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Abstract

Visual clutter, the perception of an image as being crowded and disordered, af-
fects aspects of our lives ranging from object detection to aesthetics, yet relatively
little effort has been made to model this important and ubiquitous percept. Our
approach models clutter as the number of proto-objects segmented from an im-
age, with proto-objects defined as groupings of superpixels that are similar in
intensity, color, and gradient orientation features. We introduce a novel paramet-
ric method of clustering superpixels by modeling mixture of Weibulls on Earth
Mover’s Distance statistics, then taking the normalized number of proto-objects
following partitioning as our estimate of clutter perception. We validated this
model using a new 90-image dataset of real world scenes rank ordered by human
raters for clutter, and showed that our method not only predicted clutter extremely
well (Spearman’s ρ = 0.8038, p < 0.001), but also outperformed all existing clut-
ter perception models and even a behavioral object segmentation ground truth. We
conclude that the number of proto-objects in an image affects clutter perception
more than the number of objects or features.

1 Introduction

Visual clutter, defined colloquially as a “confused collection” or a “crowded disorderly state”, is
a dimension of image understanding that has implications for applications ranging from visualiza-
tion and interface design to marketing and image aesthetics. In this study we apply methods from
computer vision to quantify and predict human visual clutter perception.

The effects of visual clutter have been studied most extensively in the context of an object detection
task, where models attempt to describe how increasing clutter negatively impacts the time taken to
find a target object in an image [19][25][29][18][6]. Visual clutter has even been suggested as a
surrogate measure for set size effect, the finding that search performance often degrades with the
number of objects in a scene [32]. Because human estimates of the number of objects in a scene
are subjective and noisy - one person might consider a group of trees to be an object (a forest or a
grove) while another person might label each tree in the same scene as an “object”, or even each
trunk or branch of every tree - it may be possible to capture this seminal search relationship in an
objectively defined measure of visual clutter [21][25]. One of the earliest attempts to model visual
clutter used edge density, i.e. the ratio of the number of edge pixels in an image to image size
[19]. The subsequent feature congestion model ignited interest in clutter perception by estimating
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Figure 1: How can we quantify set size or the number of objects in these scenes, and would this
object count capture the perception of scene clutter?

image complexity in terms of the density of intensity, color, and texture features in an image [25].
However, recent work has pointed out limitations of the feature congestion model [13][21], leading
to the development of alternative approaches to quantifying visual clutter [25][5][29][18].

Our approach is to model visual clutter in terms of proto-objects: regions of locally similar features
that are believed to exist at an early stage of human visual processing [24]. Importantly, proto-objects
are not objects, but rather the fragments from which objects are built. In this sense, our approach
finds a middle ground between features and objects. Previous work used blob detectors to segment
proto-objects from saliency maps for the purpose of quantifying shifts of visual attention [31], but
this method is limited in that it results in elliptical proto-objects that do not capture the complexity
or variability of shapes in natural scenes. Alternatively, it may be possible to apply standard image
segmentation methods to the task of proto-object discovery. While we believe this approach has
merit (see Section 4.3), it is also limited in that the goal of these methods is to approximate a human
segmented ground truth, where each segment generally corresponds to a complete and recognizable
object. For example, in the Berkeley Segmentation Dataset [20] people were asked to segment each
image into 2 to 20 equally important and distinguishable things, which results in many segments
being actual objects. However, one rarely knows the number of objects in a scene, and ambiguity in
what constitutes an object has even led some researchers to suggest that obtaining an object ground
truth for natural scenes is an ill-posed problem [21].

Our clutter perception model uses a parametric method of proto-object partitioning that clusters su-
perpixels, and requires no object ground truth. In summary, we create a graph having superpixels as
nodes, then compute feature similarity distances between adjacent nodes. We use Earth Mover’s Dis-
tance (EMD) [26] to perform pair-wise comparisons of feature histograms over all adjacent nodes,
and model the EMD statistics with mixture of Weibulls to solve an edge-labeling problem, which
identifies and removes between-cluster edges to form isolated superpixel groups that are subse-
quently merged. We refer to these merged image fragments as proto-objects. Our approach is based
on the novel finding that EMD statistics can be modeled by a Weibull distribution (Section 2.2),
and this allows us to model such similarity distance statistics with a mixture of Weibull distribution,
resulting in extremely efficient and robust superpixel clustering in the context of our model. Our
method runs in linear time with respect to the number of adjacent superpixel pairs, and has an end-
to-end run time of 15-20 seconds for a typical 0.5 megapixel image, a size that many supervised
segmentation methods cannot yet accommodate using desktop hardware [2][8][14][23][34].

