
(Nearly) Optimal Algorithms for Private Online
Learning in Full-information and Bandit Settings

Adam Smith∗
Pennsylvania State University
asmith@cse.psu.edu

Abhradeep Thakurta†
Stanford University and

Microsoft Research Silicon Valley Campus
b-abhrag@microsoft.com

Abstract

We give differentially private algorithms for a large class of online learning al-
gorithms, in both the full information and bandit settings. Our algorithms aim
to minimize a convex loss function which is a sum of smaller convex loss terms,
one for each data point. To design our algorithms, we modify the popular mirror
descent approach, or rather a variant called follow the approximate leader.
The technique leads to the first nonprivate algorithms for private online learning in
the bandit setting. In the full information setting, our algorithms improve over the
regret bounds of previous work (due to Dwork, Naor, Pitassi and Rothblum (2010)
and Jain, Kothari and Thakurta (2012)). In many cases, our algorithms (in both
settings) match the dependence on the input length, T , of the optimal nonprivate
regret bounds up to logarithmic factors in T . Our algorithms require logarithmic
space and update time.

1 Introduction

This paper looks at the information leaked by online learning algorithms, and seeks to design ac-
curate learning algorithms with rigorous privacy guarantees – that is, algorithms that provably leak
very little about individual inputs.

Even the output of offline (batch) learning algorithms can leak private information. The dual form
of a support vector machine’s solution, for example, is described in terms of a small number of exact
data points, revealing these individuals’ data in the clear. Considerable effort has been devoted to
designing batch learning algorithms satisfying differential privacy (a rigorous notion of privacy that
emerged from the cryptography literature [DMNS06, Dwo06]), for example [BDMN05, KLN+08,
CM08, CMS11, Smi11, KST12, JT13, DJW13].

In this work we provide a general technique for making a large class of online learning algorithms
differentially private, in both the full information and bandit settings. Our technique applies to
algorithms that aim to minimize a convex loss function which is a sum of smaller convex loss terms,
one for each data point. We modify the popular mirror descent approach (or rather a variant called
follow the approximate leader) [Sha11, HAK07].

In most cases, the modified algorithms provide similar accuracy guarantees to their nonprivate coun-
terparts, with a small (logarithmic in the stream length) blowup in space and time complexity.

Online (Convex) Learning: We begin with the full information setting. Consider an algorithm
that receives a stream of inputs F = 〈f1,, fT 〉, each corresponding to one individual’s data. We
interpret each input as a loss function on a parameter space C (for example, it might be one term
∗Supported by NSF awards #0941553 and #0747294.
†Supported by Sloan Foundation fellowship and Microsoft Research.

1

in a convex program such as the one for logistic regression). The algorithm’s goal is to output a
sequence of parameter estimates w1, w2, ..., with each wt in C, that roughly minimizes the errors∑
t ft(wt). The difficulty for the algorithm is that it computes wt based only on f1, ..., ft−1. We

seek to minimize the a posteriori regret,

Regret(T) =

T∑
t=1

ft(wt)−min
w∈C

T∑
t=1

ft(w) (1)

In the bandit setting, the input to the algorithms consists only of f1(w1), f2(w2), That is, at each
time step t, the algorithm learns only the cost ft−1(wt−1) of the choice wt−1 it made at the previous
time step, rather than the full cost function ft−1.

We consider three types of adversarial input selection: An oblivious adversary selects the input
stream f1, ..., fT ahead of time, based on knowledge of the algorithm but not of the algorithm’s
random coins. A (strongly) adaptive adversary selects ft based on the output so far w1, w2, ..., wt
(but not on the algorithm’s internal random coins).

Both the full-information and bandit settings are extensively studied in the literature (see, e.g.,
[Sha11, BCB12] for recent surveys). Most of this effort has been spent on online learning prob-
lems are convex, meaning that the loss functions ft are convex (in w) and the parameter set C ⊆ Rp
is a convex set (note that one can typically “convexify” the parameter space by randomization). The
problem dimension p is the dimension of the ambient space containing C.

We consider various restrictions on the cost functions, such as Lipschitz continuity and strong con-
vexity. A function f : C → R is L-Lipschitz with respect to the `2 metric if |f(x) − f(y)| ≤
L‖x − y‖2 for all x, y ∈ C. Equivalently, for every x ∈ C0 (the interior of C) and every subgra-
dient z ∈ ∂f(x), we have ‖z‖2 ≤ L. (Recall that z is a subgradient of f at x if the function
f̃(y) = f(x) + 〈z, y − x〉 is a lower bound for f on all of C. If f is convex, then a subgradient
exists at every point, and the subgradient is unique if and only if f is differentiable at that point.)
The function f is H-strongly convex w.r.t. `2 if for every y ∈ C, we can bound f below on C by a
quadratic function of the form f̃(y) = f(x) + 〈z, y − x〉+ H

2 ‖y− x‖
2
2. If f is twice differentiable,

H-strong convexity is equivalent to the requirement that all eigenvalues of ∇2f(w) be at least H
for all w ∈ C.

We denote by D the set of allowable cost functions; the input sequence thus lies in DT .

Differential Privacy, and Challenges for Privacy in the Online Setting: We seek to design on-
line learning algorithms that satisfy differential privacy [DMNS06, Dwo06], which ensures that the
amount of information an adversary learns about a particular cost function ft in the function se-
quence F is almost independent of its presence or absence in F . Each ft can be thought as private
information belonging to an individual. The appropriate notion of privacy here is when the entire
sequence of outputs of the algorithms (ŵ1, ..., ŵT) is revealed to an attacker (the continual observa-
tion setting [DNPR10]). Formally, we say two input sequences F, F ′ ∈ DT are neighbors if they
differ only in one entry (say, replacing ft by f ′t).
Definition 2 (Differential privacy [DMNS06, Dwo06, DNPR10]). A randomized algorithm A is
(ε, δ)-differentially private if for every two neighboring sequences F, F ′ ∈ DT , and for every event
O in the output space CT ,

Pr[A(F) ∈ O] ≤ eε Pr[A(F ′) ∈ O] + δ. (2)
If δ is zero, then we simply say A is ε-differentially private.

HereA(F) refers to the entire sequence of outputs produced by the algorithm during its execution.1
Our protocols all satisfy ε-differential privacy (that is, with δ = 0). We include δ in the definition
for comparison with previous work.

1As defined, differential privacy requires indistinguishable outputs only for nonadaptively chosen sequences
(that is, sequences where the inputs at time t are fixed ahead of time and do not depend on the outputs at times
1, ..., t − 1). The algorithms in our paper (and in previous work) in fact satisfy a stronger adaptive variant,
in which an adversary selects the input online as the computation proceeds. When δ = 0, the nonadaptive
and adaptive variants are equivalent [DNPR10]. Moreover, protocols based on “randomized response” or the
“tree-based sum” protocol of [DNPR10, CSS10] are adaptively secure, even when δ > 0. We do not define the
adaptive variant here explicitly, but we use it implicitly when proving privacy.

2

Differential privacy provides meaningful guarantees in against an attacker who has access to con-
siderable side information: the attacker learns the same things about someone whether or not their
data were actually used (see [KS08, DN10, KM12] for further discussion).

