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Abstract

Appendix for the details on Nelder-Mead algorithm, and the nonlinear least
squares optimization method.

1 MLE using Nelder-Mead algorithm

Given a nondegenerate simplex .S as the convex hull of vertices {1, ta, ..., tn4+1} € R™, the Nelder-
Mead method evaluates the objective function at each of the simplex vertices, the evaluation is
denoted as f(t;), i = 1,....,n + 1, f(t) = —In L(¢;x). For each iteration, the algorithm consists of
the following three steps [1]:

1. Order the evaluation values at each vertex, such that f(¢1) < f(t2) < -+ < f(tnt1)-

t;.

3. Compute the new simplex by finding a new accepted point ¢’ that leads to a better function
evaluation. First, evaluate the reflection point f(t,.) with respect to c. Iteration terminates

if f(t1) < f(¢r) < f(tn). Else:
e Expand if reflected point is the new best point, such that f(¢,.) < f(¢1).
e Contract if the reflected point is the second worse point, such that f(z,) < f(t,).

e Shrink the new simplex toward current best point ¢ if none of the above resulted in a
better function evaluation, by replacing ¢; with %(tl +t;),fori=2,...,n+ 1.

2. Calculate the centroid of the best n points by ¢ = >

i=1

The effect of this algorithm is better understood in the case of R?, that the simplex is a triangle
that flip-flops (reflection, if necessary) its way down the hill in the likelihood function space until
convergence. To enforce the bound constraints of 8; o > 1 and = < 1 that involves just inequalities,
the accepted point ¢’ is adjusted with the respective lower and upper bound if any of its corresponding
parameter values fail to satisfy the constraints.

2 Nonlinear least squares

For observations (21,¥1), ..., (€5, Yn) and our parameter vector § = («aq, 81, ¢1, @z, B2, ¢, ), the
least squares estimator finds the minimizer to the following objective function:

F(0;x) = %er(()) . (0 = W0 2) — s (1)
i=1



where 7;(0) is the residual, and 6 is subject to the bound constraints that were specified earlier.
The trust-region method iteratively minimizes the objective function starting from an initial starting
parameter vector 6. By setting § = ', we proceed to minimize a quadratic approximation Q(s)
that is the change in the objective function F'(6 4+ s) — F'(6). Q(s) is given by:

Q(s)=g"s+3s"Hs , subjectto |ls|la <7, -~ =0 )
s € N is the subspace in the neighborhood N of the trust-region, g and H are the gradient and
Hessian at 6. The Steihaug-Toint conjugate-gradient method can be used for each iteration step s
with the unconstrained Newton equation Hs = —g, setting § = 0 + s if F(6 + s) < F(#) and
adjusting 7 at the end of each iteration [2]][3]. In our constrained case, the unconstrained Newton
step is replaced with a scaled Newton step D~2g = 0 to solve for the following linear system:

MDsN = —¢g', M =D"'HD™ ' + diag(g)J® (3)

with ¢/ = D71g at the k" iteration, and D is the diagonal matrix of vector |vk_l/ ?|, with J®
denoting the Jacobian of |v|. The bound constraints (ub: upper-bound, [b: lower-bound) are used
here for computing v(): for the 7* observation, v; = ; —ub; if g; < 0 and ub; < oo; v; = 0; —lb;
if g; > 0and lb; > —o0; v; = —1if g; < 0 and ub; = oco; and v; = 1if g; > 0 and Ib; = —oo.
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