2 Proto-object partitioning

2.1 Superpixel pre-processing and feature similarity

To merge similar fragments into a coherent proto-object region, the term fragment and the measure
of coherence (similarity) must be defined. We define an image fragment as a group of pixels that
share similar low-level image features: intensity, color, and orientation. This conforms with pro-
cessing in the human visual system, and also makes a fragment analogous to an image superpixel,
which is a perceptually meaningful atomic region that contains pixels similar in color and texture
[30]. However, superpixel segmentation methods in general produce a fixed number of superpixels
from an image, and groups of nearby superpixels may belong to the same proto-object due to the in-
tended over-segmentation. Therefore, we extract superpixels as image fragments for pre-processing,
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and subsequently merge similar superpixels into proto-objects. We define that a pair of adjacent su-
perpixels belong to a coherent proto-object if they are similar in all three low-level image features.
Thus we need to determine a similarity threshold for each of the three features, that separates the
similarity distance values into “similar”, and “dissimilar” populations, detailed in Section 2.2.

In this work, the similarity statistics are based on comparing histograms of intensity, color, and ori-
entation features from an image fragment. The intensity feature is a 1D 256 bin histogram, the color
feature is a 76×76 (8 bit color) 2D histogram using hue and saturation from the HSV colorspace,
and the orientation feature is a symmetrical 1D 360 bin histogram using gradient orientations, simi-
lar to the HOG feature [10]. All three feature histograms are normalized to have the same total mass,
such that bin counts sum to one.

We use Earth Mover’s Distance (EMD) to compute the similarity distance between feature his-
tograms [26], which is known to be robust to partially matching histograms. For any pair of adja-
cent superpixels va and vb, their normalized feature similarity distances for each of the intensity,
color, and orientation features are computed as: xn;f = EMD(va;f , vb;f )/ÊMDf , where xn;f de-
notes the similarity (0 is exactly the same, and 1 means completely opposite) between the nth pair
(n = 1, ..., N ) of nodes va and vb under feature f ∈ {i, c, o} as intensity, color, and orientation.
ÊMDf is the maximum possible EMD for each of the three image features; it is well defined in
this situation such that the largest difference between intensities is black to white, hues that are
180◦ apart, and a horizontal gradient against a vertical gradient. Therefore, ÊMDf normalizes
xn;f ∈ [0, 1]. In the subsequent sections, we explain our proposed method for finding the adaptive
similarity threshold from xf , which is the EMDs of all pairs of adjacent nodes .

2.2 EMD statistics and Weibull distributon

Any pair of adjacent superpixels are either similar enough to belong to the same proto-object, or they
belong to different proto-objects, as separated by the adaptive similarity threshold γf that is different
for every image. We formulate this as an edge labeling problem: given a graph G = (V,E), where
va ∈ V and vb ∈ V are two adjacent nodes (superpixels) having edge ea,b ∈ E, a 6= b between
them, also the nth edge of G. The task is to label the binary indicator variable yn;f = I(xn;f < γf )
on edge ea,b such that yn;f = 1 if xn;f < γf , which means va;f and vb;f are similar (belongs to the
same proto-object), otherwise yn;f = 0 if va;f and vb;f are dissimilar (belongs to different proto-
objects). Once γf is computed, removing the edges such that yf = 0 results in isolated clusters of
locally similar image patches, which are the desired groups of proto-objects.

Intuitively, any pair of adjacent nodes is either within the same proto-object cluster, or between
different clusters (yn;f = {1, 0}), therefore we consider two populations (the within-cluster edges,
and the between-cluster edges) to be modeled from the density of xf in a given image. In theory,
this would mean that the density of xf is a distribution exhibiting bi-modality, such that the left
mode corresponds to the set of xf that are considered similar and coherent, while the right mode
contains the set of xf that represent dissimilarity. At first thought, applying k-means with k = 2
or a mixture of two Gaussians would allow estimation of the two populations. However, there is
no evidence showing that similarity distances follow symmetrical or normal distributions. In the
following, we argue that the similarity distances xf computed by EMD follow Weibull distribution,
which is a distribution of the Exponential family that is skewed in shape.