Differential privacy is particularly challenging to analyze for online learning algorithms, since a
change in a single input at the beginning of the sequence may affect outputs at all future times in
ways that are hard to predict. For example, a popular algorithm for online learning is online gradient
descent: at each time step, the parameter is updated as wt+1 = ΠC(wt−1 − ηt∇ft−1(wt−1)),
where ΠC(x) the nearest point to x in C, and ηt > 0 is a parameter called the learning rate. A
change in an input fi (replacing it with f ′i) leads to changes in all subsequent outputswi+1, wi+2, ...,
roughly pushing them in the direction of ∇fi(wi) − ∇f ′i(wi). The effect is amplified by the fact
that the gradient of subsequent functions fi+1, fi+2, ... will be evaluated at different points in the
two streams.

Previous Approaches: Despite the challenges, there are several results on differentially private
online learning. A special case, “learning from experts” in the full information setting, was discussed
in the seminal paper of Dwork, Naor, Pitassi and Rothblum [DNPR10] on privacy under continual
observation. In this case, the set of available actions is the simplex ∆({1, ..., p}) and the functions fi
are linear with coefficients in {0, 1} (that is, ft(w) = 〈w, ct〉 where ct ∈ {0, 1}p). Their algorithm
guarantees a weaker notion of privacy than the one we consider2 but, when adapted to our stronger
setting, it yields a regret bound of O(p

√
T/ε).

Jain, Kothari and Thakurta [JKT12] defined the general problem of private online learning, and gave
algorithms for learning convex functions over convex domains in the full information setting. They
gave algorithms that satisfy (ε, δ)-differential privacy with δ > 0 (our algorithms satisfy the stronger
variant with δ = 0). Specifically, their algorithms have regret Õ(

√
T log(1/δ)/ε) for Lipshitz-

bounded, strongly convex cost functions and Õ(T 2/3 log(1/δ)/ε) for general Lipshitz convex costs.
The idea of [JKT12] for learning strongly convex functions is to bound the sensitivity of the entire
vector of outputs w1, w2, ... to a change in one input (roughly, they show that when fi is changed, a
subsequent output wj changes by O(1/|j − i|)).

Unfortunately, the regret bounds obtained by previous work remain far from the best nonprivate
bounds. [Zin03] gave an algorithm with regret O(

√
T) for general Lipshitz functions, assuming L

and the diameter ‖C‖2 of C are constants. Ω(
√
T) regret is necessary (see, e.g., [HAK07]), so the

dependence on T of [Zin03] is tight. When cost functions in F are H-strongly convex for constant
H , then the regret can be improved to O(log T) [HAK07], which is also tight. In this work, we give
new algorithms that match these nonprivate bounds’ dependence on T , up to (poly log T)/ε factors.

We note that [JKT12] give one algorithm for a specific strongly convex problem, online linear re-
gression, with regret poly(log T). One can view that algorithm as a special case of our results.

We are not aware of any previous work on privacy in the bandit setting. One might expect that bandit
learning algorithms are easier to make private, since they access data in a much more limited way.
However, even nonprivate algorithms for bandit learning are very delicate, and private versions had
until now proved elusive.

Our Results: In this work we provide a technique for making a large class of online learning algo-
rithms differentially private, in both the full information and bandit settings. In both cases, the idea is
to search for algorithms whose decisions at time t depend only on previous time steps through a sum
of observations made at times 1, 2, ..., t. Specifically, our algorithms work by measuring the gradient
∇ft(wt) when ft is learned, and maintaining a differentially private running sum of the gradients
observed so far. We maintain this sum using the tree-based sum protocol of [DNPR10, CSS10]. We
then show that a class of learning algorithms known collectively as follow the approximate leader
(the version we use is due to [HAK07]) can be run given only these noisy sums, and that their regret
can be bounded even when these sums are inaccurate.

Our algorithms can be run with space O(log T), and require O(log T) running time at each step.

2Specifically, Dwork et al. [DNPR10] provide single-entry-level privacy, in the sense that a neighboring
data set may only differ in one entry of the cost vector for one round. In contrast, we allow the entire cost
vector to change at one round. Hiding that larger set of possible changes is more difficult, so our algorithms
also satisfy the weaker notion of Dwork et al.

3

Our contributions for the full information setting and their relation to previous work is summarized
in Table 1. Our main algorithm, for strongly convex functions, achieves regret O(log2.5 T

ε), ignoring
factors of the dimension p, Lipschitz continuity L and strong convexity H . When strong convexity
is not guaranteed, we use regularization to ensure it (similar to what is done in nonprivate settings,

e.g. [Sha11]). Setting parameters carefully, we get regret of O(
√

T log2.5 T
ε). These bounds essen-

tially match the nonprivate lower bounds of Ω(log T) and Ω(
√
T), respectively.

The results in the full information setting apply even when the input stream is chosen adaptively as
a function of the algorithm’s choices at previous time steps. In the bandit setting, we distinguish
between oblivious and adaptive adversaries.

Furthermore, in the bandit setting, we assume that C is sandwiched between two concentric L2-balls
of radii r and R (where r < R). We also assume that for all w ∈ C, |ft(w)| ≤ B for all t ∈ [T].
Similar assumption were made in [FKM05, ADX10].

Our results are summarized in Table 2. For most of the settings we consider, we match the depen-
dence on T of the best nonprivate algorithm, though generally not the dependence on the dimension
p.

Function class Previous private upper
bound.

Our algorithm Nonprivate
lower bound

Learning with ex-
perts (linear func-
tions over C =
∆({1, ..., p})

Õ(p
√
T/ε) [DNPR10] O(

√
pT log2.5 T/ε) Ω(

√
T log p)

Lipshitz and Õ(
√
pT 2/3 log(1/δ)/ε)

[JKT12]
O(

√
pT log2.5 T/ε) Ω(

√
T)

Lipshitz and
strongly convex

Õ(
√
pT log2(1/δ)/ε)

[JKT12]
O(p log2.5 T/ε) Ω(log T)

Table 1: Regret bounds for online learning in the full information setting. Bounds in lines 2 and 3
hide the (polynomial) dependencies on parameters L,H . Notation Õ(·) hides poly(log(T)) factors.

Function class Our result Best nonprivate bound

Learning with experts (linear func-
tions over C = ∆({1, ..., p})

Õ(pT 3/4/ε) O(
√
T) [AHR08]

Lipschitz Õ(pT 3/4/ε) O(pT 3/4) [FKM05]

Lipschitz and strongly convex
(Adaptive)

Õ(pT 3/4/ε) O(p2/3T 3/4)[ADX10]

Lipschitz and strongly convex
(Oblivious)

Õ(pT 2/3/ε) O(p2/3T 2/3)[ADX10]

Table 2: Regret bounds for online learning in the bandit setting. In all these settings, the best
known nonprivate lower bound is

√
T . The Õ(·) notation hides poly log factors in T . Bounds hide

polynomial dependencies on L, H , r and R.

In the remainder of the text, we refer to appendices for many of the details of algorithms and proofs.
The appendices can be found in the “Supplementary Materials” associated to this paper.

2 Private Online Learning: Full-information Setting

In this section we adapt the Follow The Approximate Leader (FTAL) algorithm of [HAK07] to
design a differentially private variant. Our modified algorithm, which we call Private Follow The

4

Approximate Leader (PFTAL), needs a new regret analysis as we have to deal with randomness due
to differential privacy.

