optima.

We model the arrival of external evidence by activating an additional variable/oscillator that has only
one state, or limit cycle, and which is coupled to one of the original problem variables. External
evidence in this case is sparse since it only affects one problem variable. External evidence also
does not completely fix the value of that one problem variable, but rather, the single state “evidence
variable” affects the problem variable only at particular phase differences between the two. Fig. 3d
shows that the network is able to take the external evidence into account by searching for, and finally
settling into, the only remaining fully consistent state that accommodates the external evidence.

3.2 Network Behavior in the Absence of Fully Consistent Variable Assignments

As shown in the previous section, if a fully consistent solution exists, the network state will end up
in that solution and stay there. If no such solution exists, the network will never settle into one vari-
able assignment, but will keep exploring possible assignments and will spend more time in solutions
that satisfy more constraints. This behavior can be interpreted as a sampling process where each
oscillation cycle lets one variable re-sample its current state; at any point in time, the network state
represents a sample from a probability distribution defined over the space of all possible solutions
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Figure 5: Behavior of two networks representing the CSPs in Fig. 4. Red squares are data points (the
time the network spent in one particular state), a blue star is the average time spent in states of equal
energy and the green line is an exponential fit to the blue stars. (a) Note that at energies 1 and 2 there
are two complementary states each that are visited almost equally often. (b) Not all assignments of
energy 2 are equally probable in this case (not a finite samples artifact, but systematic) as can be seen
in the bimodal distribution there. This is caused by variables that are part of only one constraint.

to the max-CSP, where more consistent solutions have higher probability. The oscillatory dynamics
thus give rise to a decentralized, deterministic, and time-continuous sampling process. This sam-
pling analogy is only valid when there are no fully consistent solutions. To illustrate this behavior,
we consider two max-CSPs having an Ising-model like structure as shown in Figs. 4a, 4b. We
describe the behavior of two networks that represent the max-CSPs embodied by these two graphs.

Let E(s) be a function that maps a network state s to the number of constraints it violates; this
is analogous to an energy function and we will refer to E(s) as the energy of state s. For the
problem in Fig. 4a, we observe that the average time the network spends in states with energy E
is t(E) = c1 exp(−c2E) as can be seen in Fig. 5a. The network spends almost equal times in
complementary states that have low energy. Complementary states are maximally different but the
network is able to traverse the space of intervening states, which can have higher energy, in order to
visit the complementary states almost equally often.

We expect the network to spend less time in less consistent states; the higher the number of vio-
lated constraints, the more rapidly the variable values change because there are more possible phase
relations that can emphasize a violated constraint. However, we do not have an analytical explana-
tion for the good exponential fit to the energy-time spent relation. We expect a worse fit for high
energies. For example, the network can never go into states where all constraints are violated even
though they have finite energies.

For the problem in Fig. 4b, not all states of equally low energy are equally likely as can be seen in
Fig. 5b. For example, the states of energy 2, where C and D (or K and L) are unequal, are less likely
than other assignments of the same energy. This is not surprising. When C is in some state, D has no
reason to be in a different state (no other variables try to force it to be different from C) apart from
the memory in its plastic weights. We expect that this effect becomes small for sufficiently densely
connected constraint graphs. The exponential fit to the averages is still very good in Fig. 5b.
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4 Discussion

Oscillations are ubiquitous in cortex. Local field potential measurements as well as intracellu-
lar recordings point to a plethora of oscillatory dynamics operating in many distinct frequency
bands [21]. One possible functional role for oscillatory activity is that it rhythmically modulates
the sensitivity of neuronal circuits to external influence [22, 23]. Attending to a periodic stimulus
has been shown to result in the entrainment of delta-band oscillations (2-4 Hz) so that intervals of
high excitability coincide with relevant events in the stimulus [24]. We have used the idea of os-
cillatory modulation of sensitivity to construct multi-stable neural oscillators whose state, or limit
cycle, can be changed by external inputs only in narrow, periodically recurring temporal windows.
Selection between multiple limit cycles is done through competitive dynamics which are thought to
underlie many cognitive processes such as decision making in prefrontal cortex [25].

External input to the network can be interpreted as an additional constraint that immediately affects
the search for maximally consistent states. Continuous reformulation of the problem, by adding new
constraints, is problematic for any approach that works by having an initial exploratory phase that
slowly morphs into a greedy search for optimal solutions, as the exploratory phase has to be restarted
after a change in the problem. For a biological system that has to deal with a continuously changing
set of constraints, the search algorithm should not exhibit an exploratory/greedy behavior dichotomy.
The search procedure used in the proposed networks does not exhibit this dichotomy. The search is
driven solely by the violated constraints. This can be seen in the sampling-like behavior in Fig. 5
where the network spends less time in a state that violates more constraints.

The size of the proposed network grows linearly with the number of variables in the problem. CSPs
are in general NP-complete, hence convergence time of networks embodying CSPs will grow expo-
nentially (in the worst case) with the size of the problem. We observed that in addition to problem
size, time to convergence/solution depends heavily on the density of solutions in the search space.
We used the network to solve a graph coloring problem with 17 nodes and 4 colors (each oscilla-
tor/variable representing a node had 4 possible stable limit cycles). The problem was chosen so that
there is an abundance of solutions. This led to a faster convergence to an optimal solution compared
to the problem in Fig. 3a even though the graph coloring problem had a much larger search space.

5 Conclusions and Future Work

By combining two basic dynamical mechanisms observed in many brain areas, oscillation and com-
petition, we constructed a recurrent neuronal network that can solve constraint satisfaction problems.
The proposed network deterministically searches for optimal solutions by modulating the effective
network connectivity through oscillations. This, in turn, perturbs the effective weights of the con-
straints. The network can take into account partial external evidence that constrains the values of
some variables and extrapolate from this partial evidence to reach states that are maximally consis-
tent with the external evidence and the internal constraints. For sample problems, we have shown
empirically that the network searches for, and settles into, a state that satisfies all constraints if there
is one, otherwise it explores the space of highly consistent states with a stronger bias towards states
that satisfy more constraints. An analytic framework for understanding the search scheme employed
by the network is a topic for future work.

The proposed network exploits its temporal dynamics and analog properties to solve a class of
computationally intensive problems. The WTA modules making up the network can be efficiently
implemented using neuromorphic VLSI circuits [26]. The results presented in this work encourage
the design of neuromorphic circuits and components that implement the full network in order to
solve constraint satisfaction problems in compact and ultra-low power VLSI systems.
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