We define EMD(P,Q) = (
∑m
i

∑n
j f
′
ijdij)/(

∑m
i

∑n
j f
′
ij), with an optimal flow f ′ij such that∑

j f
′
ij ≤ pi,

∑
i f
′
ij ≤ qj ,

∑
i,j f

′
i,j = min(

∑
i pi,

∑
j qj), and f ′ij ≥ 0, where P =

{(x1, p1), ..., (xm, pm)} and Q = {(y1, q1), ..., (yn, qn)} are the two signatures to be compared,
and dij denotes a dissimilarity metric (i.e. L2 distance) between xi and yj in Rd. When P and
Q are normalized to have the same total mass, EMD becomes identical to Mallows distance [17],
defined as Mp(X,Y ) = ( 1n

∑n
i=1 |xi−yi|p)1/p, where X and Y are sorted vectors of the same size,

and Mallows distance is an Lp-norm based distance measurement. Furthermore, Lp-norm based
distance metrics are Weibull distributed if the two feature vectors to be compared are correlated
and non-identically distributed [7]. We show that our features assumptions are satisfied in Section
4.1. Hence, we can model each feature of xf as a mixture of two Weibull distributions separately,
and compute the corresponding γf as the boundary locations between the two components of the
mixtures. Although the Weibull distribution has been used in modeling actual image features such
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as texture and edges [12][35], it has not been used to model EMD similarity distance statistics until
now.

2.3 Weibull mixture model

Our Weibull mixture model (WMM) takes the following general form:

WK(x; θ) =

K∑
k=1

πkφk(x; θk) , φ(x;α, β, c) =
β

α
(
x− c
α

)β−1e−(
x−c
α )β (1)

where θk = (αk, βk, ck) is the parameter vector for the kth mixture component, and φ denotes the
three-parameter Weibull pdf with the scale (α), shape (β), and location (c) parameter, and the mixing
parameter π such that

∑
k πk = 1. In this case, our two-component WMM contains a 7-parameter

vector θ = (α1, β1, c1, α2, β2, c2, π) that yields the following complete form:

W2(x; θ) = π(
β1
α1

(
x− c1
α1

)β1−1)e−(
x−c1
α1

)β1 + (1− π)(β2
α2

(
x− c2
α2

)β2−1)e−(
x−c2
α2

)β2 (2)

To estimate the parameters ofW2(x; θ), we tested two optimization methods: maximum likelihood
estmation (MLE), and nonlinear least squares minimization (NLS). Both MLE and NLS requires an
initial parameter vector θ′ to begin the optimization, and the choice of θ′ is crucial to the convergence
of the optimal parameter vector θ̂. In our case, the initial guess is quite well defined: for any node
of a specific feature vj;f , and its set of adjacent neighbors vNj;f = N(vj;f ), the neighbor that is most
similar to vj;f is most likely to belong to the same cluster as vj;f , and it is especially true under an
over-segmention scenario. Therefore, the initial guess for the first mixture component φ1;f is the
MLE of φ1;f (θ′1;f ;x

′
f ), such that x′f = {min(EMD(vj;f ,v

N
j;f ))|vj;f ; j = 1, ..., z, f ∈ {i, c, o}},

where z is the total number of superpixels, and x′f ⊂ xf . After obtaining θ′1 = (α′1, β
′
1, c
′
1), several

θ′2 can be computed for the re-start purpose via MLE from the data taken by Pr(xf |θ′1) > p, where
Pr is the cumulative distribution function, and p is a range of percentiles. Together, they form the
complete initial guess parameter vector θ′ = (α′1, β

′
1, c
′
1, α
′
2, β
′
2, c
′
2, π
′) where π′ = 0.5.

2.3.1 Parameter estimation

Maximum likelihood estimation (MLE) estimates the parameters by maximizing the log-likelihood
function of the observed samples. The log-likelihood function ofW2(x; θ) is given by:

lnL(θ;x) =
N∑
n=1

ln{π(β1
α1

(
xn − c1
α1

)β1−1)e−(
xn−c1
α1

)β1 +(1−π)(β2
α2

(
xn − c2
α2

)β2−1)e−(
xn−c2
α2

)β2 }

(3)

Due to the complexity of this log-likelihood function and the presence of the location parameters
c1,2, we adopt the Nelder-Mead method as a derivative-free optimization of MLE that performs pa-
rameter estimation with direct-search [22][16], by minimizing the negative log-likelihood function
of Eq. 3.