2.1 Private Follow The Approximate Leader (PFTAL) with Strongly Convex Costs

Algorithm 1 Differentially Private Follow the Approximate Leader (PFTAL)
Input: Cost functions: 〈f1, · · · , fT 〉 (in an online sequence), strong convexity parameter: H , Lip-

schitz constant: L, convex set: C ⊆ Rp and privacy parameter: ε.
1: ŵ1 ← Any vector from C. Output ŵ1.
2: Pass5f1(ŵ1), L2-bound L and privacy parameter ε to the tree based aggregation protocol and

receive the current partial sum in v̂1.
3: for time steps t ∈ {1, · · · , T − 1} do

4: ŵt+1 ← arg min
w∈C
〈v̂t, w〉+ H

2

t∑
τ=1
‖w − ŵτ‖22. Output ŵt.

5: Pass 5ft+1(ŵt+1), L2-bound L and privacy parameter ε to the tree-based protocol (Algo-
rithm 2) and receive the current partial sum in v̂t+1.

6: end for

The main idea in PFTAL algorithm is to execute the well-known Follow The Leader algorithm (FTL)
algorithm [Han57] using quadratic approximations f̃1, · · · , f̃T of the cost functions f1, · · · , fT .
Roughly, at every time step (t + 1), PFTAL outputs a vector w that approximately minimizes the
sum of the approximations f̃1, · · · , f̃t over the convex set C.

Let ŵ1, · · · , ŵt be the sequence of outputs produced in the first t time steps, and let ft be the cost-
function at step t. Consider the following quadratic approximation to ft (as in [HAK07]). Define

f̃t(w) = ft(ŵt) + 〈5ft(ŵt), w − ŵt〉+ H
2 ‖w − ŵt‖

2
2 (3)

where H is the strong convexity parameter. Notice that ft and f̃t have the same value and gradient
at ŵt (that is, ft(ŵt) = f̃t(ŵt) and 5ft(ŵt) = 5f̃t(ŵt)). Moreover, f̃t is a lower bound for ft
everywhere on C.

Let w̃t+1 = arg min
w∈C

t∑
τ=1

f̃τ (w) be the “leader” corresponding to the cost functions f̃1, · · · , f̃t.

Minimizing the sum of f̃t(w) is the same as minimizing the sum of f̃t(w)−ft(ŵt), since subtracting
a constant term won’t change the minimizer. We can thus write w̃t+1 as

w̃t+1 = arg min
w∈C
〈
t∑

τ=1

5ft(ŵτ), w〉+ H
2

t∑
τ=1

‖w − ŵτ‖22 (4)

Suppose, ŵ1, · · · , ŵt have been released so far. To release a private approximation to w̃t+1, it
suffices to approximate vt+1 =

∑t
τ=15ft(ŵτ) while ensuring differential privacy. If we fix the

previously released information ŵτ , then changing any one cost function will only change one of
the summands in vt+1.

With the above observation, we abstract out the following problem: Given a set of vectors

z1, · · · , zT ∈ Rp, compute all the partial sums vt =
t∑

τ=1
zτ , while preserving privacy. This problem

is well studied in the privacy literature. Assuming each zt has L2-norm of at most L′, the following
tree-based aggregation scheme will ensure that in expectation, the noise (in terms of L2-error) in
each of vt is O

(
pL′ log1.5 T/ε

)
and the whole sequence v1, · · · , vT is ε-differentially private. We

now describe the tree-based scheme.

Tree-based Aggregation [DNPR10, CSS10]: Consider a complete binary tree. The leaf nodes are
the vectors z1, · · · , zT . (For the ease of exposition, assume T to be a power of two. In general,
we can work with the smallest power of two greater than T). Each internal node in the tree stores
the sum of all the leaves in its sub-tree. In a differentially private version of this tree, we ensure
that each node’s sub-tree sum is (ε/log2T)-differentially private, by adding a noise vector b ∈ Rp

5

whose L2-norm is Gamma distributed and has standard deviation O(
√
pL′ log T

ε). Since each zt only
affects log2T nodes in the tree, by the composition property [DMNS06], the complete tree will be
ε-differentially private. Moreover, the algorithm’s error in estimating any partial sum vt =

∑t
τ=1 zτ

grows as O(
√
pL′ log2 T

ε), since one can compute vt from at most log T nodes in the tree. A formal
description of the tree based aggregation scheme in given in Appendix A.

Now we complete the PFTAL algorithm by computing the private version ŵt+1 of w̃t+1 in (4) as
the minimizer of the perturbed loss function:

ŵt+1 = arg min
w∈C
〈v̂t, w〉+ H

2

t∑
τ=1

‖w − ŵτ‖22 (5)

Here v̂t is the noisy version of vt, computed using the tree-based aggregation scheme. A formal
description of the algorithm is given in Algorithm 1.

Note on space complexity: For simplicity, in the description of tree based aggregation scheme
(Algorithm 2 in Appendix A) we maintain the complete binary tree. However, it is not hard to show
at any time step t, it suffices to keep track of the vectors (of partial sums) in the path from zt to the
root of the tree. So, the amount of space required by the algorithm is O(log T).

2.1.1 Privacy and Utility Guarantees for PFTAL (Algorithm 1)

In this section we provide the privacy and regret guarantees for the PFTAL algorithm (Algorithm 1).
For detailed proofs of the theorem statements, see Appendix B.
Theorem 3 (Privacy guarantee). Algorithm 1 is ε-differentially private.

Proof Sketch. Given the binary tree, the sequence ŵ2, · · · , ŵT is completely determined. Hence,
it suffices to argue privacy for the collection of noisy sums associated to nodes in the binary tree.
At first glance, it seems that each loss function affects only one leaf in the tree, and hence at most
log T of the nodes’ partial sums. If it were true, that statement would make the analysis simple.
The analysis is delicate, however, since the value (gradient zτ) at a leaf τ in the tree depends on the
partial sums that are released before time τ . Hence, changing one loss function ft actually affects
all subsequent partial sums. One can get around this by using the fact that differential privacy
composes adaptively [DMNS06]: we can write the computations done on a particular loss function
ft as a sequence of log T smaller differentially private computations, where the each computation
in the sequence depends on the outcome of previous ones. See Appendix B for details.

In terms of regret guarantee, we show that our algorithm enjoys regret of O(p log2.5 T) (assuming
other parameters to be constants). Compared to the non-private regret bound of O(log T), our regret
bound has an extra log1.5 T factor and an explicit dependence on the dimensionality (p). A formal
regret bound for PFTAL algorithm is given in Theorem 4.
Theorem 4 (Regret guarantee). Let f1, · · · , fT be L-Lipschitz, H-strongly convex functions and let
C ⊆ Rp be a fixed convex set. For adaptive adversaries, the expected regret satisfies:

E [Regret(T)] = O

(
p(L+H‖C‖2)2 log2.5 T

εH

)
.

Here expectation is taken over the random coins of the algorithm and adversary.

Results for Lipschitz Convex Costs: Our algorithm for strongly convex costs can be adapted to
arbitrary Lipschitz convex costs by executing Algorithm 1 on functions ht(w) = ft(w) + H

2 ‖w‖
2
2

instead of the ft’s. Setting H = O(p log2.5 T/(ε
√
T)) will give us a regret bound of Õ(

√
pT/ε).

See Appendix C for details.

3 Private Online Learning: Bandit Setting

In this section we adapt the Private Follow the Approximate Leader (PFTAL) from Section 2 to
the bandit setting. Existing (nonprivate) bandit algorithms for online convex optimization follow

6

a generic reduction to the full-information setting [FKM05, ADX10], called the “one-point” (or
“one-shot”) gradient trick. Our adaptation of PFTAL to the bandit setting also uses this technique.
Specifically, to define the quadratic lower bounds to the input cost functions (as in (3)), we replace
the exact gradient of ft at ŵt with a one-point approximation.

In this section we describe our results for strongly convex costs. Specifically, to define the quadratic
lower bounds to the input cost functions (as in (3)), we replace the exact gradient of ft at ŵt with
a one-point approximation. As in the full information setting, one may obtain regret bounds for
general convex functions in the bandit setting by adding a strongly convex regularizer to the cost
functions.

One-point Gradient Estimates [FKM05]: Suppose one has to estimate the gradient of a function
f : Rp → R at a point w ∈ Rp via a single query access to f . [FKM05] showed that one can
approximate5f(w) by p

β f(w + βu)u, where β > 0 is a small real parameter and u is a uniformly
random vector from the p-dimensional unit sphere Sp−1 = {a ∈ Rp : ‖a‖2 = 1}. More precisely,
5f(w) = lim

β→0
Eu
[
p
β f(w + βu)u

]
.

For finite, nonzero values of β, one can view this technique as estimating the gradient of a smoothed
version of f . Given β > 0, define f̂(w) = Ev∼Bp [f(w + βv)] where Bp is the unit ball in Rp. That
is, f̂ = f ∗ UβBp is the convolution of f with the uniform distribution on the ball βBp of radius β.

By Stokes’ theorem, we have Eu∼Sp−1

[
p
β f(w + βu)u

]
= 5f̂(w).

3.1 Follow the Approximate Leader (Bandit version): Non-private Algorithm

Let W̃ = 〈w̃1, · · · , w̃T 〉 be a sequence of vectors in C (the outputs of the algorithm). Corresponding
to the smoothed function f̂t = f ∗ UβBp , we define a quadratic lower bound ĝt:

ĝt(w) = f̂t(w̃t) + 〈5f̂t(w̃t), w − w̃t〉+ H
2 ‖w − w̃t‖

2
2 (6)

Notice that ĝt is a uniform lower bound on f̂t satisfying ĝt(w̃t) = f̂t(w̃t) and5ĝt(w̃t) = 5f̂t(w̃t).

To define ĝt, one needs access to 5f̂t(w̃t). As suggested above, we replace the true gradient with
the one-point estimate. Consider the following proxy g̃t for ĝt:

g̃t(w) = f̂t(w̃t)− 〈5f̂t(w̃t), w̃t〉︸ ︷︷ ︸
A

+〈 p
β
ft(w̃t + βut)ut, w〉+

H

2
‖w − w̃t‖22 (7)

where uT is drawn uniformly from the unit sphere Sp−1. Note that in (7) we replaced the gradient
of f̂t with its one-point approximation only in one of its two occurrences (the inner product with w).

We would like to define w̃t+1 as the minimizer of the sum of proxies
∑t
τ=1 g̃τ (w). One difficulty

remains: because ft is only assumed to be defined on C, the approximation p
β ft(w̃t+βut)ut is only

defined when w̃t is sufficiently far inside C. Recall from the introduction that we assume C contains
rBp (the ball of radius r). To ensure that we only evaluate f on C, we actually minimize over a
smaller set (1− ξ)C, where ξ = β

r . We obtain:

w̃t+1 = arg min
w∈(1−ξ)C

t∑
τ=1

g̃τ (w) = arg min
w∈(1−ξ)C

〈
t∑

τ=1

(
p

β
ft(w̃t + βut)ut

)
, w〉+H

2

t∑
τ=1

‖w−w̃τ‖22

(8)
(We have use the fact that to minimize g̃t, one can ignore the constant term A in (7).)

We can now state the bandit version of FTAL. At each step t = 1, ..., T :

1. Compute w̃t+1 using (8).
2. Output ŵt = w̃t + βut.

Theorem 12 (in Appendix D) gives the precise regret guarantees for this algorithm. For adaptive
adversaries the regret is bounded by Õ(p2/3T 3/4) and for oblivious adversaries the regret is bounded
by Õ(p2/3T 2/3).

7

3.2 Follow the Approximate Leader (Bandit version): Private Algorithm

To make the bandit version of FTAL ε-differentially private, we replace the value vt =∑t
τ=1

(
p
β ft(w

†
t + βut)ut

)
with a private approximation v†t computed using the tree-based sum

protocol. Specifically, at each time step t we output

w†t+1 = arg min
w∈(1−ξ)C

〈v†t , w〉+
H

2

t∑
τ=1

‖w − w†τ‖22 . (9)

See Algorithm 3 (Appendix E.1) for details.
Theorem 5 (Privacy guarantee). The bandit version of Private Follow The Approximate Leader
(Algorithm 3) is ε-differentially private.

The proof of Theorem 5 is exactly the same as of Theorem 3, and hence we omit the details.

In the following theorem we provide the regret guarantee of the Private FTAL (bandit version). For
a complete proof, see Appendix E.2.
Theorem 6 (Regret guarantee). Let Bp be the p-dimensional unit ball centered at the origin and
C ⊆ Rp be a convex set such that rBp ⊆ C ⊆ RBp (where 0 < r < R). Let f1, · · · , fT be L-
Lipschitz, H-strongly convex functions such that for all w ∈ C, |fi(w)| ≤ B. Setting ξ = β/r in the
bandit version of Private Follow The Approximate Leader (Algorithm 3 in Appendix E.1), we obtain
the following regret guarantees.

1. (Oblivious adversary) With β = p
T 1/3 , E [Regret(T)] ≤ Õ

(
pT 2/3χ

)
2. (Adaptive adversary) With β = p

T 1/4 , E [Regret(T)] ≤ Õ
(
pT 3/4χ

)
Here χ =

(
BR+ (1 +R/r)L+ (H‖C‖2+B)2

H

(
1 + B

ε

))
. The expectations are taken over the ran-

domness of the algorithm and the adversary.

One can remove the dependence on r in Thm. 6 by rescaling C to isotropic position. This increases
the expected regret bound by a factor of (LR+ ‖C‖2). See [FKM05] for details.

Bound for general convex functions: Our results in this section can be extended to the setting of
arbitrary Lipshitz convex costs via regularization, as in Section C (by adding H

2 ‖w‖
2
2 to each cost

function ft) . With the appropriate choice of H the regret scales as Õ(T 3/4/ε) for both oblivious
and adaptive adversaries. See Appendix E.3 for details.

4 Open Questions

Our work raises several interesting open questions: First, our regret bounds with general convex
functions have the form Õ(

√
T/ε). We would like to have a regret bound where the parameter 1/ε

is factored out with lower order terms in the regret, i.e., we would like to have regret bound of the
form O(

√
T) + o(

√
T/ε).

Second, our regret bounds for convex bandits are worse than the non-private bounds for linear and
multi-arm bandits. For multi-arm bandits [ACBF02] and for linear bandits [AHR08], the non-private
regret bound is known to be O(

√
T). If we use our private algorithm in this setting, we will incur a

regret of Õ(T 2/3). Can we get O(
√
T) regret for multi-arm or linear bandits?

Finally, bandit algorithms require internal randomness to get reasonable regret guarantees. Can we
harness the randomness of non-private bandit algorithms in the design private bandit algorithms?
Our current privacy analysis ignores this additional source of randomness.

8

References
[ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit

problem. Machine learning, 2002.

[ADX10] Alekh Agarwal, Ofer Dekel, and Lin Xiao. Optimal algorithms for online convex optimization
with multi-point bandit feedback. In COLT, 2010.

[AHR08] Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient algo-
rithm for bandit linear optimization. In COLT, 2008.

[BCB12] Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. arXiv preprint arXiv:1204.5721, 2012.