For the NLS optimization method, first xf are approximated with histograms much like a box filter
that smoothes a curve. The appropriate histogram bin-width for data representation is computed
by w = 2(IQR)n−1/3, where IQR is the interquartile range of the data with n observations [15].
This allows us to optimize a two component WMM to the height of each bin with NLS as a curve
fitting problem, which is a robust alternative to MLE when the noise level can be reduced by some
approximation scheme. Then, we find the least squares minimizer by using the trust-region method
[27][28]. Both the Nelder-Mead MLE algorithm and the NLS method are detailed in the supple-
mentary material.

Figure 2 shows the WMM fit using the Nelder-Mead MLE method. In addition to the good fit of the
mixture model to the data, it also shows that the right skewed data (EMD statistics) is remarkably
Weibull, this further validates that EMD statistics follow Weibull distribution both in theory and
experiments.
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Figure 2: (a) original image, (b) after superpixel pre-processing [1] (977 initial segments), (c) final
proto-object partitioning result (150 segments). Each final segment is shown with its mean RGB
value to approximate proto-object perception. (d) W2(xf ; θf ) optimized using the Nelder-Mead
algorithm for intensity, (e) color, and (f) orientation based on the image in (b). The red line indicates
the individual Weibull components; and the blue line is the density of the mixtureW2(xf ; θf ).

2.4 Visual clutter model with model selection

At times, the dissimilar population can be highly mixed in with the similar population, the density of
which would resemble more of a single Weibull in shape such as Figure 2d. Therefore, we fit a single
Weibull as well as a two component WMM over xf , and apply the Akaike Information Criterion
(AIC) to prevent any possible over-fittings by the two component WMM. AIC tends to place a
heavier penalty on the simpler model, which is suitable in our case to ensure that the preference
is placed on the two-population mixture models. For models optimized using MLE, the standard
AIC is used; for the NLS cases, the corrected AIC (AICc) for smaller sample size (generally when
n/k ≤ 40) with residual sum of squares (RSS) is used, and it is defined asAICc = n ln(RSS/n)+
2k+2k(k+1)/(n−k−1), where k is the number of model parameters, n is the number of samples.

The optimal γf can then be determined as follows:

γf =


max(x, ε), s.t. π1φ1;f (x|θ1;f ) = π2φ2;f (x|θ2;f ) AIC(W2) ≤ AIC(W1)

max(−α1(ln(1− τ))1/β1 , ε) Otherwise
(4)

The first case is when the mixture model is preferred, then the optimal γf is the crossing point
between the mixture components, and the equality can be solved in linear time by searching over the
values of the vector xf ; in the second case when the single Weibull is preferred by model selection,
γf is calculated by the inverse CDF of W1, which computes the location of a given percentile
parameter τ . Note that γf is lower bounded by a tolerance parameter ε in both cases to prevent
unusual behaviors when an image is nearly blank (γf ∈ [ε, 1]), making τ and ε the only model
parameters in our framework.

We perform Principle Component Analysis (PCA) on the similarity distance values xf of intensity,
color, and orientation and obtain the combined distance feature value by projecting xf to the first
principle component, such that the relative importance of each distance feature is captured by its
variance through PCA. This projected distance feature is used to construct a minimum spanning tree
over the superpixels to form the structure of graph G, which weakens the inter-cluster connectivity
by removing cycles and other excessive graph connections. Finally, each edge of G is labeled
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according to Section 2.2 given the computed γf , such that an edge is labeled as 1 (similar) only if
the pair of superpixels are similar in all three features. Edges labeled as 0 (dissimilar) are removed
from G to form isolated clusters (proto-objects), and our visual clutter model produces a normalized
clutter measure that is between 0 and 1 by dividing the number of proto-objects by the initial number
of superpixels such that it is invariant to different scales of superpixel over-segmentation.