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: The SuLQ
framework. In PODS, 2005.

[CM08] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In NIPS,
2008.

[CMS11] Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical
risk minimization. Journal of Machine Learning Research, 12:1069–1109, 2011.

[CSS10] TH Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. In
ICALP, 2010.

[DJW13] John C. Duchi, Michael I. Jordan, and Martin J. Wainwright. Local privacy and statis-
tical minimax rates. In IEEE Symp. on Foundations of Computer Science (FOCS), 2013.
http://arxiv.org/abs/1302.3203.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In TCC, 2006.

[DN10] Cynthia Dwork and Moni Naor. On the difficulties of disclosure prevention in statistical databases
or the case for differential privacy. J. Privacy and Confidentiality, 2(1), 2010.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under
continual observation. In Proceedings of the 42nd ACM symposium on Theory of computing,
2010.

[Dwo06] Cynthia Dwork. Differential privacy. In ICALP, 2006.

[FKM05] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimiza-
tion in the bandit setting: gradient descent without a gradient. In SODA, 2005.

[HAK07] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Journal of Machine Learning Research, 2007.

[Han57] James Hannan. Approximation to bayes risk in repeated play. 1957.

[JKT12] Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning. In
COLT, 2012.

[JT13] Prateek Jain and Abhradeep Thakurta. Differentially private learning with kernels. In ICML, 2013.

[KLN+08] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? In FOCS, 2008.

[KM12] Daniel Kifer and Ashwin Machanavajjhala. A rigorous and customizable framework for privacy.
In PODS, 2012.

[KS08] Shiva Prasad Kasiviswanathan and Adam Smith. A note on differential privacy: Defining resis-
tance to arbitrary side information. CoRR, arXiv:0803.39461 [cs.CR], 2008.

[KST12] Daniel Kifer, Adam Smith, and Abhradeep Thakurta. Private convex empirical risk minimization
and high-dimensional regression. In COLT, 2012.

[Sha11] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends R©
in Machine Learning, 2011.

[Smi11] Adam Smith. Privacy-preserving statistical estimators with optimal convergence rates. In STOC,
2011.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, 2003.

9

A Algorithm for Tree based Aggregation Protocol

Algorithm 2 Private Tree based aggregation protocol
Input: Vectors: 〈z1, · · · , zT ∈ Rp〉 (in an online sequence), µ : L2-norm bound on zi’s, privacy

parameter: ε.
1: Initialization: Define a binary tree of size 2dlog2Te+1 − 1 with leaves z1, · · · , zT .
2: Online Phase: At each iteration t ∈ [T], execute Steps 3 to 18.
3: Accept zt from the data stream.
4: Let L = {zt → · · · → root} be the path from zt to the root.
5: Tree update: Steps 6 till10.
6: Λ← First node in L that is a left-child in A. Let LΛ = {at → · · · → Λ}.
7: for all α in L do
8: α← α+ zt.

9: If α ∈ LΛ, then α← α+n, where n ∼ λe−
‖n‖2ε

µ(dlog2Te+1) and λ is the proportionality constant.
10: end for
11: Output private partial sum: Steps 12 till 18.
12: Initialize vector v ∈ Rp to zero. Let b← dlog2T e+ 1-bit binary representation of t.
13: for all i in [dlog2T e+ 1] do
14: if bit bi = 1 then
15: If i-th node in L (denoted by L(i)) is the left child in A, then v ← v + L(i),

else v ← v + left sibling(L(i)).
16: end if
17: end for
18: return The noisy partial sum v.

B Privacy and Utility Guarantees of PFTAL Algorithm (Algorithm 1)

B.1 Privacy guarantee for Algorithm 1

Proof of Theorem 3. Notice that given v̂2, · · · , v̂t+1 (where v̂t+1 is the noisy version of vt+1 =
t∑

τ=1
5ft(ŵτ)), the outputs ŵ2, · · · ŵt+1 are completely determined. Hence, it suffices to argue for

the privacy of v̂2, · · · , v̂T . Let F and F ′ be any two sequences of L-Lipschitz, H-strongly convex
cost functions differing in exactly one cost function. Let V̂ = 〈v2, · · · , vT 〉. For ε-differential
privacy, we need to argue that for any set S = 〈s2, · · · , sT 〉 of T vectors, the following is true.

Pr[V̂ (F) = S]

Pr[V̂ (F ′) = S]
=

T∏
t=2

Pr[v̂t(F) = st|v̂2 = s2, · · · , v̂t−1 = st−1]

Pr[v̂t(F ′) = st|v̂2 = s2, · · · , v̂t−1 = st−1]
≤ eε (10)

Now in (10), each v̂t is computed using the tree A (see Algorithm 2) and hence fixing the values of
the nodes in the treeA completely determines V (F). LetA(F) = 〈α1(F), · · ·α(2dlgTe+1−1)(F)〉 be
the in-order tree traversal ofA(F). To prove (10), it suffices to prove that for all possible assignments
A = 〈α1, · · · 〉 to the tree, the following holds.

Pr[A(F) = A]

Pr[A(F ′) = A]
=

(2dlog2Te+1−1)∏
t=1

Pr[αt(F) = αt|α1(F) = α1, · · · , αt−1(F) = αt−1]

Pr[αt(F ′) = αt|α1(F ′) = α1, · · · , αt−1(F ′) = αt−1]
≤ eε

(11)
In the above ratio, changing one entry in the data set F affects only (dlog2T e + 1) terms in the
product in (11). By the amount of noise added to each node of the tree, each of the ratio in the

product of (11) is bounded by e
(

ε
dlog2Te+1

)
. (See Line 9 in Algorithm 2). Here we have used the fact

that for any vector w ∈ C, ‖5 ft(w)‖2 is at most L (by the Lipschitz property) and ‖5 f̃t(w)‖2 (in
(3)) is at most L+H‖C‖2 (by the bound on the convex set C).

Hence, we can conclude that in overall, Algorithm 1 is ε-differentially private.

10

B.2 Regret guarantee for Algorithm 1

Proof of Theorem 4. Recall that regret is given by the following expression

Regret(T) =

T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w). (12)

We will prove the required regret bound via the following three stage argument. We will first show
in Lemma 7 that the regret in (12) is upper bounded by the regret for the cost functions f̃t (see (3)
for notation). Next in Lemma 8, we show that the regret for f̃t’s with respect to ŵt’s is not “too
much” higher compared to the regret with w̃t’s (see (4) for notation). Finally we bound the regret
with respect to w̃t’s.

Lemma 7.
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w) ≤
T∑
t=1

f̃t(ŵt)−min
w∈C

T∑
t=1

f̃t(w).

Proof. First notice that by definition, ft(ŵt) = f̃t(ŵt). Also, notice that f̃t(w) ≤ ft(w) for all

w ∈ Rp. There fore, i)
T∑
t=1

ft(ŵt) =
T∑
t=1

f̃t(ŵt) and ii) min
w∈C

T∑
t=1

f̃t(w) ≤ min
w∈C

T∑
t=1

ft(w).

This completes the proof.

In the next lemma we show that the regret with the outputs ŵ1, · · · , ŵT is not much different from
with respect to w̃1, · · · , w̃T .

Lemma 8. Under the randomness of Algorithm 1, the following is true.

E

[
T∑
t=1

f̃t(ŵt)−min
w∈C

T∑
t=1

f̃t(w)

]
≤ E

[
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w)

]
+

4p(L+H‖C‖2)2 log2.5 T

εH
.

Proof. Recall that w̃t+1 = arg min
w∈C

J(w), where J(w) = 〈
t∑

τ=1
5ft(ŵτ), w〉 + H

2

t∑
τ=1
‖w − ŵτ‖22.

We can equivalently write ŵt+1 = arg min
w∈C

J(w) + 〈n,w〉, where n is the noise added in the noisy

computation of vt+1 =
t∑

τ=1
5ft(ŵτ) in Line 9 (via the tree-aggregation scheme). By the Ht-strong

convexity property of J(w), we have

‖w̃t+1 − ŵt+1‖2 ≤
2‖n‖2
Ht

. (13)

Now, since ft is assumed to be L-Lipschitz and the L2 norm of any vector in C is bounded by ‖C‖2,
it directly follows that f̃t is (L + H‖C‖2)-Lipschitz. Therefore, from (13) and using the Lipschitz
property of f̃t, we have

|f̃t(ŵt)− f̃t(w̃t)| ≤
2‖n‖2(L+H‖C‖2)

Ht
.

Therefore,

E

[
T∑
t=1

f̃t(ŵt)−min
w∈C

T∑
t=1

f̃t(w)

]
≤

T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w) +
2E[‖n‖2](L+H‖C‖2)

H

T∑
t=1

1

t

≤
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w) +
2E[‖n‖2](L+H‖C‖2) log T

H
.

(14)
(15)

11

To bound E[‖n‖2], notice that n is formed by adding at most dlog T e + 1 vectors whose
norms are drawn from the Gamma distribution with scale p and shape (dlog Te+1)(L+H‖C‖2)

ε .

Therefore,E[‖n‖2] ≤ 4p log1.5 T (L+H‖C‖2)
ε .

Plugging in the above bound in (15), we complete the proof.

Next, we prove the following fact which will be useful in proving the regret bound. In the on-
line learning literature this fact is also called the bound on regret via the bound on forward regret
[HAK07].

Fact 9.
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w) ≤
T∑
t=1

f̃t(w̃t)− f̃t(w̃t+1).

Proof. We prove the above fact by proving that
T∑
t=1

f̃t(w̃t+1) ≤ min
w∈C

T∑
t=1

f̃t(w). We prove this by

induction. Clearly the base case is true by definition of w̃2 (see (4)). Now assume correctness for
T − 1, and

T∑
t=1

f̃t(w̃t+1) ≤ min
w∈C

T−1∑
t=1

f̃t(w) + f̃T (wT+1) (by induction hypothesis)

≤
T−1∑
t=1

f̃t(wT+1) + f̃T (wT+1)

= min
w∈C

T∑
t=1

f̃t(w) (by definition).

Let ζ =
T∑
t=1

f̃t(w̃t)−min
w∈C

T∑
t=1

f̃t(w). Using Fact 9 above and the Lipschitz property of f̃t’s, we can

conclude that ζ ≤ (L+H‖C‖2)
T∑
t=1
‖w̃t − w̃t+1‖2. All we now need to do is bound ‖w̃t − w̃t+1‖2

for all t.

Claim 10. For all t, ‖w̃t − w̃t+1‖2 ≤ 2(L+H‖C‖2)
Ht .

Proof. Notice that

w̃t = arg min
w∈C

t−1∑
τ=1

f̃τ (w)

and

w̃t+1 = arg min
w∈C

t−1∑
τ=1

f̃τ (w) + f̃t(w).

Let J(w) =
t−1∑
τ=1

f̃τ (w) + ft(w). Therefore,

J(w̃t) ≥ J(w̃t+1) +
Ht

2
‖w̃t − w̃t+1‖22

⇔ Ht

2
‖w̃t − w̃t+1‖22 ≤

(
t−1∑
τ=1

f̃τ (w̃t)−
t−1∑
τ=1

f̃τ (w̃t+1)

)
+ f̃t(w̃t)− f̃t(w̃t+1)

⇔ Ht

2
‖w̃t − w̃t+1‖22 ≤ ft(w̃t)− ft(w̃t+1) ≤ (L+H‖C‖2)‖w̃t − w̃t+1‖2

⇔ ‖w̃t − w̃t+1‖2 ≤
2(L+H‖C‖2)

Ht
.

12

Using the above claim and Fact 9, we can conclude that

T∑
t=1

f̃t(w̃t)− f̃t(w̃t+1) ≤ 2(L+H‖C‖2)2 log T

H
.

Combining the above expression with Lemma 8, we obtain the required regret bound.

C Results for General Convex Costs

In this section we will adapt the Private Follow the Approximate Leader (Algorithm 1) for H-
strongly convex costs from previous section to the to the case of general convex functions. The idea
is to add a L2-regularizer to the cost functions while running the PFTAL algorithm, and then tune H
for the optimal regularization parameter. To be more precise, for every cost function ft, we will have
Algorithm 1 work with the cost function ht(w) = ft(w) + H

2 ‖w‖
2
2 (instead of ft). Clearly, each

ht is now H-strongly convex. So, the privacy and regret guarantees in Section 2.1.1 will hold for
the cost sequence h1, · · · , hT . Notice that the following is always true for any sequence of vectors
w1, · · · , wT ∈ C, since the diameter of the convex set C is bounded.

T∑
t=1

ft(wt)−min
w∈C

T∑
t=1

ft(w) ≤

(
T∑
t=1

ht(wt)−min
w∈C

T∑
t=1

ht(w)

)
+
HT

2
‖C‖22. (16)

If ŵ1, · · · , ŵT be the sequence of outputs of Algorithm 1 on the cost sequence h1, · · · , hT , then
(17) follows from Theorem 4 and (16).

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ E

[
T∑
t=1

ht(ŵt)−min
w∈C

T∑
t=1

ht(w)

]
+
HT

2
‖C‖22

= O

(
p(L+H‖C‖2)2 log2.5 T

εH

)
+
HT

2
‖C‖22. (17)

Theorem 11 (Regret guarantee). Let f1, · · · , fT be L-Lipschitz convex functions and let C ⊆ Rp
be a fixed convex set. Setting the parameter H in the regularizer H

2 ‖w‖
2
2 optimally, we have the

following regret bound.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
= O

√p log2.5 T (L+
√

p log2.5 T
εT ‖C‖2)2

ε

√
T

 . (18)

The expectation is over the randomness of the algorithm and the adversary.

Proof. Setting H =
√

p log2.5 T
εT in the right hand side of (17), we get the regret guarantee in (18)

for the sequence of outputs ŵ1, · · · , ŵT .

Notice that the regret bound in (18) is a factor or
√
p log2.5 T/ε worse than the non-private regret

bound of O(
√
T), assuming other parameters to be constants and T = ω

(
p
ε

)
. The assumption on T

is benign, since if T = O
(
p
ε

)
, then the regret guarantee in (18) will no longer be sublinear.

We believe it is unlikely that one can remove the explicit dependence on the dimensionality in the
regret bound for general convex costs, while preserving differential privacy.

D Regret Guarantees for Follow The Approximate Leader (Bandit version)

Theorem 12 (Regret guarantee). Let Bp be a d-dimensional unit ball centered at the origin and C
be a convex set such that rBp ⊆ C ⊆ RBp (where 0 < r < R).

13

• Adaptive adversary: Setting β = p2/3

T 1/4 and ξ = β/r , the expected regret is at most

Õ

(
p2/3T 3/4

(
BR+

(
1 +

R

r

)
L+

(H‖C‖2 +B)2

H

))
.