3 Dataset and ground truth

Various in-house image datasets have been used in previous work to evaluate their models of visual
clutter. The feature congestion model was evaluated on 25 images of US city/road maps and weather
maps [25]; the models in [5] and [29] were evaluated on another 25 images consisting of 6, 12, or 24
synthetically generated objects arranged into a grid ; and the model from [18] used 58 images of six
map or chart categories (airport terminal maps, flowcharts, road maps, subway maps, topographic
charts, and weather maps). In each of these datasets, each image must be rank ordered for visual
clutter with respect to every other image in the set by the same human subject, which is a tiring and
time consuming process. This rank ordering is essential for a clutter perception experiment as it
establishes a stable clutter metric that is meaningful across participants; alas it limits the dataset size
to the number of images each individual observer can handle. Absolute clutter scales are undesirable
as different raters might use different ranges on this scale.

We created a comparatively large clutter perception dataset consisting of 90 800×600 real world
images sampled from the SUN Dataset images [33] for which there exists human segmentations of
objects and object counts. These object segmentations serve as one of the ground truths in our study.
The high resolution of these images is also important for the accurate perception and assessment
of clutter. The 90 images were selected to constitute six groups based on their ground truth object
counts, with 15 images in each group. Specifically, group 1 had images with object counts in the
1-10 range, group 2 had counts in the 11-20 range, up to group 6 with counts in the 51-60 range.

These 90 images were rated in the laboratory by 15 college-aged participants whose task was to
order the images in terms of least to most perceived visual clutter. This was done by displaying each
image one at a time and asking participants to insert it into an expanding set of previously rated
images. Participants were encouraged to take as much time as they needed, and were allowed to
freely scroll through the existing set of clutter rated images when deciding where to insert the new
image. A different random sequence of images was used for each participant (in order to control for
biases and order effects), and the entire task lasted approximately one hour. The average correlation
(Spearman’s rank-order correlation) over all pairs of participants was 0.6919 (p < 0.001), indicating
good agreement among raters. We used the median ranked position of each image as the ground truth
for clutter perception in our experiments.

4 Experiment and results

4.1 Image feature assumptions

In their demonstration that similarity distances adhere to a Weibull dstribution, Burghouts et al. [7]
derived and related Lp-norm based distances from the statistics of sums [3][4] such that for non-
identical and correlated random variables Xi, the sum

∑N
i=1Xi is Weibull distributed if Xi are

upper-bounded with a finite N , where Xi = |si − Ti|p such that N is the dimensionality of the
feature vector, i is the index, and s, t ∈ T are different sample vectors of the same feature.

The three image features used in this model are finite and upper bounded, and we follow the pro-
cedure from [7] with L2 distance to determine whether they are correlated. We consider distances
from one reference superpixel feature vector s to 100 other randomly selected superpixel feature
vectors T (of the same feature), and compute the differences at index i such that we are obtaining
the random variable Xi = |si − Ti|p. Pearson’s correlation is then used to determine the relation-
ship between Xi and Xj , i 6= j at a confidence level of 0.05. This procedure is repeated 500 times
per image for all three feature types over all 90 images. As predicted, we found an almost perfect
correlation between feature value differences for each of the features tested: Intensity: 100%, Hue:
99.2%, Orientation: 98.97%). This confirms that the low level image features used in this study
follow a Weibull distribution.
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WMM-mle WMM-nls MS[9] GB[11] PL[6] ED[19] FC[25] # Obj C3[18]
0.8038 0.7966 0.7262 0.6612 0.6439 0.6231 0.5337 0.5255 0.4810

Table 1: Correlations between human clutter perception and all the evaluated methods. WMM is the
Weibull mixture model underlying our proto-object partitioning approach, with both optimization
methods.

4.2 Model evaluation

We ran our model with different parameter settings of ε ∈ {0.01, 0.02, ..., 0.20} and τ ∈
{0.5, 0.6, ..., 0.9} using SLIC superpixels [1] initialized at 1000 seeds. We then correlated the
number of proto-objects formed after superpixel merging with the ground truth behavioral clutter
perception estimates by computing the Spearman’s Rank Correlation (Spearman’s ρ) following the
convention of [25][5][29][18].

A model using MLE as the optimization method achieved the highest correlation, ρ = 0.8038,
p < 0.001 with ε = 0.14 and τ = 0.8. Because we did not have separate training/testing sets,
we performed 10-fold cross-validation and obtained an average testing correlation of r = 0.7599,
p < 0.001. When optimized using NLS, the model achieved a maximum correlation of ρ = 0.7966,
p < 0.001 with ε = 0.14 and τ = 0.4, and the corresponding 10-fold cross-validation yielded an
average testing correlation of r = 0.7375, p < 0.001. The high cross-validation averages indicate
that our model is highly robust, and generalizable to unseen data.

It is worth pointing out that, the optimal value of the tolerance parameter ε showed a peak correlation
at 0.14. To the extent that this is meaningful and extends to people, it suggests that visual clutter
perception may ignore feature dissimilarity on the order of 14% when deciding whether two adjacent
regions are similar and should be merged.

We compared our model to four other state-of-the-art models of clutter perception: the feature con-
gestion model [25], the edge density method [19], the power-law model [6], and the C3 model [18].
Table 1 shows that our model significantly out-performed all of these previously reported methods.
The relatively poor performance of the recent C3 model was surprising, and can probably be at-
tributed to the previous evaluation of that model using charts and maps rather than arbitrary realistic
scenes (personal communication with authors). Collectively, these results suggest that a model that
merges superpixels into proto-objects best describes human clutter perception, and that the benefit of
using a proto-object model for clutter prediction is not small; our model resulted in an improvement
of at least 15% over existing models of clutter perception. Although we did not record run-time
statistics on the other models, our model, implemented in Matlab1, had an end-to-end (excluding
superpixel pre-processing) run-time of 15-20 seconds using 800×600 images running on an Win7
Intel Core i-7 computer with 8 Gb RAM.

4.3 Comparison to image segmentation methods

We also attempted to compare our method to state of the art image segmentation algorithms such
as gPb-ucm [2], but found that the method was unable to process our image dataset using either an
Intel Core i-7 machine with 8 Gb RAM or an Intel Xeon machine with 16 Gb RAM, at the high
image resolutions required by our behavioral clutter estimates. A similar limitation was found for
image segmentation methods that utilizes gPb contour detection as pre-processing, such as [8][14],
while [23][34] took 10 hours on a single image and did not converge.

Therefore, we limit our evaluation to mean-shift [9] and Graph-based method [11], as they are able
to produce variable numbers of segments based on the unsupervised partitioning of the 90 images
from our dataset. Despite using the best dataset parameter settings for these unsupervised methods,
our method remains the highest correlated model with the clutter perception ground truth as shown
in Table 1, and that methods allowing quantification of proto-object set size (WMM, Mean-shift,
and Graph-based) outperformed all of the previous clutter models .

We also correlated the number of objects segmented by humans (as provided in the SUN Dataset)
with the clutter perception ground truth, denoted as # obj in Table 1. Interestingly, despite object

1Code is available at mysbfiles.stonybrook.edu/~cheyu/projects/proto-objects.html
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Figure 3: Top: Four images from our dataset, rank ordered for clutter perception by human raters,
median clutter rank order from left to right: 6, 47, 70, 87. Bottom: Corresponding images after
parametric proto-object partitioning, median clutter rank order from left to right: 7, 40, 81, 83.

count being a human-derived estimate, it produced among the lowest correlations with clutter per-
ception. This suggests that clutter perception is not determined by simply the number of objects in
a scene; it is the proto-object composition of these objects that is important.

5 Conclusion

We proposed a model of visual clutter perception based on a parametric image partitioning method
that is fast and able to work on large images. This method of segmenting proto-objects from an im-
age using mixture of Weibull distributions is also novel in that it models similarity distance statistics
rather than feature statistics obtained directly from pixels. Our work also contributes to the behav-
ioral understanding of clutter perception. We showed that our model is an excellent predictor of
human clutter perception, outperforming all existing clutter models, and predicts clutter perception
better than even a behavioral segmentation of objects. This suggests that clutter perception is best
described at the proto-object level, a level intermediate to that of objects and features. Moreover,
our work suggests a means of objectively quantifying a behaviorally meaningful set size for scenes,
at least with respect to clutter perception. We also introduced a new and validated clutter perception
dataset consisting of a variety of scene types and object categories. This dataset, the largest and most
comprehensive to date, will likely be used widely in future model evaluation and method compari-
son studies. In future work we plan to extend our parametric partitioning method to general image
segmentation and data clustering problems, and to use our model to predict human visual search
behavior and other behaviors that might be affected by visual clutter.
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