• Oblivious adversary: Setting β = p2/3

T 1/3 and ξ = β/r, the expected regret is at most

Õ

(
p2/3T 2/3

(
(1 +R/r)L+

(H‖C‖2 +B)2

H

))
.

The expectation is over the randomness of the algorithm and the adversary.

D.1 Proof: Regret guarantee for Adaptive Adversary

Proof. We prove the regret bound in the following three stages: i) In Lemma 13, we show that the
regret for the output sequence ŵ1, · · · , ŵt with respect to the original cost functions ft’s is not much
higher compared to f̂t’s with parameter vectors w̃1, · · · , w̃T (defined in (8)), ii) We show in Lemma
14 that the regret of f̂t’s with the parameter vectors w̃t’s is at most the regret of the cost functions
ĝt’s with the same parameter vectors (defined in (6)). iii) In Lemma 15, we directly bound the regret
on ĝt’s with parameter vectors w̃t’s.

Lemma 13. For any sequence of parameter vectors w̃1, · · · , w̃T from the convex set (1 − ξ)C and
vectors ŵ1, · · · , ŵT such that for all t ∈ [T], ŵt = w̃t + βut (where ut is a uniform vector drawn
from the unit sphere Sp−1), the following is true.

T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w) ≤
T∑
t=1

f̂t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

f̂t(w) + 3βLT + ξRLT

Proof. First notice that for any w ∈ C, the following is true for any t ∈ [T] by the Lipschitz property
of ft’s. ∣∣∣ft(w)− f̂t(w)

∣∣∣ = |ft(w)− Ev∼Bp [ft(w + βv)]|

= |Ev [ft(w)− ft(w + βv)]|
≤ Lβ · Ev [‖v‖2] ≤ βL (19)

Now for any w ∈ C, by the Lipschitz property of ft, we can obtain the following bound |ft(w) −

ft((1 − ξ)w)| ≤ ξLR. This means that min
w∈(1−ξ)C

T∑
t=1

ft(w) ≤ min
w∈C

T∑
t=1

ft(w) + ξLRT . Therefore,

by (19) we directly have

min
w∈(1−ξ)C

T∑
t=1

f̂t(w) ≤ min
w∈C

T∑
t=1

ft(w) + βLT + ξRLT (20)

By Lipschitz property of ft, we have |ft(ŵt) − ft(w̃t)| ≤ βL. Additionally, by (22) we have
|f̂t(w̃t)− ft(w̃t)| ≤ βL. Combining these two observations, we get

T∑
t=1

ft(ŵt) ≤
T∑
t=1

f̂t(w̃t) + 2βLT (21)

Combining (20) and (21) we get the required error guarantee.

Lemma 14. For any sequence of parameter vectors w̃1, · · · , w̃T from the convex set (1 − ξ)C, the
following is true.

T∑
t=1

f̂t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

f̂t(w) ≤
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

14

Proof. First notice that by definition, f̂t(w̃t) = ĝt(w̃t). Also, notice that ĝt(w) ≤ f̂t(w) for all

w ∈ Rp. There fore, i)
T∑
t=1

f̂t(w̃t) =
T∑
t=1

ĝt(w̃t) and ii) min
w∈(1−ξ)C

T∑
t=1

f̂t(w) ≤ min
w∈(1−ξ)C

T∑
t=1

ĝt(w).

This completes the proof.

Using the above lemma we directly get (22) below. In order to obtain the final regret guarantee, we

just need to bound
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w) and appropriately set β and ξ.

T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w) ≤
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w) + 3βLT + ξRLT (22)

Lemma 15. E
[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≤ 2(H‖C‖2+pB/β)2

H log T + 2BR
√
T p
β . The ex-

pectation is over the random unit vectors u1, · · · , uT .

Proof. Since g̃t’s are H-strongly convex functions and
(
H‖C‖2 + p

βB
)

-Lipschitz, from the regret
analysis in Lemma 8 we directly have the following.

T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w) ≤
2(H‖C‖2 + p

βB)2

H
log T (23)

Let w∗ = arg min
w∈(1−ξ)C

T∑
t=1

ĝt(w). Therefore by (23), we have (24).

T∑
t=1

g̃t(w̃t)−
T∑
t=1

g̃t(w
∗) ≤

2(H‖C‖2 + p
βB)2

H
log T (24)

Notice that

E

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
= E

[
T∑
t=1

ĝt(w̃t)−
T∑
t=1

ĝt(w
∗)

]

= E[

T∑
t=1

g̃t(w̃t)]− E[

T∑
t=1

ĝt(w
∗)] (25)

The last inequality follows from the observation that Eut [g̃t(w)] = ĝt(w) for all w ∈ C. Let
αt = 5Ev∼Bp [ft(w̃t + βv)]− p

β ft(w̃t + βut)ut. For any w ∈ (1− ξ)C,∣∣∣∣∣
T∑
t=1

(ĝt(w)− g̃t(w))

∣∣∣∣∣ =

∣∣∣∣∣〈w,
T∑
t=1

αt〉

∣∣∣∣∣ ≤ R‖
T∑
t=1

αt‖2

Now,

E

[
‖

T∑
t=1

αt‖2

]2

≤ E

[
‖

T∑
t=1

αt‖22

]

=

T∑
t=1

E[‖αt‖22] + 2
∑
t<t′

E [αtαt′] ≤ 4T
p2

β2
B2

The last inequality is true because E [αtαt′] = 0. Therefore,

E

[
min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≥ E

[
min

w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
− 2p

β
BR
√
T

15

Using this bound in (25), we have

E

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≤ E

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
+

2p

β
BR
√
T

Plugging in the bound from (24) completes the proof.

Combining Lemmas 13, 14 and 15, we obtain the following.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ 3βLT + ξRLT +

2(H‖C‖2 + p
βB)2

H
log T +

2p

β
BR
√
T

Setting, β = p2/3

T 1/4 and ξ = β
r gives the required regret bound.

D.2 Proof: Regret guarantee for Oblivious Adversary

Proof. The proof of this theorem is similar to the proof with adaptive adversary, except we will be
prove a tighter bound corresponding to Lemma 15.

Lemma 16. E
[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
≤ 2(H‖C‖2+pB/β)2

H log T . The expectation is

over the random unit vectors u1, · · · , uT .

Proof. Similar to the proof of Lemma 15, let w∗ = arg min
w∈(1−ξ)C

T∑
t=1

ĝt(w). Notice that

Eut [g̃t(w)] = ĝt(w) for all w ∈ C. Therefore,

E

[
T∑
t=1

ĝt(w̃t)−
T∑
t=1

ĝt(w
∗)

]
= E

[
T∑
t=1

g̃t(w̃t)

]
− E

[
T∑
t=1

g̃t(w
∗)

]

= E

[
T∑
t=1

g̃t(w̃t)−
T∑
t=1

g̃t(w
∗)

]

≤ E

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
(26)

Now, using the bound from (23) in (26), we get the required regret bound.

Combining Lemmas 13, 14 and 16, we obtain the following.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ 3βLT + ξRLT +

2(H‖C‖2 + p
βB)2

H
log T

Setting, β = p2/3

T 1/3 and ξ = β
r gives the required regret bound.

E Algorithm and Regret Guarantees for Private Follow The Approximate
Leader

(Bandit version)

E.1 Private Follow The Approximate Leader (Bandit version) Algorithm

16

Algorithm 3 Differentially Private Follow the Approximate Leader (PFTAL): Bandit Version
Input: Cost functions: 〈f1, · · · , fT 〉 (in an online sequence), strong convexity parameter: H , bound

on the costs: B, convex set: C ⊆ Rp, scaling parameter: ξ, sampling radius: β, and privacy
parameter: ε.

1: w†1 ← Any vector from C. Output w†1.
2: Sample u1 uniformly from the sphere Sp−1 = {w ∈ Rp : ‖w‖2 = 1}.
3: Pass p

β f1(w†1 + βu1)u1, L2-bound pB
β and privacy parameter ε to the tree based protocol (Al-

gorithm 2) and receive the current partial sum in v†1.
4: for time steps t ∈ {1, · · · , T − 1} do

5: w†t+1 = arg min
w∈(1−ξ)C

〈v†t, w〉+ H
2

t∑
τ=1
‖w − w†τ‖22. Output ŵt.

6: Sample ut+1 uniformly from the sphere Sp−1.
7: Pass p

β ft+1(w†t+1 + βut+1)ut+1, L2-bound pB
β and privacy parameter ε to the tree based

protocol (Algorithm 2) and receive the current partial sum in v†t+1.
8: end for

E.2 Regret Analysis

Proof of Theorem 6. Corresponding to definitions of ĝt and g̃t’s in (6), (7), and (8) (in Section 3.1),
we redefine them while using the Taylor expansion around w†t+1.

ĝt(w) = f̂t(w
†
t) + 〈5f̂t(w†t), w − w

†
t 〉+

H

2
‖w − w†t‖22 (27)

g̃t(w) = f̂t(w
†
t)− 〈5f̂t(w

†
t), w

†
t 〉+ 〈 p

β
ft(w

†
t + βut)ut, w〉+

H

2
‖w − w†t‖22 (28)

w̃t+1 = arg min
w∈(1−ξ)C

t∑
τ=1

g̃τ (w) (29)

With the above equations in hand, we can rewrite the definition of w†t+1 in (9) as follows. Here
nt = v†t − vt, where v†t and vt are as defined in Section 3.2.

w†t+1 = arg min
w∈(1−ξ)C

t∑
τ=1

g̃τ (w) + 〈nt, w〉 (30)

Using a similar argument we used in Lemma 8, we get the following.
T∑
t=1

ĝt(w
†
t)− min

w∈(1−ξ)C

T∑
t=1

ĝt(w) ≤
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)+
2(pB/β +H‖C‖2)

H

T∑
t=1

‖nt‖2
t

(31)
From (31) and using an expectation bound on ‖nt‖2 similar to Lemma 8, we obtain the following.

En1,··· ,nT

[
T∑
t=1

ĝt(w
†
t)− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]

≤ En1,··· ,nT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH

(32)
Now,

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

= En1,··· ,nT

[
Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]]
(33)

17

If the adversary is adaptive, then by the same line of argument in Lemma 15, we have

Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]

≤ Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]
+

2p

β
BR
√
T (34)

If the adversary is oblivious, then by the same line of argument in Lemma 16, we have

Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]

≤ Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]
(35)

For the purpose of brevity, we combine (34) and (35) into one expression (36), where the term γ
equals 2d

β

√
TRB for adaptive adversary and zero for oblivious adversary. For the rest of the proof,

we will set γ according to the assumption about the adversary.

Eu1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣n1, · · · , nT

]

≤ Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]
+ γ (36)

Plugging (36) back in (33), we get

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

≤ En1,··· ,nT

[
Eu1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

∣∣∣∣∣n1, · · · , nT

]]
+ γ

= En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
+ γ (37)

Combining (32) and (37), we have

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w
†
t)− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

= Eu1,··· ,uT

[
En1,··· ,nT

[
T∑
t=1

ĝt(w
†
t)− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]]

≤ Eu1,··· ,uT

[
En1,··· ,nT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

∣∣∣∣∣u1, · · · , uT

]]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH

= En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w̃t)− min
w∈(1−ξ)C

T∑
t=1

ĝt(w)

]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH

≤ En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w)

]
+

2p(pB/β +H‖C‖2)2 log2.5 T

βεH
+ γ

(38)

18

Plugging in the absolute bound on
T∑
t=1

g̃t(w̃t)− min
w∈(1−ξ)C

T∑
t=1

g̃t(w) from (23), we obtain the follow-

ing.

En1,··· ,nT ,u1,··· ,uT

[
T∑
t=1

ĝt(w
†
t)− min

w∈(1−ξ)C

T∑
t=1

ĝt(w)

]

≤
2(H‖C‖2 + p

βB)2

H
log T +

2p(pB/β +H‖C‖2)2 log2.5 T

βεH
+ γ (39)

Combining Lemmas 13, 14 and (39), we obtain the following. The expectation is over the complete
randomness of the private FTAL (bandit version).

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]

≤ 3βLT + ξRLT +
2(H‖C‖2 + p

βB)2

H
log T +

2p(pB/β +H‖C‖2)2 log2.5 T

βεH
+ γ

Recall that if the adversary is adaptive, then γ = 2p
β BR

√
T and zero otherwise. Setting β = p

T 1/4

for adaptive adversary and β = p
T 1/3 for oblivious adversary, and setting ξ = β

r , we get the required
regret bound.

E.3 Private Bandit Learning for General Convex Functions

Our results in this section can be extended to the setting with general convex costs via the regu-
larization “trick” from Appendix C (by adding H

2 ‖w‖
2
2 to each cost function ft) . One can show

that under optimal choice of H , both for oblivious and adaptive adversary, the regret scales as
Õ(T 3/4/ε), which is also the best known nonprivate bound [FKM05]. We provide the formal regret
guarantee below.
Theorem 17 (Regret guarantee). Let Bp be a p-dimensional unit ball centered at the origin and
C ⊆ Rp be a convex set such that rBp ⊆ C ⊆ RBp (where 0 < r < R). Let f1, · · · , fT be
L-Lipschitz functions and for all w ∈ C, |fi(w)| ≤ B. Additionally assume that the regularizing
parameterH is set to 1/T 1/4. Setting β = p

T 1/4 and ξ = β/r in the Private Follow The Approximate
Leader (bandit version) algorithm (Algorithm 3), we obtain the following regret guarantee.

E

[
T∑
t=1

ft(ŵt)−min
w∈C

T∑
t=1

ft(w)

]
≤ Õ

(
pT 3/4χ

)
.

Here χ =
(
BR+ (1 +R/r)L+ B3

ε

)
. The expectation is over the randomness of the algorithm

and the adversary.

19

	Introduction
	Private Online Learning: Full-information Setting
	Private Follow The Approximate Leader (PFTAL) with Strongly Convex Costs
	Privacy and Utility Guarantees for PFTAL (Algorithm 1)

	Private Online Learning: Bandit Setting
	Follow the Approximate Leader (Bandit version): Non-private Algorithm
	Follow the Approximate Leader (Bandit version): Private Algorithm

	Open Questions
	Algorithm for Tree based Aggregation Protocol
	Privacy and Utility Guarantees of PFTAL Algorithm (Algorithm 1)
	Privacy guarantee for Algorithm 1
	Regret guarantee for Algorithm 1

	Results for General Convex Costs
	Regret Guarantees for Follow The Approximate Leader (Bandit version)
	Proof: Regret guarantee for Adaptive Adversary
	Proof: Regret guarantee for Oblivious Adversary

	Algorithm and Regret Guarantees for Private Follow The Approximate Leader (Bandit version)
	Private Follow The Approximate Leader (Bandit version) Algorithm
	Regret Analysis
	Private Bandit Learning for General Convex Functions

